東京大学大学院総合文化研究科 若杉研究室

(兼担) 総合文化研究科 広域科学専攻 生命環境科学系
(兼担) 理学系研究科 生物科学専攻

研究業績

当研究室より発表された 学術論文 および 総説,著書 の一覧です。

学術論文

  1. Wakasugi, K.* and Yokosawa, T. (2024) The high-affinity tryptophan uptake transport system in human cells. Biochem. Soc. Trans. 52, 1149-1158.
  2. Yokosawa, T., and Wakasugi, K.* (2023) Tryptophan-starved human cells overexpressing tryptophanyl-tRNA synthetase enhance high-affinity tryptophan uptake via enzymatic production of tryptophanyl-AMP. Int. J. Mol. Sci. 24, 15453.
  3. Kimura, A., Takagi, T., Thamamongood, T., Sakamoto, S., Ito, T., Seki, I., Okamoto, M., Aono, H., Serada, S., Naka, T., Imataka, H., Miyake, K., Ueda, T., Miyanokoshi, M., Wakasugi, K., Iwamoto, N., Ohmagari , N., Iguchi, T., Nitta, T., Takayanagi, H., Yamashita, H., Kaneko, H., Tsuchiya, H., Fujio, K., Handa, H., Suzuki, H. (2023) Extracellular aaRSs drive autoimmune and inflammatory responses in rheumatoid arthritis via the release of cytokines and PAD4. Ann. Rheum. Dis. 82, 1153-1161.
  4. Yokosawa, T., Sato, A., and Wakasugi, K.* (2020) Tryptophan depletion modulates tryptophanyl-tRNA synthetase-mediated high-affinity tryptophan uptake into human cells. Genes (Basel) 11, 1423.
  5. Wakasugi, K.* and Yokosawa, T. (2020) Non-canonical functions of human cytoplasmic tyrosyl-, tryptophanyl- and other aminoacyl-tRNA synthetases. The Enzymes (Elsevier) 48, 207-242.
  6. Miyanokoshi, M., Yokosawa, T., and Wakasugi, K.* (2018) Tryptophanyl-tRNA synthetase mediates high-affinity tryptophan uptake into human cells. J. Biol. Chem. 293, 8428-8438.
  7. Watanabe, S., Komine, O., Endo, F., Wakasugi, K., and Yamanaka, K. (2018) Intracerebroventricular administration of Cystatin C ameliorates disease in SOD1-linked amyotrophic lateral sclerosis mice. J. Neurochem. 145, 80-89.
  8. Xu, X., Zhou, H., Zhou, Q., Hong, F., Vo, M.-N., Niu, W., Wang, Z., Xiong, X., Nakamura, K., Wakasugi, K. , Schimmel, P., and Yang, X.-L. (2018) An alternative conformation of human TrpRS suggests a role of zinc in activating non-enzymatic function. RNA Biol. 15, 649-658.
  9. Takahashi, N., Onozuka, W., Watanabe, S., and Wakasugi, K*. (2017) Chimeric ZHHH neuroglobin acts as a cell membrane-penetrating inducer of neurite outgrowth. FEBS OPEN BIO. 7, 1338-1349.
  10. Sugitani, K., Koriyama, Y., Sera, M., Arai, K., Ogai, K., and Wakasugi, K. (2017) A novel function of neuroglobin for neuroregeneration in mice after optic nerve injury. Biochem. Biophys. Res. Commun. 493, 1254-1259.
  11. Takahashi, N., and Wakasugi, K*. (2016) Identification of residues crucial for the interaction between human neuroglobin and the α-subunit of heterotrimeric Gi protein. Scientific Reports (Nature Publishing Group) 6, 24948.
  12. Nakamoto, T., Miyanokoshi, M., Tanaka, T., and Wakasugi, K*.(2016) Identification of a residue crucial for the angiostatic activity of human mini tryptophanyl-tRNA synthetase by focusing on its molecular evolution. Scientific Reports (Nature Publishing Group) 6, 24750.
  13. Sugitani, K., Koriyama, Y., Ogai, K., Wakasugi, K., and Kato, S. (2016) A possible role of neuroglobin in the retina after optic nerve injury: a comparative study of zebrafish and mouse retina. Adv. Exp. Med. Res. 854, 671-675.
  14. Watanabe, S., Hayakawa, T., Wakasugi, K., and Yamanaka, K. (2014) Cystatin C protects neuronal cells against mutant copper-zinc superoxide dismutase-mediated toxicity. Cell Death & Disease 5, e1497.
  15. Takahashi, N., Watanabe, S., and Wakasugi, K.* (2013) Crucial roles of Glu60 in human neuroglobin as a guanine nucleotide dissociation inhibitor and neuroprotective agent. PLoS ONE 8, e83698.
  16. Miyanokoshi, M., Tanaka, T., Tamai, M., Tagawa,Y., and Wakasugi, K.* (2013) Expression of the rodent-specific alternative splice variant of tryptophanyl-tRNA synthetase in murine tissues and cells. Scientific Reports 3, 3477.
