1. Home
  2. Publications

Publications



Publications 2015-2020

2020年

  1. Electrochemical Reduction of Samarium Triiodide into Samarium Diiodide
    K. Arashiba, R. Kanega, Y. Himeda, and Y. Nishibayashi
    Chem. Lett.49, 1171-1173 (2020). [Open Access]
  2. Cycling between Molybdenum-Dinitrogen and -Nitride Complexes to Support Reaction Pathway for Catalytic Formation of Ammonia from Dinitrogen
    K. Arashiba, H. Tanaka, K. Yoshizawa, and Y. Nishibayashi
    Chem. Eur. J.26, 13383-13389 (2020). [Highlighted at Cover Picture][Cover Profile]
  3. Preparation and Reactivity of Molybdenum Complexes Bearing Pyrrole-Based PNP-Type Pincer Ligand
    Y. Tanabe, Y. Sekiguchi, H. Tanaka, A. Konomi, K. Yoshizawa, S. Kuriyama, and Y. Nishibayashi
    Chem. Commun.56, 6933-6936 (2020). [Highlighted at Back Cover Picture]
  4. Ruthenium-Catalyzed Propargylic Reduction of Propargylic Alcohols with Hantzsch Ester
    H. Ding, K. Sakata, S. Kuriyama, and Y. Nishibayashi
    Organometallics, 39, 2130-2134 (2020).
  5. Structural Characterization of Molybdenum-Dinitrogen Complex as Key Species toward Ammonia Formation by Dispersive XAFS Spectroscopy
    A. Yamamoto, K. Arashiba, S. Naniwa, K. Kato, H. Tanaka, K. Yoshizawa, Y. Nishibayashi, and H. Yoshida
    Phys. Chem. Chem. Phys.22, 12368–12372 (2020). [Highlighted as 2020 PCCP Hot Article]
  6. Iridium-Catalyzed Formation of Silylamine from Dinitrogen under Ambinet Reaction Conditions
    R. Kawakami, S. Kuriyama, H. Tanaka, A. Konomi, K. Yoshizawa, and Y. Nishibayashi
    Chem. Lett.49, 794–797 (2020). [Open Access]
  7. Rhodium-Catalyzed Cyclization Reactions of Thiadiazoles with Phosphaalkynes to Prepare 1,3-Thiaphospholes
    W. Liang, K. Nakajima, and Y. Nishibayashi
    Eur. J. Org. Chem., 3879–3882 (2020).
  8. Synthesis of 1,2,4-Azadiphospholes Derivatives Based on Vanadium-Catalyzed [2+2+1] Cycloaddition Reactions of Azobenzenes with Phosphaalkynes
    W. Liang, K. Nakajima, and Y. Nishibayashi
    RSC Adv.10, 12730–12733 (2020).
  9. Nitrogen Fixation Catalyzed by Dinitrogen-Bridged Dimolybdenum Complexes Bearing PCP- and PNP-Type Pincer Ligands: A Short Cut Pathway Deduced from Free Energy Profiles
    A. Egi, H. Tanaka, A. Konomi, Y. Nishibayashi, and K. Yoshizawa
    Eur. J. Inorg. Chem. (invitation for special issue: Nitrogen Fixation), 1490-1498 (2020). 
  10. 遷移金属窒素錯体を利用した触媒的窒素固定反応の開発
    西林仁昭
    Organometallic News, 46-49 (2020).
  11. EurJIC's Nitrogen Fixation Special Issue – A Source of Insperation
    F. Tuczek and Y. Nishibayashi
    Eur. J. Inorg. Chem. (Guest Editorial: Nitrogen Fixation), 1351-1352 (2020). [Open Access]
  12. 遷移金属錯体による触媒的アンモニア生成反応の開発
    西林仁昭
    高機能性金属錯体が拓く触媒科学:革新的分子変換反応の創出をめざして(日本化学会 Current Review 37), 53-62 (2020).
  13. 錯体触媒によるアンモニア合成の研究
    田邊資明、西林仁昭
    触媒技術の動向と展望2020, 31-42.
    触媒学会 (2020年).
  14. 「東京大学工学教程 無機化学Ⅱ(金属錯体化学)」
    石井和之、北條博彦、西林仁昭(分担)
    丸善出版 (2020年). [テスト版]

