1. Home
  2. Publications

Publications



Publications 2015-

2023å¹´
  1. Design, Synthesis and Reactivity of Dimolybdenum Complex Bearing Quaterphenylene-bridged Pyridine-Based PNP-type Pincer Ligand
    A. Eizawa, K. Arashiba, H. Tanaka, A. Konomi, K. Yoshizawa, and Y. Nishibayashi
    Dalton Transactions, 52, 14012-14016 (2023).​
  2. Catalytic Ammonia Oxidation Using Ammonia Solution under Electrochemical Conditions: Investigation on Axial Ligand of Ruthenium Catalysts
    H. Toda, K. Kuroki, R. Kanega, T. Yano, T. Yoshikawa, S. Kuriyama, Y. Himeda, K. Sakata, and Y. Nishibayashi
    Bull. Chem. Soc. Jpn., 96, 980-988 (2023). [Open Access] [優秀論文:Selected Paper] 
  3. Catalytic Activity of Molybdenum Complexes Bearing PNP-Type Pincer Ligand toward Ammonia Formation
    T. Mitsumoto, Y. Ashida, K. Arashiba, S. Kuriyama, A. Egi, H. Tanaka, K. Yoshizawa, and Y. Nishibayashi
    Angew. Chem. Int. Ed., 62, e202306631 (2023). [Open Access] [Highlight at Frontispiece]
  4. Catalytic Production of Ammonia from Dinitrogen Employing Molybdenum Complexes Bearing N-Heterocyclic Carbene-Based PCP-Type Pincer Ligands
    Y. Ashida, T. Mizushima, K. Arashiba, A. Egi, H. Tanaka, K. Yoshizawa, and Y. Nishibayashi
    Nature Synthesis, 2, 635-644 (2023). [Open Access] [Highlighted at News & Views in Nature Synthesis]
    [ChemRxiv, preprint (2022)]
  5. Interplay of Diruthenium Catalyst in Controlling Enantioselective Propargylic Substitution Reactions with Visible Light-generated Alkyl Radicals
    Y. Zhang, Y. Tanabe, S. Kuriyama, K. Sakata, and Y. Nishibayashi
    Nature Communications14, 859 (2023). [Open Access]
    [Highlighted at Nature Research Chemistry Community]
    [Research Square, preprint (2022)]
  6. Coordination Structure of Samarium Diiodide in Tetrahydrofuran–Water Mixture
    A. Yamamoto, X. Liu, K. Arashiba, A. Konomi, H. Tanaka, K. Yoshizawa, Y. Nishibayashi, and H. Yoshida
    Inorg. Chem., 62, 5348-5356 (2023).​ [Highlight at Cover Picture]
  7. Preparation and Reactivity of Rhenium–Nitride Complexes Bearing PNP-Type Pincer Ligands toward Nitrogen Fixation
    F. Meng, S. Kuriyama, A. Egi, H. Tanaka, K. Yoshizawa, and Y. Nishibayashi
    Organometallics (invitation for special issue “Early Transition Metals in Organometallic Chemistry"), 42, 1065-1076 (2023). [Highlighted at Cover Picture]
  8. Direct Synthesis of Organonitrogen Compounds from Dinitrogen Using Transition Metal Complexes: Leap from Stoichiometric Reactions to Catalytic Reactions
    S. Suginome and Y. Nishibayashi
    ChemCatChem (Concept), 15, e202300850 (2023).​ [Open Access]
  9. 常温常圧ã§é€²è¡Œã™ã‚‹çª’素固定法:新è¦åˆ†å­è§¦åª’ã®é–‹ç™ºã¨å±•æœ›
    田邊資明ã€è¥¿æž—ä»æ˜­
    化学ã¨æ•™è‚², 12月å·, 71, 000-000 (2023).
  10. ãƒãƒ¼ãƒãƒ¼ãƒ»ãƒœãƒƒã‚·ãƒ¥æ³•ã‚’超ãˆã‚‹ã‚¢ãƒ³ãƒ¢ãƒ‹ã‚¢åˆæˆã¸ã®æŒ‘戦
    西林ä»æ˜­
    希土類, 83, 7-10 (2023).
  11. ルテニウム触媒ã«ã‚ˆã‚‹ä¸æ–‰ãƒ—ロパルギルä½ç½®æ›åå¿œã®æœ€è¿‘ã®é€²å±•ï¼»ç‰¹é›† ルテニウム錯体ã«ã‚ˆã‚‹æœ‰æ©Ÿåˆæˆã®æœ€æ–°ç ”究]
    田邊資明ã€è¥¿æž—ä»æ˜­
    ファインケミカル, 11月å·, 52, 38-46 (2023).