  17. Kamioka, Y., Fujikawa, C., Ogai, K., Sugitani, K., Watanabe, S., Kato, S.*, and Wakasugi, K.* (2013) Functional characterization of fish neuroglobin: zebrafish neuroglobin is highly expressed in amacrine cells after optic nerve injury and can translocate into ZF4 cells. Biochim. Biophys. Acta 1834, 1779-1788.
  18. Watanabe, S., Takahashi, N., Uchida, H., and Wakasugi, K.* (2012) Human neuroglobin functions as an oxidative stress-responsive sensor for neuroprotection. J. Biol. Chem. 287, 30128-30138.
  19. Watanabe, S., and Wakasugi, K.* (2011) Module M1 of zebrafish neuroglobin acts as a structural and functional protein building block for a cell-membrane-penetrating activity. PLoS One 6, e16808.
  20. Wakasugi, K.*, Takahashi, N., Uchida, H., and Watanabe, S. (2011) Species-specific functional evolution of neuroglobin. Marine Genomics 4, 137-142
  21. Wakasugi, K.*, Takahashi, N., and Watanabe, S. (2011) Chimeric ZHHH neuroglobin is a novel cell membrane-penetrating, neuroprotective agent. Am. J. Neuroprotec. Neuroroegen. 3, 42-47
  22. Watanabe, S., and Wakasugi, K.* (2010) Identification of residues critical for the cell-membrane-penetrating activity of zebrafish neuroglobin. FEBS Lett. 584, 2467-2472.
  23. Wakasugi, K.* (2010) An exposed cysteine residue of human angiostatic mini tryptophanyl-tRNA synthetase. Biochemistry 49, 3156-3160.
  24. Wakasugi, K.* (2010) Species-specific differences in the regulation of the aminoacylation activity of mammalian tryptophanyl-tRNA synthetase. FEBS Lett. 584, 229-232.
  25. Watanabe, S., and Wakasugi, K.* (2009) Functional characterization of neuroglobin, a novel member of the vertebrate globin family. J. Biol. Inorg. Chem. 14, S171.
  26. Wakasugi, K.* (2009) Regulation of human tryptophanyl-tRNA synthetase activity by heme. J. Biol. Inorg. Chem. 14, S196.
  27. Watanabe, S., and Wakasugi, K.* (2008) Zebrafish neuroglobin is a cell-membrane-penetrating globin. Biochemistry 47, 5266-5270.
  28. Watanabe, S., and Wakasugi, K.* (2008) Neuroprotective function of human neuroglobin is correlated with its guanine nucleotide dissociation inhibitor activity. Biochem. Biophys. Res. Commun. 369, 695-700.
  29. Ishikawa, H., Kim, S., Kwak, K., Wakasugi, K., and Fayer, M. D.* (2007) Disulfide bond influence on protein structual dynamics probed with 2D-IR vibrational echo spectroscopy. Proc. Natl. Acad. Sci. USA 104, 19309-19314.
  30. Ishikawa, H., Finkelstein, I. J., Kim, S., Kwak, K., Chung, J. K., Wakasugi, K., Massari, A. M., and Fayer, M. D.* (2007) Neuroglobin dynamics observed with ultrafast 2D-IR vibrational echo spectroscopy. Proc. Natl. Acad. Sci. USA 104, 16116-16121.
  31. Wakasugi, K.* (2007) Human tryptophanyl-tRNA synthetase binds with heme to enhance its aminoacylation activity. Biochemistry 46, 11291-11298.
  32. Kitatsuji, C., Kurogochi, M., Nishimura, S.-I., Ishimori, K., and Wakasugi, K.* (2007) Molecular basis of guanine nucleotide dissociation inhibitor activity of human neuroglobin by chemical cross-linking and mass spectrometry. J. Mol. Biol. 368, 150-160.
  33. Wakasugi, K.*, and Morishima, I. (2005) Functional characterization of human brain neuroglobin. Int. J. Mol. Med. 16, S13.
  34. Wakasugi, K.*, Kitatsuji, C., and Morishima, I. (2005) Possible neuroprotective mechanism of human neuroglobin. Ann. N.Y. Acad. Sci. 1053, 220-230.
  35. Wakasugi, K.*, and Morishima, I.* (2005) Preparation and characterization of a chimeric zebrafish-human neuroglobin engineered by module substitution. Biochem. Biophys. Res. Commun. 330, 591-597.
  36. Wakasugi, K.*, and Morishima, I.* (2005) Identification of residues in human neuroglobin crucial for guanine nucleotide dissociation inhibitor activity. Biochemistry 44, 2943-2948.
  37. Wakasugi, K.*, Nakano, T., and Morishima, I.* (2005) Oxidative stress-responsive intracellular regulation specific for the angiostatic form of human tryptophanyl-tRNA synthetase. Biochemistry 44, 225-232.