2019年

  1. Catalytic Redcution of Dinitrogen into Tris(trimethylsilyl)amine Using Rhdoium Complexes with Pyrrole-Based PNP-Type Pincer Ligand
    R. Kawakami, S. Kuriyama, H. Tanaka, K. Arashiba, A. Konomi, K. Nakajima, K. Yoshizawa, and Y. Nishibayashi
    Chem. Commun.55, 14886-14889 (2019). [Highlighted at Cover Picture]
  2. Ruthenium-Catalysed Oxidative Conversion of Ammonia into Dinitrogen
    K. Nakajima, H. Toda, K. Sakata, and Y. Nishibayashi
    Nature Chemistry11, 702–709 (2019).
    [Highlighted at Nature Research Chemistry Community]
  3. Practical Ammonia Synthesis from Nitrogen Gas with Samarium Diiodide and Water Catalyzed by Molybdenum-PCP Pincer Complex
    Y. Ashida, S, Kondo, K. Arashiba, T. Kikuchi, K. Nakajima, S. Kakimoto, and Y. Nishibayashi
    Synthesis (PSP)51, 3792–3795 (2019).
  4. Molybdenum-Catalyzed Ammonia Formation Using Simple Monodentate- and Bidentate-Phosphines as Auxiliary Ligands
    Y. Ashida, K. Arashiba, H. Tanaka, A. Egi, K. Nakajima, K. Yoshizawa, and Y. Nishibayashi
    Inorg. Chem., 58, 8927–8932 (2019).
  5. Copper-Catalysed Enantioselective Intramolecular Etherification of Propargylic Esters: Synthetic Approach to Chiral Isochromans
    S. Liu, K. Nakajima, and Y. Nishibayashi
    RSC Adv.9, 18918–18922 (2019). 
  6. Synthesis and Catalytic Reactivity of Bis(molybdenum-trihalide) Complexes Bridged by Ferrocene Skeleton toward Catalytic Nitrogen Fixation
    T. Itabashi, K. Arashiba, H. Tanaka, A. Konomi, A. Eizawa, K. Nakajima, K. Yoshizawa, and Y. Nishibayashi
    Organometallics38, 2863–2872 (2019). [Highlighted at Cover Picture]
  7. Alkylation Reactions of Azodicarboxylate Esters with 4-Alkyl-1,4,-Dihydropyridines under Catalyst-Free Conditions
    K. Nakajima, Y. Zhang, and Y. Nishibayashi
    Org. Lett.21, 4642–4645 (2019). 
  8. Catalytic Water Oxidation Reaction with Use of Triarylamine Radicals as Single-Electron Oxidants and Pyridines as Bases
    H. Toda, K. Nakajima, and Y. Nishibayashi
    Chem. Lett.48, 1006–1008 (2019). 
  9. Molybdenum-Catalysed Ammonia Production with Samarium Diiodide and Alcohols or Water
    Y. Ashida, K. Arashiba, K. Nakajima, and Y. Nishibayashi
    Nature568, 536–540 (2019). [Highlighted at News & Views in Nature]
  10. Catalytic C-H Borylation Using Iron Complexes Bearing 4,5,6,7-Tetrahydroisoindol-2-ide-Based PNP-Type Pincer Ligand