  12. 「æ±äº¬å¤§å­¦å·¥å­¦æ•™ç¨‹ã€€ç„¡æ©ŸåŒ–学Ⅱ(金属錯体化学)ã€
    石井和之ã€åŒ—æ¢åšå½¦ã€è¥¿æž—ä»æ˜­ï¼ˆåˆ†æ‹…)
    丸善出版 (2023年).
  13. ドラマãƒãƒƒã‚¯æœ‰æ©Ÿåˆæˆï¼šæ„Ÿå‹•ã®çž¬é–“100
    94 アンモニア生æˆåå¿œã®ãƒ–レークスルー 予想ã—ã¦ã„ãªã‹ã£ãŸæ°´ã¨ã®ç‰¹ç•°ãªå応性 西林ä»æ˜­
    有機åˆæˆåŒ–å­¦å”会編 化学åŒäºº (2023å¹´).
  14. å¯è¦–光を利用ã—ãŸã‚¢ãƒ³ãƒ¢ãƒ‹ã‚¢ç”Ÿæˆåå¿œã®é–‹ç™º−太陽光ã¨ç©ºæ°—ã‹ã‚‰åœ°çƒã«ã‚„ã•ã—ã„パンをã¤ãã‚‹−
    西林ä»æ˜­ã€è’èŠå’Œä¹Ÿã€æ —山翔å¾ã€å±±å´Žæ³°è‡£â€‹
    化学78, No. 3, 12-17 (2023).​
  15. 触媒的窒素固定åå¿œã®ç ´å£Šçš„イノベーションを目指ã—ã¦
    −ã“ã‚Œã¾ã§ã®ç ”究生活を振り返ã£ã¦
    西林ä»æ˜­â€‹
    化学ã¨å·¥æ¥­, 76, 102-104 (2023).​
  16. 錯体化学会é¸æ›¸ã€ŒéŒ¯ä½“触媒化学ã€ï¼ˆå°å³¶éš†å½¦ç·¨é›†ï¼‰
    窒素固定
    田邊資明ã€è¥¿æž—ä»æ˜­ï¼ˆåˆ†æ‹…)
    三共出版 (2023年出版予定).
2022å¹´
  1. Catalytic Nitrogen Fixation Using Visible Light Energy
    Y. Ashida, Y. Onozuka, K. Arashiba, A. Konomi, H. Tanaka, S. Kuriyama, Y. Yamazaki, K. Yoshizawa, and Y. Nishibayashi
    Nature Communications13, 7263 (2022). [Open Access] [Top 25 Chemistry and Materials Sciences Articles of 2022]
    [ChemRxivpreprint (2022)] 

  2. Direct Synthesis of Cyanate Anion from Dinitrogen Catalysed by Molybdenum Complexes Bearing Pincer-Type Ligand
    T. Itabashi, K. Arashiba, A. Egi, H. Tanaka, K. Sugiyama, S. Suginome, S. Kuriyama, K. Yoshizawa, and Y. Nishibayashi
    Nature Communications, 13, 6161 (2022). [Highlighted at Nature Communications Editors’ Highlights webpage] [Open Access]
    [ChemRxivpreprint (2022)]
  3. Effect of Propargylic Substituents on Enantioselectivity and Reactivity in Ruthenium-Catalyzed Propargylic Substitution Reactions: A DFT Study
    K. Sakata, Y. Uehara, S. Kohara,T. Yoshikawa, and Y. Nishibayashi
    ACS Omega, 7, 36634-36642 (2022). [Open Access]
  4. Nitrogen Reduction by the Fe Sites of Synthetic [Mo3S4Fe] Cubes
    Y. Ohki, K. Munakata, R. Hara, M. Kachi, K. Uchida, M. Tada, R. E. Cramer, W. M. C. Sameera, T. Takayama, Y. Sakai, S. Kuriyama, Y. Nishibayashi, and K. Tanifuji
    Nature, 607, 86-90 (2022). [Highlighted at News & Views in Nature] [Open Access]
  5. Photoredox- and Nickel-Catalyzed Hydroalkylation of Alkynes with 4-Alkyl-1,4-dihydropyridines: Ligand-Controlled Regioselectivity
    Y. Zhang, Y. Tanabe, S. Kuriyama, and Y. Nishibayashi
    Chem. Eur. J.28, e202200727 (2022). [Highlighted at Cover Picture] [Selected as Hot Topic: Photocatalysis]
  6. Synthesis and Reactivity of Manganese Complexes Bearing Anionic PNP- and PCP-type Pincer Ligands toward Nitrogen Fixation
    S. Kuriyama, S. Wei, T. Kato, and Y. Nishibayashi
    Molecules (invitation for special issue), 27, 2373 (2022).  [Open Access]
  7. Synthesis and Reactivity of Cobalt-Dinitrogen Complexes Bearing Anionic PCP-type Pincer Ligands toward Catalytic Silylamine Formation from Dinitrogen
    S. Kuriyama, S. Wei, H. Tanaka, A. Konomi, K. Yoshizawa, and Y. Nishibayashi
    Inorg. Chem., 61, 5190-5195 (2022). [Highlighted at Cover Picture]
  8. Catalytic Reduction of Dinitrogen to Ammonia and Hydrazine Using Iron–Dinitrogen Complexes Bearing Anionic Benzene-Based PCP-type Pincer Ligands
