Wakasugi, K.* and Yokosawa, T. (2024) The high-affinity tryptophan uptake transport system in human cells. Biochem. Soc. Trans.52, 1149-1158.
Yokosawa, T., and Wakasugi, K.* (2023) Tryptophan-starved human cells overexpressing tryptophanyl-tRNA synthetase enhance high-affinity tryptophan uptake via enzymatic production of tryptophanyl-AMP. Int. J. Mol. Sci.24, 15453.
Kimura, A., Takagi, T., Thamamongood, T., Sakamoto, S., Ito, T., Seki, I., Okamoto, M., Aono, H., Serada, S., Naka, T., Imataka, H., Miyake, K., Ueda, T., Miyanokoshi, M., Wakasugi, K., Iwamoto, N., Ohmagari , N., Iguchi, T., Nitta, T., Takayanagi, H., Yamashita, H., Kaneko, H., Tsuchiya, H., Fujio, K., Handa, H., Suzuki, H. (2023) Extracellular aaRSs drive autoimmune and inflammatory responses in rheumatoid arthritis via the release of cytokines and PAD4. Ann. Rheum. Dis.82, 1153-1161.
Yokosawa, T., Sato, A., and Wakasugi, K.* (2020) Tryptophan depletion modulates tryptophanyl-tRNA synthetase-mediated high-affinity tryptophan uptake into human cells. Genes (Basel) 11, 1423.
Wakasugi, K.* and Yokosawa, T. (2020) Non-canonical functions of human cytoplasmic tyrosyl-, tryptophanyl- and other aminoacyl-tRNA synthetases. The Enzymes (Elsevier)48, 207-242.
Miyanokoshi, M., Yokosawa, T., and Wakasugi, K.* (2018) Tryptophanyl-tRNA synthetase mediates high-affinity tryptophan uptake into human cells. J. Biol. Chem.293, 8428-8438.
Watanabe, S., Komine, O., Endo, F., Wakasugi, K., and Yamanaka, K. (2018) Intracerebroventricular administration of Cystatin C ameliorates disease in SOD1-linked amyotrophic lateral sclerosis mice. J. Neurochem.145, 80-89.
Xu, X., Zhou, H., Zhou, Q., Hong, F., Vo, M.-N., Niu, W., Wang, Z., Xiong, X., Nakamura, K., Wakasugi, K. , Schimmel, P., and Yang, X.-L. (2018) An alternative conformation of human TrpRS suggests a role of zinc in activating non-enzymatic function. RNA Biol.15, 649-658.
Takahashi, N., Onozuka, W., Watanabe, S., and Wakasugi, K*. (2017) Chimeric ZHHH neuroglobin acts as a cell membrane-penetrating inducer of neurite outgrowth. FEBS OPEN BIO.7, 1338-1349.
Sugitani, K., Koriyama, Y., Sera, M., Arai, K., Ogai, K., and Wakasugi, K. (2017) A novel function of neuroglobin for neuroregeneration in mice after optic nerve injury. Biochem. Biophys. Res. Commun.493, 1254-1259.
Takahashi, N., and Wakasugi, K*. (2016) Identification of residues crucial for the interaction between human neuroglobin and the α-subunit of heterotrimeric Gi protein. Scientific Reports (Nature Publishing Group) 6, 24948.
Nakamoto, T., Miyanokoshi, M., Tanaka, T., and Wakasugi, K*.(2016) Identification of a residue crucial for the angiostatic activity of human mini tryptophanyl-tRNA synthetase by focusing on its molecular evolution. Scientific Reports (Nature Publishing Group) 6, 24750.
Sugitani, K., Koriyama, Y., Ogai, K., Wakasugi, K., and Kato, S. (2016) A possible role of neuroglobin in the retina after optic nerve injury: a comparative study of zebrafish and mouse retina. Adv. Exp. Med. Res.854, 671-675.
Watanabe, S., Hayakawa, T., Wakasugi, K., and Yamanaka, K. (2014) Cystatin C protects neuronal cells against mutant copper-zinc superoxide dismutase-mediated toxicity. Cell Death & Disease5, e1497.
Takahashi, N., Watanabe, S., and Wakasugi, K.* (2013) Crucial roles of Glu60 in human neuroglobin as a guanine nucleotide dissociation inhibitor and neuroprotective agent. PLoS ONE8, e83698.
Miyanokoshi, M., Tanaka, T., Tamai, M., Tagawa,Y., and Wakasugi, K.* (2013) Expression of the rodent-specific alternative splice variant of tryptophanyl-tRNA synthetase in murine tissues and cells. Scientific Reports3, 3477.