    T. Kato, S. Kuriyama, K. Nakajima, and Y. Nishibayashi
    Chem. Asian J.14, 2097–2101 (2019).
  11. Catalytic Reactivity of Molybdenum-Trihalide Complexes Bearing PCP-Type Pincer Ligands
    A. Eizawa, K. Arashiba, A. Egi, H. Tanaka, K. Nakajima, K. Yoshizawa, and Y. Nishibayashi
    Chem. Asian J.14, 2091–2096 (2019).
  12. Synthesis and Catalytic Reactivity of Polystyrene-Supported Molybdenum Pincer Complexes toward Ammonia Formation
    K. Arashiba, T. Itabashi, K. Nakajima, and Y. Nishibayashi
    Chem. Lett., 48, 693–695 (2019).
  13. Effect of Substituents on Molybdenum Triiodide Complexes Bearing PNP-Type Pincer Ligands toward Catalytic Nitrogen Fixation
    T. Itabashi, I. Mori, K. Arashiba, A. Eizawa, K. Nakajima, and Y. Nishibayashi
    Dalton Transactions48, 3182–3186 (2019). [Highlighted at Cover Picture]
  14. Copper-Catalyzed [3+2] Cycloaddition Reactions of Isocyanoacetates with Phosphaalkynes to Prepare 1,3-Azaphospholes
    W. Liang, K. Nakajima, K. Sakata, and Y. Nishibayashi
    Angew. Chem. Int. Ed., 58, 1168–1173 (2019).
  15. 分子触媒でアンモニアを分解
    —アンモニア燃料電池を目指したエネルギー変換反応の開発—
    中島一成、戸田広樹、坂田 健、西林仁昭
    現代化学, 11月号, 00-00 (2019). 
  16. 分子触媒を用いた温和な条件における触媒的アンモニア合成反応の開発
    芦田裕也、西林仁昭
    機能材料, 10月号, 58-64 (2019). 
  17. 常温常圧でアンモニアを合成する新たな手法の開発
    田邊資明、西林仁昭
    クリーンエネルギー, 9月号, 1-10 (2019). 
  18. Recent Advances in Catalytic Silylation of Dinitrogen Using Transition Metal Complexes
    Y. Tanabe and Y. Nishibayashi
    Coord. Chem. Rev., (invitation for special issue)389, 73–93 (2019).
  19. 分子触媒を用いたアンモニア生成反応のブレークスルー
    —常温常圧で世界最高の触媒活性を達成
    芦田裕也、荒芝和也、中島一成、西林仁昭
    化学, 8月号, 38-42 (2019). 
  20. 遷移金属錯体による触媒的アンモニア生成反応の開発
    西林仁昭
    高機能性金属錯体の創製に基づく分子変換の新手法 (日本化学会 Current Review), 000-000 (2019).
  21. 西林仁昭博士に聞く
    水と窒素ガスからアンモニアをつくる
    現代化学編集部
    現代化学, 7月号, 18-23 (2019). 
  22. Overviews of Preparation and Reactivity of Transition-Metal-Dinitrogen Complexes
    Y. Tanabe and Y. Nishibayashi
    Transition Metal-Dinitrogen Complexes: Preparation and Reactivity, Ed. Y. Nishibayashi, Wiley-VCH, 1–77 (2019).
  23. Recent Advances in Nitrogen Fixation upon Vanadium Complexes
    Y. Tanabe and Y. Nishibayashi
    Coord. Chem. Rev. (invitation for special issue)381, 135–150 (2019).
  24. 「錯体化学事典」(錯体化学会編)
    西林仁昭(分担)
    朝倉書店 (2019年).
  25. 「東京大学工学教程 無機化学Ⅱ(錯体化学)」(分担)
    石井和之、北條博彦、西林仁昭
    丸善出版 (2019年予定).