    S. Kuriyama, T. Kato, H. Tanaka, A. Konomi, K. Yoshizawa, and Y. Nishibayashi
    Bull. Chem. Soc. Jpn.95, 683-692 (2022). [BCSJ Award Article] [Highlighted at Cover Picture[Open Access]
    [ChemRxiv, preprint (2021)]
  9. Catalytic Reduction of Dinitrogen into Ammonia and Hydrazine Using Chromium Complexes Bearing PCP-Type Pincer Ligand
    Y. Ashida, A. Egi, K. Arashiba, H. Tanaka, T. Mitsumoto, S. Kuriyama, K. Yoshizawa, and Y. Nishibayashi
    Chem. Eur. J.28, e202200557 (2022). [Highlighted at Cover Picture]
    [ChemRxiv, preprint (2021)]
  10. Reactivity of Molybdenum–Nitride Complex Bearing Pyridine-Based PNP-Type Pincer Ligand toward Carbon-Centered Electrophiles
    T. Itabashi, K. Arashiba, S. Kuriyama, and Y. Nishibayashi
    Dalton Transactions, 51, 1946-1954 (2022).
  11. Hydroboration and Hydrosilylation of Molybdenum–Nitride Complex Bearing PNP-type Pincer Ligand
    T. Itabashi, K. Arashiba, H. Tanaka, K. Yoshizawa, and Y. Nishibayashi
    Organometallics41, 366-373 (2022). [Highlighted at Cover Picture]
  12. Recent Advances in Catalytic Nitrogen Fixation Using Transition Metal–Dinitrogen Complexes under Mild Reaction Conditions
    Y. Tanabe and Y. Nishibayashi
    Coord. Chem. Rev. (invitation for special issue “Current Coordination Chemistry in Japan"), 472, 214783 (2022).​
  13. 分å­è§¦åª’を用ã„ãŸå¸¸æ¸©å¸¸åœ§ä¸‹ã§ã®ã‚¢ãƒ³ãƒ¢ãƒ‹ã‚¢åˆæˆã®æœ€å…ˆç«¯ç ”究
    田邊資明ã€è¥¿æž—ä»æ˜­â€‹
    ペトロテック(公益社団法人 石油学会), 45, 768-773 (2022).
2021å¹´
  1. Ruthenium- and Copper-Catalyzed Propargylic Substitution Reactions of Propargylic Alcohol Derivatives with Hydrazones
    S. Liu, Y. Tanabe, S. Kuriyama, K. Sakata, and Y. Nishibayashi
    Chem. Eur. J.27, 15650-15659 (2021). [Highlighted at Cover Picture] [Cover Profile] [Virtual Collection XXII International Symposium on Homogeneous Catalysis]
  2. Enantioselectivity in Ruthenium-Catalyzed Propargylic Substitution Reactions of Propargylic Alcohols with Acetone: A DFT Study
    K. Sakata, Y. Goto, T. Yoshikawa, and Y. Nishibayashi
    Chem. Asian J., 16, 3760-3766 (2021).
  3. Manganese-Catalyzed Ammonia Oxidation into Dinitrogen
    H. Toda, K. Kuroki, R. Kanega, S. Kuriyama, K. Nakajima, Y. Himeda, K. Sakata, and Y. Nishibayashi
    ChemPlusChem, 86, 1511-1516 (2021). [Highlighted at Cover Picture] [one of the most downloaded during its first 12 months of publication in ChemPlusChem]
    [ChemRxiv, preprint (2020)]
  4. Cooperative Photoredox- and Nickel-Catalyzed Alkylative Cyclization Reactions of Alkynes with 4-Alkyl-1,4-dihydropyridines
    Y. Zhang, Y. Tanabe, S. Kuriyama, and Y. Nishibayashi
    J. Org. Chem.86, 12577-12590 (2021). [Highlighted at Cover Picture]
  5. Ammonia Formation Catalyzed by Dinitrogen-Bridged Dirhenium Complex Bearing PNP-Pincer Ligands under Mild Reaction Conditions
    F. Meng, S. Kuriyama, H. Tanaka, A. Egi, K. Yoshizawa, and Y. Nishibayashi
    Angew. Chem. Int. Ed.60, 13906-13912 (2021).