Kamioka, Y., Fujikawa, C., Ogai, K., Sugitani, K., Watanabe, S., Kato, S.*, and Wakasugi, K.* (2013) Functional characterization of fish neuroglobin: zebrafish neuroglobin is highly expressed in amacrine cells after optic nerve injury and can translocate into ZF4 cells. Biochim. Biophys. Acta1834, 1779-1788.
Watanabe, S., Takahashi, N., Uchida, H., and Wakasugi, K.* (2012) Human neuroglobin functions as an oxidative stress-responsive sensor for neuroprotection. J. Biol. Chem.287, 30128-30138.
Watanabe, S., and Wakasugi, K.* (2011) Module M1 of zebrafish neuroglobin acts as a structural and functional protein building block for a cell-membrane-penetrating activity. PLoS One6, e16808.
Wakasugi, K.*, Takahashi, N., Uchida, H., and Watanabe, S. (2011) Species-specific functional evolution of neuroglobin. Marine Genomics4, 137-142
Wakasugi, K.*, Takahashi, N., and Watanabe, S. (2011) Chimeric ZHHH neuroglobin is a novel cell membrane-penetrating, neuroprotective agent. Am. J. Neuroprotec. Neuroroegen. 3, 42-47
Watanabe, S., and Wakasugi, K.* (2010) Identification of residues critical for the cell-membrane-penetrating activity of zebrafish neuroglobin. FEBS Lett.584, 2467-2472.
Wakasugi, K.* (2010) An exposed cysteine residue of human angiostatic mini tryptophanyl-tRNA synthetase. Biochemistry49, 3156-3160.
Wakasugi, K.* (2010) Species-specific differences in the regulation of the aminoacylation activity of mammalian tryptophanyl-tRNA synthetase. FEBS Lett.584, 229-232.
Watanabe, S., and Wakasugi, K.* (2009) Functional characterization of neuroglobin, a novel member of the vertebrate globin family. J. Biol. Inorg. Chem.14, S171.
Wakasugi, K.* (2009) Regulation of human tryptophanyl-tRNA synthetase activity by heme. J. Biol. Inorg. Chem.14, S196.
Watanabe, S., and Wakasugi, K.* (2008) Zebrafish neuroglobin is a cell-membrane-penetrating globin. Biochemistry47, 5266-5270.
Watanabe, S., and Wakasugi, K.* (2008) Neuroprotective function of human neuroglobin is correlated with its guanine nucleotide dissociation inhibitor activity. Biochem. Biophys. Res. Commun.369, 695-700.
Ishikawa, H., Kim, S., Kwak, K., Wakasugi, K., and Fayer, M. D.* (2007) Disulfide bond influence on protein structual dynamics probed with 2D-IR vibrational echo spectroscopy. Proc. Natl. Acad. Sci. USA104, 19309-19314.
Ishikawa, H., Finkelstein, I. J., Kim, S., Kwak, K., Chung, J. K., Wakasugi, K., Massari, A. M., and Fayer, M. D.* (2007) Neuroglobin dynamics observed with ultrafast 2D-IR vibrational echo spectroscopy. Proc. Natl. Acad. Sci. USA104, 16116-16121.
Wakasugi, K.* (2007) Human tryptophanyl-tRNA synthetase binds with heme to enhance its aminoacylation activity. Biochemistry46, 11291-11298.
Kitatsuji, C., Kurogochi, M., Nishimura, S.-I., Ishimori, K., and Wakasugi, K.* (2007) Molecular basis of guanine nucleotide dissociation inhibitor activity of human neuroglobin by chemical cross-linking and mass spectrometry. J. Mol. Biol.368, 150-160.
Wakasugi, K.*, and Morishima, I. (2005) Functional characterization of human brain neuroglobin. Int. J. Mol. Med.16, S13.
Wakasugi, K.*, Kitatsuji, C., and Morishima, I. (2005) Possible neuroprotective mechanism of human neuroglobin. Ann. N.Y. Acad. Sci.1053, 220-230.
Wakasugi, K.*, and Morishima, I.* (2005) Preparation and characterization of a chimeric zebrafish-human neuroglobin engineered by module substitution. Biochem. Biophys. Res. Commun.330, 591-597.
Wakasugi, K.*, and Morishima, I.* (2005) Identification of residues in human neuroglobin crucial for guanine nucleotide dissociation inhibitor activity. Biochemistry44, 2943-2948.
Wakasugi, K.*, Nakano, T., and Morishima, I.* (2005) Oxidative stress-responsive intracellular regulation specific for the angiostatic form of human tryptophanyl-tRNA synthetase. Biochemistry44, 225-232.