2018年
  1. Phosphine Oxidation with Water and Ferrocenium(III) Cation Induced by Visible Light Irradiation
    Y. Tanabe, K. Nakajima, and Y. Nishibayashi
    Chem. Eur. J.24, 18618–18622 (2018). [Highlighted at Cover Picture][Cover Profile][Selected as Hot Paper]
  2. Cross-Coupling Reactions of Alkenyl Halides with 4-Benzyl-1,4-Dihydropyridines Associated with E to Z Isomerization under Nickel- and Photoredox-Catalysis
    K. Nakajima, X. Guo, and Y. Nishibayashi
    Chem. Asian J.13, 3653–3657 (2018).
  3. Synthesis of Ruthenium Complexes Bearing PCP-Type Pincer Ligands and Their Application to Direct Synthesis of Imines from Amines and Benzyl Alcohol
    A. Eizawa, S. Nishimura, K. Arashiba, K. Nakajima, and Y. Nishibayashi
    Organometallics37, 3086–3092 (2018).
  4. Development of Catalytic Nitrogen Fixation Using Transition Metal–Dinitrogen Complexes under Mild Reaction Conditions
    Y. Nishibayashi
    Dalton Transactions (Perspective, invitation)47, 11290–11297 (2018).
  5. Synthesis and Reactivity of Titanium– and Zirconium–Dinitrogen Complexes Bearing Anionic Pyrrole-Based PNP-type Pincer Ligands
    Y. Sekiguchi, F. Meng, H. Tanaka, A. Eizawa, K. Arashiba, K. Nakajima, K. Yoshizawa, and Y. Nishibayashi
    Dalton Transactions47, 11322–11326 (2018).
  6. Hydrogenation of Carbon Dioxide with Organic Base by PC(II)P-Ir Catalysts 
    S. Takaoka, A. Eizawa, S. Kusumoto, K. Nakajima, Y. Nishibayashi, and K. Nozaki
    Organometallics37, 3001–3009 (2018). [Highlighted at Cover Picture]
  7. Catalytic Reduction of Molecular Dinitrogen into Ammonia and Hydrazine Using Vanadium Complexes
    Y. Sekiguchi, K. Arashiba, H. Tanaka, A. Eizawa, K. Nakajima, K. Yoshizawa, and Y. Nishibayashi
    Angew. Chem. Int. Ed., 57, 9064–9068 (2018).
  8. Copper- and Borinic Acid-Catalyzed Propargylic Etherification of Propargylic Carbonates with Benzyl Alcohols
    K. Tsuchida, M. Yuki, K. Nakajima, and Y. Nishibayashi
    Chem. Lett.47, 671–673 (2018).
  9. Preparation and Reactivity of Iron Complexes Bearing Anionic Carbazole-Based PNP-Type Pincer Ligands toward Catalytic Nitrogen Fixation
    J. Higuchi, S. Kuriyama, A. Eizawa, K. Arashiba, K. Nakajima, and Y. Nishibayashi
    Dalton Transactions47, 1117–1121 (2018).
  10. Practical Synthesis of PCP-type Pincer Ligand and its Metal Complexes
    K. Matoba, A. Eizawa, S. Nishimura, K. Arashiba, K. Nakajima, and Y. Nishibayashi
    Synthesis (PSP)50, 1015–1019 (2018).
  11. Mechanism and Reactivity of Catalytic Propargylic Substitution Reactions via Metal-Allenylidene Intermediates: A Theoretical Perspective
    K. Sakata, and Y. Nishibayashi
    Catal. Sci. Technol.8, 12–25 (2018). [Highlighted at Cover Picture]
  12. 遷移金属窒素錯体を利用した触媒的窒素固定法の開発
    西林仁昭
    錯体化学会誌(Bull. Jpn. Soc. Coord. Chem.), 71, 49–55 (2018).
2017年
  1. Dicationic Thiolate-Bridged Diruthenium Complexes for Catalytic Oxidation of Molecular Dihydrogen
    M. Yuki, K. Sakata, K. Nakajima, S. Kikuchi, S. Sekine, H. Kawai, and Y. Nishibayashi
    Organometallics36, 4499–4506 (2017).
  2. Synthesis and Reactivity of Iron­–Dinitrogen Complexes Bearing Anionic Methyl- and Phenyl-Substituted Pyrrole-based PNP-Type Pincer Ligands toward Catalytic Nitrogen Fixation
    Y. Sekiguchi, S. Kuriyama, A. Eizawa, K. Arashiba, K. Nakajima, and Y. Nishibayashi
    Chem. Commun.53, 12040–12043 (2017).
  3. Catalytic Conversion of Dinitrogen into Ammonia under Ambient Reaction Conditions by Using Proton Source from Water
    Y. Tanabe, K. Arashiba, K. Nakajima, and Y. Nishibayashi
    Chem. Asian J.12, 2544–2548 (2017). [Highlighted at Cover Picture]