    [ChemRxiv, preprint (2020)]
  6. Catalytic Ammonia Formation with Electrochemically Reduced Samarium Diiodide from Samarium Triiodide and Water from Dinitrogen 
    K. Arashiba, R. Kanega, Y. Himeda, and Y. Nishibayashi
    Chem. Lett.50, 1356-1358 (2021). [Open Access]
  7. Development of Asymmetric Propargylic Substitution Reactions Using Transition Metal Catalysts
    Y. Nishibayashi
    Chem. Lett. (highlight review, invitation for the CSJ Award for Creative Work), 50, 1282-1288 (2021). [Highlighted at Cover Picture[Open Access] [Vol.50 Commemorative Highlight Review Collection
  8. Synthesis and Characterization of Rhodium Complex Bearing Anionic CNC-Type Pincer Ligand with Pyrrolide and Imidazo[1,5-a]pyridine-3-ylidene Moieties
    S. Kuriyama, W. Zhao, and Y. Nishibayashi
    Z. Anorg. Allg. Chem. (invitation for special issue), 647, 1408-1414 (2021).
  9. Ruthenium-Catalyzed Enantioselective Propargylic Phosphinylation of Propargylic Alcohols with Phosphine Oxides
    S. Liu, Y. Tanabe, S. Kuriyama, K. Sakata, and Y. Nishibayashi
    Angew. Chem. Int. Ed., 60, 11231-11236 (2021).
  10. Comprehensive Insights into Synthetic Nitrogen Fixation Assisted by Molecular Catalysts under Ambient or Mild Conditions
    Y. Tanabe and Y. Nishibayashi
    Chem. Soc. Rev.50, 5201-5242 (2021). 
  11. Development of Catalytic Nitrogen Fixation Using Transition Metal Complexes Not Relevant to Nitrogenase
    S. Kuriyama and Y. Nishibayashi
    Tetrahedron (Tetrahedron Report)83, 131986 (2021). 
  12. Development of Catalytic Conversion of Nitrogen Molecular into Ammonia Using Molybdenum Complexes under Ambient Reaction Conditions
    Y. Ashida and Y. Nishibayashi
    Chem. Commun. (Feature Article)57, 1176-1189 (2021). [Highlighted at Cover Picture] [Selected as Hot Articles]
  13. 有機åˆæˆã®ãŸã‚ã®æ–°è¦è§¦åª’åå¿œ101(有機åˆæˆåŒ–å­¦å”会編)
    執筆分担
    栗山翔å¾ã€è¥¿æž—ä»æ˜­
    æ±äº¬åŒ–å­¦åŒäºº(2021).
  14. マメ科æ¤ç‰©æ ¹ç²’èŒã®ãƒ‹ãƒˆãƒ­ã‚²ãƒŠãƒ¼ã‚¼é…µç´ ã‚’用ã„ãŸåå¿œ
    脱ãƒãƒ¼ãƒãƒ¼ãƒœãƒƒã‚·ãƒ¥ãƒ»æ–°è¦ã‚¢ãƒ³ãƒ¢ãƒ‹ã‚¢åˆæˆæ³•
    田邊資明ã€è¥¿æž—ä»æ˜­
    化学工学誌, 8月å·, 437-440 (2021).
  15. é·ç§»é‡‘属錯体触媒ã«ã‚ˆã‚‹å¸¸æ¸©å¸¸åœ§ã§ã®ã‚¢ãƒ³ãƒ¢ãƒ‹ã‚¢åˆæˆ
    田邊資明ã€è¥¿æž—ä»æ˜­
    有機ãƒã‚¤ãƒ‰ãƒ©ã‚¤ãƒ‰/アンモニアã®åˆæˆ·è„±æ°´ç´ ãƒ—ロセス (2021å¹´).
  16. é·ç§»é‡‘属触媒を用ã„ãŸä¸æ–‰ãƒ—ロパルギルä½ç½®æ›åå¿œã®é–‹ç™º
    西林ä»æ˜­
    The Chemical Times, 1, 20-25 (2021).