  38. Wakasugi, K.*, Nakano, T., and Morishima, I.* (2004) Association of human neuroglobin with cystatin C, a cysteine proteinase inhibitor. Biochemistry (Accelerated Publication) 43, 5119-5125.
  39. Wakasugi, K.*, Nakano, T., Kitatsuji, C., and Morishima, I.* (2004) Human neuroglobin interacts with flotillin-1, a lipid raft microdomain-associated protein. Biochem. Biophys. Res. Commun. 318, 453-460.
  40. Wakasugi, K.*, Nakano, T., and Morishima, I.* (2003) Oxidized human neuroglobin acts as a heterotrimeric Galpha protein guanine nucleotide dissociation inhibitor. J. Biol. Chem. 278, 36505-36512.
  41. Wakasugi, K. Slike, B. M., Hood, J., Ewalt, K. L., Cheresh, D. A., and Schimmel, P.* (2002) Induction of angiogenesis by a fragment of human tyrosyl-tRNA synthetase. J. Biol. Chem. (Accelerated Publication) 277, 20124-20126.
  42. Wakasugi, K. Slike, B. M., Hood, J., Otani, A., Ewalt, K. L., Friedlander, M., Cheresh, D. A., and Schimmel, P.* (2002) A human aminoacyl-tRNA synthetase as a regulator of angiogenesis. Proc. Natl. Acad. Sci. USA 99, 173-177.
    (Highlighted in Trends Biochem. Sci. (2002) 27, 227)
    (Highlighted in Trends Mol. Med. (2002) 8, 313-315)
  43. Wakasugi, K. and Schimmel, P.* (1999) Highly differentiated motifs responsible for two cytokine activities of a split human tRNA synthetase. J. Biol. Chem. 274, 23155-23159.
  44. Wakasugi, K. and Schimmel, P.* (1999) Two distinct cytokines released from a human aminoacyl-tRNA synthetase. Science 284, 147-151.
    (Highlighted in Science (1999) 284, 63-64)
    (Highlighted in Angew. Chem. Int. Ed. Engl. (1999) 38, 3635-3637)
  45. Wakasugi, K., Quinn, C., Tao, N., and Schimmel, P.* (1998) Genetic code in evolution: switching species-specific aminoacylation with a peptide transplant. EMBO J. 17, 297-305.
  46. Wakasugi, K., Ishimori, K., and Morishima, I.* (1997) "Module"-substituted globins: Artificial exon shuffling among myoglobin, hemoglobin α- and β-subunits. Biophys. Chem. 68, 265-273.
  47. Inaba, K., Wakasugi, K., Ishimori, K., Konno, T., Kataoka, M., and Morishima, I.* (1997) Structural and functional roles of modules in hemoglobin: substitution of module M4 in hemoglobin subunits. J. Biol. Chem. 272, 30054-30060.
  48. Wakasugi, K., Ishimori, K., and Morishima, I.* (1996) NMR Studies of Recombinant Cytochrome P450cam Mutants. Biochimie 78, 763-770.
  49. Morishima, I.*, Wakasugi, K., Inaba, K., and Ishimori, K. (1996) Design and engineering of module-substituted hemoproteins based on the exon-shuffling hypothesis. Progress in Biophysics and Molecular Biology 65, SA503.
  50. Wakasugi, K., Ishimori, K., and Morishima, I.* (1995) Module Substitution in Globins. Preparation and Association Characteristics of Chimeric Hemoglobin Subunits and Myoglobin. Tracing Biological Evolution in Protein and Gene Structures (eds. Go, M. & Schimmel, P.) (Elsevier), 283-295.
  51. Wakasugi, K., Inaba, K., Ishimori, K., and Morishima, I.* (1995) Structure and function of module-substituted hemoproteins. J. Inorg. Biochem. 59, 435.
  52. Wakasugi, K., Ishimori, K., and Morishima, I.* (1995) Preparation and characterization of novel hemoproteins by module substitution in myoglobin and hemoglobin subunits. Protein Eng. 8, 964.
  53. Inaba, K., Wakasugi, K., Ishimori, K., and Morishima, I.* (1995) Preparation and characterization of novel hemoproteins by module substitution in hemoglobin subunits. Protein Eng. 8, 968.
  54. Wakasugi, K., Ishimori, K., Imai, K., Wada, Y., and Morishima, I.* (1994) "Module" Substitution in Hemoglobin Subunits: Preparation and Characterization of a "Chimera βα-Subunit". J. Biol. Chem. 269, 18750-18756.
  55. Wakasugi, K., Ishimori, K., and Morishima, I.* (1993) Module substitution in hemoglobin subunits. Protein Eng. 6, 1006-1007.