     
  4. Hydroboration of Alkynes Catalyzed by Pyrrolide-Based PNP Pincer-Iron Complexes
    K. Nakajima, T. Kato, and Y. Nishibayashi
    Org. Lett., 19, 4323–4326 (2017). [Highlighted at Organic Chemistry Portal]

     
  5. Catalytic Nitrogen Fixation via Direct Cleavage of Nitrogen–Nitrogen Triple Bond of Molecular Dinitrogen under Ambient Reaction Conditions
    K. Arashiba, A. Eizawa, H. Tanaka, K. Nakajima, K. Yoshizawa, and Y. Nishibayashi
    Bull. Chem. Soc. Jpn.90, 1111–1118 (2017). [BCSJ Award Article] [Highlighted at Cover Picture]

     
  6. Synthesis and Reactivity of Iron- and Cobalt-Dinitrogen Complexes Bearing PSiP-Type Pincer Ligand toward Nitrogen Fixation
    R. Imayoshi, K. Nakajima, J. Takaya, N. Iwasawa, and Y. Nishibayashi
    Eur. J. Inorg. Chem., in press (2017). [Highlighted at Cover Picture] [Cover Profile]

     
  7. Remarkable Catalytic Activity of Dinitrogen-Bridged Dimolybdenum Complexes Bearing NHC-Based PCP-Pincer Ligands toward Nitrogen Fixation
    A. Eizawa, K. Arashiba, H. Tanaka, S. Kuriyama, Y. Matsuo, K. Nakajima, K. Yoshizawa, and Y. Nishibayashi
    Nature Communications8, 14874 (2017). 
  8. Vanadium-Catalyzed Reduction of Molecular Dinitrogen into Silylamine under Ambient Reaction Conditions
    R. Imayoshi, K. Nakajima, and Y. Nishibayashi
    Chem. Lett., 46, 466–468 (2017). [Selected as Editor's Choice Paper]
  9. Catalytic Activity of Thiolate-Bridged Diruthenium Complexes Bearing Pendent Ether Moieties toward Oxidation of Molecular Dihydrogen
    M. Yuki, K. Sakata, S. Kikuchi, H. Kawai, T. Takahashi, M. Ando, K. Nakajima, and Y. Nishibayashi
    Chemistry-A European Journal, 23, 1007-1012 (2017). [Highlighted at Cover Picture] [Selected as Hot Paper]
  10. 遷移金属窒素錯体を用いた触媒的窒素固定反応の最近の進展
    西林仁昭
    Organometallic News, 63-67 (2017).
  11. Catalytic Nitrogen Fixation Using Molybdenum–Dinitrogen Complexes as Catalysts
    A. Eizawa and Y. Nishibayashi
    Topics in Organometallic Chemistry – Nitrogen Fixation; Ed. Y. Nishibayashi, Springer, 153-169 (2017).
  12. Catalytic Transformations of Molecular Dinitrogen by Iron and Cobalt–Dinitrogen Complexes as Catalysts
    S. Kuriyama and Y. Nishibayashi
    Topics in Organometallic Chemistry – Nitrogen Fixation; Ed. Y. Nishibayashi, Springer, 215-234 (2017).
  13. アンモニアによるエネルギー資源革命を目指して
    –分子触媒を利用したアンモニア合成反応–
    西林仁昭、荒芝和也、永澤 彩
    現代化学, 5月号, 30-36 (2017).
  14. 触媒的不斉プロパルギル位置換反応の開発
    西林仁昭
    有機合成化学協会誌, 75, 2-13 (2017).
  15. 「東京大学工学教程 無機化学Ⅱ(錯体化学)」(分担)
    石井和之、北條博彦、西林仁昭
    丸善出版 (2017予定).

2016年

  1. Nickel- and Photoredox-Catalyzed Cross-Coupling Reactions of Aryl Halides with 4-Alkyl-1,4-dihydropyridines as Visible Light-Mediated Formal Nucleophilic Alkylation Reagents
    K. Nakajima, S. Nojima, and Y. Nishibayashi
    Angew. Chem. Int. Ed. 55, 14106–14110 (2016).
  2. Iron-Catalyzed [2+2+2] Cycloaddition Reactions of Diynes with Oxyphosphaethynes to Construct 2-Phosphaphenol Derivatives
    K. Nakajima, W. Liang, and Y. Nishibayashi
    Org. Lett. 18, 5006–5009 (2016).
  3. Azaferrocene-Based PNP-Type Pincer Ligand: Synthesis of Molybdenum, Chromium, and Iron Complexes and Reactivity toward Nitrogen Fixation
    S. Kuriyama, K. Arashiba, K. Nakajima, H. Tanaka, K. Yoshizawa, and Y. Nishibayashi
    Eur. J. Inorg. Chem., 4856–4861 (2016).
  4. Direct Transformation of Molecular Dinitrogen into Ammonia Catalyzed by Cobalt Dinitrogen Complexes Bearing Anionic PNP Pincer Ligands
    S. Kuriyama, K. Arashiba, H. Tanaka, Y. Matsuo, K. Nakajima, K. Yoshizawa, and Y. Nishibayashi
    Angew. Chem. Int. Ed. 55, 14291–14295 (2016). [Highlighted at Cover Picture] [Selected as Hot Paper]
     