    é–¢æ±åŒ–学株å¼ä¼šç¤¾


2020å¹´

  1. Electrochemical Reduction of Samarium Triiodide into Samarium Diiodide
    K. Arashiba, R. Kanega, Y. Himeda, and Y. Nishibayashi
    Chem. Lett.49, 1171-1173 (2020). [Open Access]
  2. Cycling between Molybdenum-Dinitrogen and -Nitride Complexes to Support Reaction Pathway for Catalytic Formation of Ammonia from Dinitrogen
    K. Arashiba, H. Tanaka, K. Yoshizawa, and Y. Nishibayashi
    Chem. Eur. J.26, 13383-13389 (2020). [Highlighted at Cover Picture][Cover Profile]
  3. Preparation and Reactivity of Molybdenum Complexes Bearing Pyrrole-Based PNP-Type Pincer Ligand
    Y. Tanabe, Y. Sekiguchi, H. Tanaka, A. Konomi, K. Yoshizawa, S. Kuriyama, and Y. Nishibayashi
    Chem. Commun.56, 6933-6936 (2020). [Highlighted at Back Cover Picture]
  4. Ruthenium-Catalyzed Propargylic Reduction of Propargylic Alcohols with Hantzsch Ester
    H. Ding, K. Sakata, S. Kuriyama, and Y. Nishibayashi
    Organometallics, 39, 2130-2134 (2020).
  5. Structural Characterization of Molybdenum-Dinitrogen Complex as Key Species toward Ammonia Formation by Dispersive XAFS Spectroscopy
    A. Yamamoto, K. Arashiba, S. Naniwa, K. Kato, H. Tanaka, K. Yoshizawa, Y. Nishibayashi, and H. Yoshida
    Phys. Chem. Chem. Phys.22, 12368–12372 (2020). [Highlighted as 2020 PCCP Hot Article]
  6. Iridium-Catalyzed Formation of Silylamine from Dinitrogen under Ambinet Reaction Conditions
    R. Kawakami, S. Kuriyama, H. Tanaka, A. Konomi, K. Yoshizawa, and Y. Nishibayashi
    Chem. Lett.49, 794–797 (2020). [Open Access]
  7. Rhodium-Catalyzed Cyclization Reactions of Thiadiazoles with Phosphaalkynes to Prepare 1,3-Thiaphospholes
    W. Liang, K. Nakajima, and Y. Nishibayashi
    Eur. J. Org. Chem., 3879–3882 (2020).
  8. Synthesis of 1,2,4-Azadiphospholes Derivatives Based on Vanadium-Catalyzed [2+2+1] Cycloaddition Reactions of Azobenzenes with Phosphaalkynes
    W. Liang, K. Nakajima, and Y. Nishibayashi
    RSC Adv.10, 12730–12733 (2020).
  9. Nitrogen Fixation Catalyzed by Dinitrogen-Bridged Dimolybdenum Complexes Bearing PCP- and PNP-Type Pincer Ligands: A Short Cut Pathway Deduced from Free Energy Profiles
    A. Egi, H. Tanaka, A. Konomi, Y. Nishibayashi, and K. Yoshizawa
    Eur. J. Inorg. Chem. (invitation for special issue: Nitrogen Fixation), 1490-1498 (2020). 
  10. é·ç§»é‡‘属窒素錯体を利用ã—ãŸè§¦åª’的窒素固定åå¿œã®é–‹ç™º
    西林ä»æ˜­
    Organometallic News, 46-49 (2020).
  11. EurJIC's Nitrogen Fixation Special Issue – A Source of Insperation
    F. Tuczek and Y. Nishibayashi
    Eur. J. Inorg. Chem. (Guest Editorial: Nitrogen Fixation), 1351-1352 (2020). [Open Access]
  12. é·ç§»é‡‘属錯体ã«ã‚ˆã‚‹è§¦åª’的アンモニア生æˆåå¿œã®é–‹ç™º
    西林ä»æ˜­
    高機能性金属錯体ãŒæ‹“ã触媒科学:é©æ–°çš„分å­å¤‰æ›åå¿œã®å‰µå‡ºã‚’ã‚ã–ã—ã¦(日本化学会 Current Review 37), 53-62 (2020).
  13. 錯体触媒ã«ã‚ˆã‚‹ã‚¢ãƒ³ãƒ¢ãƒ‹ã‚¢åˆæˆã®ç ”究
    田邊資明ã€è¥¿æž—ä»æ˜­
    触媒技術ã®å‹•å‘ã¨å±•æœ›2020, 31-42.
    触媒学会 (2020å¹´).