Wakasugi, K.*, Nakano, T., and Morishima, I.* (2004) Association of human neuroglobin with cystatin C, a cysteine proteinase inhibitor. Biochemistry (Accelerated Publication) 43, 5119-5125.
Wakasugi, K.*, Nakano, T., Kitatsuji, C., and Morishima, I.* (2004) Human neuroglobin interacts with flotillin-1, a lipid raft microdomain-associated protein. Biochem. Biophys. Res. Commun.318, 453-460.
Wakasugi, K.*, Nakano, T., and Morishima, I.* (2003) Oxidized human neuroglobin acts as a heterotrimeric Galpha protein guanine nucleotide dissociation inhibitor. J. Biol. Chem.278, 36505-36512.
Wakasugi, K. Slike, B. M., Hood, J., Ewalt, K. L., Cheresh, D. A., and Schimmel, P.* (2002) Induction of angiogenesis by a fragment of human tyrosyl-tRNA synthetase. J. Biol. Chem. (Accelerated Publication) 277, 20124-20126.
Wakasugi, K. Slike, B. M., Hood, J., Otani, A., Ewalt, K. L., Friedlander, M., Cheresh, D. A., and Schimmel, P.* (2002) A human aminoacyl-tRNA synthetase as a regulator of angiogenesis. Proc. Natl. Acad. Sci. USA99, 173-177. (Highlighted in Trends Biochem. Sci. (2002) 27, 227) (Highlighted in Trends Mol. Med. (2002) 8, 313-315)
Wakasugi, K. and Schimmel, P.* (1999) Highly differentiated motifs responsible for two cytokine activities of a split human tRNA synthetase. J. Biol. Chem.274, 23155-23159.
Wakasugi, K. and Schimmel, P.* (1999) Two distinct cytokines released from a human aminoacyl-tRNA synthetase. Science284, 147-151. (Highlighted in Science (1999) 284, 63-64) (Highlighted in Angew. Chem. Int. Ed. Engl. (1999) 38, 3635-3637)
Wakasugi, K., Quinn, C., Tao, N., and Schimmel, P.* (1998) Genetic code in evolution: switching species-specific aminoacylation with a peptide transplant. EMBO J.17, 297-305.
Wakasugi, K., Ishimori, K., and Morishima, I.* (1997) "Module"-substituted globins: Artificial exon shuffling among myoglobin, hemoglobin α- and β-subunits. Biophys. Chem.68, 265-273.
Inaba, K., Wakasugi, K., Ishimori, K., Konno, T., Kataoka, M., and Morishima, I.* (1997) Structural and functional roles of modules in hemoglobin: substitution of module M4 in hemoglobin subunits. J. Biol. Chem.272, 30054-30060.
Wakasugi, K., Ishimori, K., and Morishima, I.* (1996) NMR Studies of Recombinant Cytochrome P450cam Mutants. Biochimie78, 763-770.
Morishima, I.*, Wakasugi, K., Inaba, K., and Ishimori, K. (1996) Design and engineering of module-substituted hemoproteins based on the exon-shuffling hypothesis. Progress in Biophysics and Molecular Biology65, SA503.
Wakasugi, K., Ishimori, K., and Morishima, I.* (1995) Module Substitution in Globins. Preparation and Association Characteristics of Chimeric Hemoglobin Subunits and Myoglobin. Tracing Biological Evolution in Protein and Gene Structures (eds. Go, M. & Schimmel, P.) (Elsevier), 283-295.
Wakasugi, K., Inaba, K., Ishimori, K., and Morishima, I.* (1995) Structure and function of module-substituted hemoproteins. J. Inorg. Biochem.59, 435.
Wakasugi, K., Ishimori, K., and Morishima, I.* (1995) Preparation and characterization of novel hemoproteins by module substitution in myoglobin and hemoglobin subunits. Protein Eng.8, 964.
Inaba, K., Wakasugi, K., Ishimori, K., and Morishima, I.* (1995) Preparation and characterization of novel hemoproteins by module substitution in hemoglobin subunits. Protein Eng.8, 968.
Wakasugi, K., Ishimori, K., Imai, K., Wada, Y., and Morishima, I.* (1994) "Module" Substitution in Hemoglobin Subunits: Preparation and Characterization of a "Chimera βα-Subunit". J. Biol. Chem.269, 18750-18756.
Wakasugi, K., Ishimori, K., and Morishima, I.* (1993) Module substitution in hemoglobin subunits. Protein Eng.6, 1006-1007.
Wakasugi, K. (1996) Preparation and Characterization of Artificial Module-substituted Hemoproteins based on the Exon-shuffling Hypothesis. Ph.D. Thesis (Kyoto Univeristy)