  5. Catalytic Transformation of Dinitrogen into Ammonia and Hydrazine by Iron-Dinitrogen Complexes Bearing Pincer Ligand 
    S. Kuriyama, K. Arashiba, K. Nakajima, Y. Matsuo, H. Tanaka, K. Ishii, K. Yoshizawa, and Y. Nishibayashi
    Nature Communications, 7, 12181 (2016).
  6. Construction of Chiral Tri- and Tetra-arylmethanes Bearing Quaternary Carbon by Using Copper-Catalyzed Enantioselective Propargylation of Indoles with Propargylic Esters
    K. Tsuchida, Y. Senda, K. Nakajima, and Y. Nishibayashi
    Angew. Chem. Int. Ed., 55, 9728–9732 (2016). [Highlighted in Synfacts, 2016, 11]
  7. Visible Light-Mediated Aromatic Substitution Reactions of Cyanoarenes with 4-Alkyl-1,4-dihydropyridines via Dual Carbon-Carbon Bonds Cleavage
    K. Nakajima, S. Nojima, K. Sakata, and Y. Nishibayashi
    ChemCatChem, 8, 1028–1032 (2016). [Highlighted at Cover Picture] [Cover Profile]
      
  8. Synthetic Utilization of α-Aminoalkyl Radicals and Related Species in Visible Light Photoredox Catalysis
    K. Nakajima, Y. Miyake, and Y. Nishibayashi
    Acc. Chem. Res., 49, 1946–1956 (2016).
  9. Interplay between Theory and Experiment for Ammonia Synthesis Catalyzed by Transition Metal Complexes
    H. Tanaka, Y. Nishibayashi, and K. Yoshizawa
    Acc. Chem. Res., 49, 987–995 (2016).
  10. Catalytic Dinitrogen Fixation to Form Ammonia at Ambient Reaction Conditions Using Transition Metal-Dinitrogen Complexes
    Y. Tanabe and Y. Nishibayashi
    Chemical Record, 16, 1549–1577 (2016).
  11. 分子触媒を用いた窒素固定法の最近の進展
    田邊資明、西林仁昭
    エネルギー・資源, 37, No. 6, 1–5 (2016).
  12. 常温常圧下での触媒的窒素固定法開発の最近の進展
    田邊資明、西林仁昭
    日本エネルギー学会誌, 5月号, 95, 371-381 (2016).
  13. 特集にあたって-ハーバー・ボッシュ法を超えるアンモニア合成法開発への挑戦-
    西林仁昭
    ファインケミカル, 3月号, 45, 5–6 (2016).
  14. 遷移金属錯体を触媒として利用した触媒的アンモニア合成法の開発
    田邊資明、西林仁昭
    ファインケミカル, 3月号, 45, 7-18 (2016). [Hydrogen Energy Sciety, 3, 12–23 (2016)]
  15. 非白金分子触媒による触媒的水素酸化反応の開発
    結城雅弘、西林仁昭
    ENEOS Technical Review, 58, No.1, 12–18 (2016).
  16. 有機分子触媒と遷移金属触媒とを協奏的に利用した分子変換反応
    三宅由寛、中島一成、西林仁昭
    有機分子触媒の最前線 (日本化学会 Current Review), 167–176 (2016).
  17. 「ウェイド 有機化学 原書7版」 問題の解き方 (分担)
    中村浩之、岩本武明、斎藤慎一、柴田高範、田中健、長澤和夫、西林仁昭
    丸善出版 (2016).
  18. 温和な反応条件下での触媒的窒素固定法に関する最近の進展
    荒芝和也、西林仁昭
    化学工業, 67, No.1, 1–5 (2016).