  14. 「æ±äº¬å¤§å­¦å·¥å­¦æ•™ç¨‹ã€€ç„¡æ©ŸåŒ–学Ⅱ(金属錯体化学)ã€
    石井和之ã€åŒ—æ¢åšå½¦ã€è¥¿æž—ä»æ˜­ï¼ˆåˆ†æ‹…)
    丸善出版 (2020年). [テスト版]

2019å¹´

  1. Catalytic Redcution of Dinitrogen into Tris(trimethylsilyl)amine Using Rhdoium Complexes with Pyrrole-Based PNP-Type Pincer Ligand
    R. Kawakami, S. Kuriyama, H. Tanaka, K. Arashiba, A. Konomi, K. Nakajima, K. Yoshizawa, and Y. Nishibayashi
    Chem. Commun.55, 14886-14889 (2019). [Highlighted at Cover Picture]
  2. Ruthenium-Catalysed Oxidative Conversion of Ammonia into Dinitrogen
    K. Nakajima, H. Toda, K. Sakata, and Y. Nishibayashi
    Nature Chemistry11, 702–709 (2019).
    [Highlighted at Nature Research Chemistry Community]
  3. Practical Ammonia Synthesis from Nitrogen Gas with Samarium Diiodide and Water Catalyzed by Molybdenum-PCP Pincer Complex
    Y. Ashida, S, Kondo, K. Arashiba, T. Kikuchi, K. Nakajima, S. Kakimoto, and Y. Nishibayashi
    Synthesis (PSP)51, 3792–3795 (2019).
  4. Molybdenum-Catalyzed Ammonia Formation Using Simple Monodentate- and Bidentate-Phosphines as Auxiliary Ligands
    Y. Ashida, K. Arashiba, H. Tanaka, A. Egi, K. Nakajima, K. Yoshizawa, and Y. Nishibayashi
    Inorg. Chem., 58, 8927–8932 (2019).
  5. Copper-Catalysed Enantioselective Intramolecular Etherification of Propargylic Esters: Synthetic Approach to Chiral Isochromans
    S. Liu, K. Nakajima, and Y. Nishibayashi
    RSC Adv.9, 18918–18922 (2019). 
  6. Synthesis and Catalytic Reactivity of Bis(molybdenum-trihalide) Complexes Bridged by Ferrocene Skeleton toward Catalytic Nitrogen Fixation
    T. Itabashi, K. Arashiba, H. Tanaka, A. Konomi, A. Eizawa, K. Nakajima, K. Yoshizawa, and Y. Nishibayashi
    Organometallics38, 2863–2872 (2019). [Highlighted at Cover Picture]
  7. Alkylation Reactions of Azodicarboxylate Esters with 4-Alkyl-1,4,-Dihydropyridines under Catalyst-Free Conditions
    K. Nakajima, Y. Zhang, and Y. Nishibayashi
    Org. Lett.21, 4642–4645 (2019). 
  8. Catalytic Water Oxidation Reaction with Use of Triarylamine Radicals as Single-Electron Oxidants and Pyridines as Bases
    H. Toda, K. Nakajima, and Y. Nishibayashi
    Chem. Lett.48, 1006–1008 (2019). 
  9. Molybdenum-Catalysed Ammonia Production with Samarium Diiodide and Alcohols or Water
    Y. Ashida, K. Arashiba, K. Nakajima, and Y. Nishibayashi
    Nature568, 536–540 (2019). [Highlighted at News & Views in Nature]
  10. Catalytic C-H Borylation Using Iron Complexes Bearing 4,5,6,7-Tetrahydroisoindol-2-ide-Based PNP-Type Pincer Ligand
    T. Kato, S. Kuriyama, K. Nakajima, and Y. Nishibayashi
    Chem. Asian J.14, 2097–2101 (2019).
  11. Catalytic Reactivity of Molybdenum-Trihalide Complexes Bearing PCP-Type Pincer Ligands
    A. Eizawa, K. Arashiba, A. Egi, H. Tanaka, K. Nakajima, K. Yoshizawa, and Y. Nishibayashi
    Chem. Asian J.14, 2091–2096 (2019).
  12. Synthesis and Catalytic Reactivity of Polystyrene-Supported Molybdenum Pincer Complexes toward Ammonia Formation
    K. Arashiba, T. Itabashi, K. Nakajima, and Y. Nishibayashi
    Chem. Lett., 48, 693–695 (2019).
  13. Effect of Substituents on Molybdenum Triiodide Complexes Bearing PNP-Type Pincer Ligands toward Catalytic Nitrogen Fixation
    T. Itabashi, I. Mori, K. Arashiba, A. Eizawa, K. Nakajima, and Y. Nishibayashi
    Dalton Transactions48, 3182–3186 (2019). [Highlighted at Cover Picture]
  14. Copper-Catalyzed [3+2] Cycloaddition Reactions of Isocyanoacetates with Phosphaalkynes to Prepare 1,3-Azaphospholes
    W. Liang, K. Nakajima, K. Sakata, and Y. Nishibayashi
    Angew. Chem. Int. Ed., 58, 1168–1173 (2019).