総説および著書

  1. 若杉 桂輔 (2024) 教養教育高度化機構シンポジウム2024 「東京大学のEducational Transformation:教養教育の質的転換」報告. 東京大学教養学部報 第655号
  2. 若杉 桂輔 (2024) 「初年次ゼミナール理科の授業を受けるにあたって知っておいてほしいこと」, 東京大学「初年次ゼミナール理科」テキスト『科学の技法 第2版』, 東京大学出版会, 2-6.
  3. 若杉 桂輔 (2024) 「研究の世界へ:研究におけるセレンディピティ的発見の紹介」, 東京大学「初年次ゼミナール理科」テキスト『科学の技法 第2版』, 東京大学出版会, 151-158.
  4. 若杉 桂輔 (2022) 「ニューログロビン」, ヘムタンパク質の科学:生理機能の理解とその展開に向けて(株式会社エヌ・ティー・エス), 141-148.
  5. 若杉 桂輔 (2015) 「カラー生化学第4版(西村書店)書評」, 実験医学6月号, 羊土社, 33, 1490.
  6. 若杉 桂輔 (2012) 「ニューログロビンの生理機能の探索と新規機能性タンパク質の創製」, 実験医学増刊号「活性酸素・ガス状分子による恒常性制御と疾患」, 羊土社, 30, 97-102.
  7. 若杉 桂輔, 宮ノ腰美希 (2012) 「アミノアシルtRNA合成酵素の新規生理機能の探索」, 生物工学会誌, 90, 557-559.
  8. 若杉 桂輔 (2011) 「新規機能性蛋白質の探索と創製」, 日本化学会 生体機能関連化学部会 NEWS LETTER, 26, 3-6.
  9. 若杉 桂輔 (2011) 「TOPICS: 化学的アプローチからの生命の神秘の探究」, 東京大学大学院総合文化研究科広域科学専攻年報 Frontière 2010, 双文社印刷, 6-7.
  10. 若杉 桂輔 (2010) 「モジュール構造に着目した新規酵素の分子設計」, 酵素利用技術大系:基礎・解析から改変・高機能化・産業利用まで(株式会社エヌ・ティー・エス), 493-496.
  11. 若杉 桂輔 (2009) 「酸素結合タンパク質(ニューログロビン、サイトグロビン):酸化ストレスに対し細胞を保護するタンパク質」, からだと酵素の辞典(酵素ダイナミックス研究会編集)(朝倉書店), 253-255.
  12. 若杉 桂輔 (2007) 2006年ノーベル化学賞:遺伝情報の「転写」研究. 東京大学教養学部報
  13. 若杉 桂輔 (2006) チャンスを活かすために. 東京大学教養学部報 第492号
  14. 若杉 桂輔, 石森 浩一郎, 森島 績 (2001) 核磁気共鳴 (NMR). 基礎生化学実験法 第3巻 タンパク質 I 検出・構造解析法(東京化学同人),245-252.
  15. 石森 浩一郎, 若杉 桂輔, 森島 績 (2001) エクソンシャッフリング. シリーズ・バイオサイエンスの新世紀 タンパク質の分子設計(共立出版),147-159.
  16. 若杉 桂輔 (2001) 谷口シンポジウムでの出会い. 生物物理 41, 44-45.
  17. 若杉 桂輔* (1999) アミノアシルtRNAシンテースとサイトカイン. 免疫Immunology Frontier (メディカルレビュー社)9, 36-41.
  18. 若杉 桂輔* (1999) ヒトのアミノアシルtRNA合成酵素から生成する2種類のサイトカイン. 実験医学(羊土社)17, 1226-1228.
  19. Wakasugi, K. (1996) Preparation and Characterization of Artificial Module-substituted Hemoproteins based on the Exon-shuffling Hypothesis. Ph.D. Thesis (Kyoto Univeristy)
  20. 若杉 桂輔 (1993) 蛋白質の分子進化. 分子工学総説集 1, 69-79.