2015年

  1. Recent Progress in Transition Metal-Catalyzed Reduction of Molecular Dinitrogen under Ambient Reaction Conditions
    Y. Nishibayashi
    Inorg. Chem. (forum article for special issue), 54, 9234–9247 (2015).
  2. Nitrogen Fixation Catalyzed by Ferrocene-Substituted Dinitrogen-Bridged Dimolybdenum-Dinitrogen Complexes: Unique Behavior of Ferrocene Moiety as Redox Active Site
    S. Kuriyama, K. Arashiba, K. Nakajima, H. Tanaka, K. Yoshizawa, and Y. Nishibayashi
    Chem. Sci., 6, 3940–3951 (2015).
  3. Synthesis of Phosphabenzenes by Iron-Catalyzed [2+2+2] Cycloaddition Reaction of Diynes with Phosphaalkynes
    K. Nakajima, S. Takata, K. Sakata, and Y. Nishibayashi
    Angew. Chem. Int. Ed., 54, 7597–7601 (2015).
  4. Catalytic Reduction of Dinitrogen into Ammonia by Use of Molybdenum-Nitride Complexes Bearing Tridentate Triphosphine as Catalysts
    K. Arashiba, E. Kinoshita, S. Kuriyama, A. Eizawa, K. Nakajima, H. Tanaka, K. Yoshizawa, and Y. Nishibayashi
    J. Am. Chem. Soc., 137, 5666–5669 (2015). [Highlighted at ChemistryViews]
  5. Cobalt-Catalyzed Transformation of Molecular Dinitrogen into Silylamine under Ambient Reaction Conditions
    R. Imayoshi, H. Tanaka, Y. Matsuo, M. Yuki, K. Nakajima, K. Yoshizawa, and Y. Nishibayashi
    Chemistry-A European Journal, 21, 8905–8909 (2015).
  6. Thiolate-Bridged Dinuclear Ruthenium- and Iron-Complexex as Robust and Efficient Catalysts toward Oxidation of Molecular Dihydrogen in Protic Solvents
    M. Yuki, K. Sakata, Y. Hirao, N. Nonoyama, K. Nakajima, and Y. Nishibayashi
    J. Am. Chem. Soc., 137, 4173–4182 (2015).
  7. Copper-Catalyzed Enantioselective Etherification of Propargylic Esters with Alcohols
    K. Nakajima, M. Shibata, and Y. Nishibayashi
    J. Am. Chem. Soc., 137, 2472–2475 (2015). [Highlighted in Synfacts, 2015, 5]
  8. Synthesis and Catalytic Activity of Molybdenum-Nitride Complexes Bearing Pincer Ligands
    E. Kinoshita, K. Arashiba, S. Kuriyama, A. Eizawa, K. Nakajima, and Y. Nishibayashi
    Eur. J. Inorg. Chem., 1789–1794 (2015).
  9. Radical Addition to Corannulene Mediated by Visible Light-Photoredox Catalysts
    K. Nakajima, Y. Ashida, S. Nojima, and Y. Nishibayashi
    Chem. Lett., 44, 545–547 (2015).
  10. Cooperative Catalytic Reactions: Enantioselective Propargylic Alkylation of Propargylic Alcohols with Enecarbamates Using Ruthenium and Phosphoramide Hybrid Catalysts
    Y. Senda, K. Nakajima, and Y. Nishibayashi
    Angew. Chem. Int. Ed., 54, 4060–4064 (2015). [Highlighted in Synfacts, 2015, 5]
  11. Synthesis and Reactivity of Molybdenum-Dinitrogen Complexes Bearing PNN-Type Pincer Ligand
    K. Arashiba, K. Nakajima, and Y. Nishibayashi
    Z. Anorg. Allg. Chem. (invitation for special issue), 641, 100–104 (2015).
  12. 白金触媒に匹敵するアノード分子触媒の開発
    結城雅弘、西林仁昭
    エネルギーデバイス, 2, No.7, 92–96 (2015).
  13. 常温常圧でのアンモニアの合成
    田邊資明、西林仁昭
    アンモニアを用いた水素利用システム, 87-101 (2015).
  14. Molybdenum-Catalyzed Reduction of Molecular Dinitrogen under Ambient Reaction Conditions
    Y. Nishibayashi
    Comptes rendus Chimie (invitation for special issue),18, 776–784 (2015).
  15. 温和な反応条件下での遷移金属窒素錯体を分子触媒として用いた窒素分子からのアンモニア合成反応の開発
    西林仁昭
    触媒, 57, 33–38 (2015).
 


Molybdenum-catalyzed ammonia production with samarium diiodide and alcohols or water
Recruiting Postgraduate Students Recruiting Research Members Photo Album


Nishibayashi Lab.

Department of Applied Chemistry
School of Engineering
The University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
TEL : +81-3-5841-7708
FAX : +81-3-5841-1175
E-mail :
more


Links

Department of Applied Chemistry
Department of Systems Innovation Department of System Innovation, Faculity of Engineering, The University of Tokyo The University of Tokyo

Bookmark

hatena MyYahoo! Google del.icio.us