  15. 分å­è§¦åª’ã§ã‚¢ãƒ³ãƒ¢ãƒ‹ã‚¢ã‚’分解
    —アンモニア燃料電池を目指ã—ãŸã‚¨ãƒãƒ«ã‚®ãƒ¼å¤‰æ›åå¿œã®é–‹ç™º—
    中島一æˆã€æˆ¸ç”°åºƒæ¨¹ã€å‚田 å¥ã€è¥¿æž—ä»æ˜­
    ç¾ä»£åŒ–å­¦, 11月å·, 00-00 (2019). 
  16. 分å­è§¦åª’を用ã„ãŸæ¸©å’Œãªæ¡ä»¶ã«ãŠã‘る触媒的アンモニアåˆæˆåå¿œã®é–‹ç™º
    芦田裕也ã€è¥¿æž—ä»æ˜­
    機能ææ–™, 10月å·, 58-64 (2019). 
  17. 常温常圧ã§ã‚¢ãƒ³ãƒ¢ãƒ‹ã‚¢ã‚’åˆæˆã™ã‚‹æ–°ãŸãªæ‰‹æ³•ã®é–‹ç™º
    田邊資明ã€è¥¿æž—ä»æ˜­
    クリーンエãƒãƒ«ã‚®ãƒ¼, 9月å·, 1-10 (2019). 
  18. Recent Advances in Catalytic Silylation of Dinitrogen Using Transition Metal Complexes
    Y. Tanabe and Y. Nishibayashi
    Coord. Chem. Rev., (invitation for special issue)389, 73–93 (2019).
  19. 分å­è§¦åª’を用ã„ãŸã‚¢ãƒ³ãƒ¢ãƒ‹ã‚¢ç”Ÿæˆåå¿œã®ãƒ–レークスルー
    —常温常圧ã§ä¸–界最高ã®è§¦åª’活性をé”æˆ
    芦田裕也ã€è’èŠå’Œä¹Ÿã€ä¸­å³¶ä¸€æˆã€è¥¿æž—ä»æ˜­
    化学, 8月å·, 38-42 (2019). 
  20. é·ç§»é‡‘属錯体ã«ã‚ˆã‚‹è§¦åª’的アンモニア生æˆåå¿œã®é–‹ç™º
    西林ä»æ˜­
    高機能性金属錯体ã®å‰µè£½ã«åŸºã¥ã分å­å¤‰æ›ã®æ–°æ‰‹æ³• (日本化学会 Current Review), 000-000 (2019).
  21. 西林ä»æ˜­åšå£«ã«èžã
    æ°´ã¨çª’素ガスã‹ã‚‰ã‚¢ãƒ³ãƒ¢ãƒ‹ã‚¢ã‚’ã¤ãã‚‹
    ç¾ä»£åŒ–学編集部
    ç¾ä»£åŒ–å­¦, 7月å·, 18-23 (2019). 
  22. Overviews of Preparation and Reactivity of Transition-Metal-Dinitrogen Complexes
    Y. Tanabe and Y. Nishibayashi
    Transition Metal-Dinitrogen Complexes: Preparation and Reactivity, Ed. Y. Nishibayashi, Wiley-VCH, 1–77 (2019).
  23. Recent Advances in Nitrogen Fixation upon Vanadium Complexes
    Y. Tanabe and Y. Nishibayashi
    Coord. Chem. Rev. (invitation for special issue)381, 135–150 (2019).
  24. 「錯体化学事典ã€ï¼ˆéŒ¯ä½“化学会編)
    西林ä»æ˜­ï¼ˆåˆ†æ‹…)
    æœå€‰æ›¸åº— (2019å¹´).
  25. 「æ±äº¬å¤§å­¦å·¥å­¦æ•™ç¨‹ã€€ç„¡æ©ŸåŒ–学Ⅱ(錯体化学)ã€ï¼ˆåˆ†æ‹…)
    石井和之ã€åŒ—æ¢åšå½¦ã€è¥¿æž—ä»æ˜­
    丸善出版 (2019年予定).

2018å¹´
  1. Phosphine Oxidation with Water and Ferrocenium(III) Cation Induced by Visible Light Irradiation
    Y. Tanabe, K. Nakajima, and Y. Nishibayashi
    Chem. Eur. J.24, 18618–18622 (2018). [Highlighted at Cover Picture][Cover Profile][Selected as Hot Paper]
  2. Cross-Coupling Reactions of Alkenyl Halides with 4-Benzyl-1,4-Dihydropyridines Associated with E to Z Isomerization under Nickel- and Photoredox-Catalysis
    K. Nakajima, X. Guo, and Y. Nishibayashi
    Chem. Asian J.13, 3653–3657 (2018).
  3. Synthesis of Ruthenium Complexes Bearing PCP-Type Pincer Ligands and Their Application to Direct Synthesis of Imines from Amines and Benzyl Alcohol
    A. Eizawa, S. Nishimura, K. Arashiba, K. Nakajima, and Y. Nishibayashi
    Organometallics37, 3086–3092 (2018).
  4. Development of Catalytic Nitrogen Fixation Using Transition Metal–Dinitrogen Complexes under Mild Reaction Conditions
    Y. Nishibayashi
    Dalton Transactions (Perspective, invitation)47, 11290–11297 (2018).
  5. Synthesis and Reactivity of Titanium– and Zirconium–Dinitrogen Complexes Bearing Anionic Pyrrole-Based PNP-type Pincer Ligands
    Y. Sekiguchi, F. Meng, H. Tanaka, A. Eizawa, K. Arashiba, K. Nakajima, K. Yoshizawa, and Y. Nishibayashi
    Dalton Transactions47, 11322–11326 (2018).
  6. Hydrogenation of Carbon Dioxide with Organic Base by PC(II)P-Ir Catalysts 
    S. Takaoka, A. Eizawa, S. Kusumoto, K. Nakajima, Y. Nishibayashi, and K. Nozaki
    Organometallics37, 3001–3009 (2018). [Highlighted at Cover Picture]
  7. Catalytic Reduction of Molecular Dinitrogen into Ammonia and Hydrazine Using Vanadium Complexes
    Y. Sekiguchi, K. Arashiba, H. Tanaka, A. Eizawa, K. Nakajima, K. Yoshizawa, and Y. Nishibayashi
    Angew. Chem. Int. Ed., 57, 9064–9068 (2018).
  8. Copper- and Borinic Acid-Catalyzed Propargylic Etherification of Propargylic Carbonates with Benzyl Alcohols
    K. Tsuchida, M. Yuki, K. Nakajima, and Y. Nishibayashi
    Chem. Lett.47, 671–673 (2018).
  9. Preparation and Reactivity of Iron Complexes Bearing Anionic Carbazole-Based PNP-Type Pincer Ligands toward Catalytic Nitrogen Fixation
    J. Higuchi, S. Kuriyama, A. Eizawa, K. Arashiba, K. Nakajima, and Y. Nishibayashi
    Dalton Transactions47, 1117–1121 (2018).
  10. Practical Synthesis of PCP-type Pincer Ligand and its Metal Complexes
    K. Matoba, A. Eizawa, S. Nishimura, K. Arashiba, K. Nakajima, and Y. Nishibayashi
    Synthesis (PSP)50, 1015–1019 (2018).
    ​
  11. Mechanism and Reactivity of Catalytic Propargylic Substitution Reactions via Metal-Allenylidene Intermediates: A Theoretical Perspective
    K. Sakata, and Y. Nishibayashi
    Catal. Sci. Technol.8, 12–25 (2018). [Highlighted at Cover Picture]
  12. é·ç§»é‡‘属窒素錯体を利用ã—ãŸè§¦åª’的窒素固定法ã®é–‹ç™º
    西林ä»æ˜­
    錯体化学会誌(Bull. Jpn. Soc. Coord. Chem.), 71, 49–55 (2018).
2017å¹´
  1. Dicationic Thiolate-Bridged Diruthenium Complexes for Catalytic Oxidation of Molecular Dihydrogen
    M. Yuki, K. Sakata, K. Nakajima, S. Kikuchi, S. Sekine, H. Kawai, and Y. Nishibayashi
    Organometallics36, 4499–4506 (2017).
  2. Synthesis and Reactivity of Iron­–Dinitrogen Complexes Bearing Anionic Methyl- and Phenyl-Substituted Pyrrole-based PNP-Type Pincer Ligands toward Catalytic Nitrogen Fixation
    Y. Sekiguchi, S. Kuriyama, A. Eizawa, K. Arashiba, K. Nakajima, and Y. Nishibayashi
    Chem. Commun.53, 12040–12043 (2017).
  3. Catalytic Conversion of Dinitrogen into Ammonia under Ambient Reaction Conditions by Using Proton Source from Water
    Y. Tanabe, K. Arashiba, K. Nakajima, and Y. Nishibayashi
    Chem. Asian J.12, 2544–2548 (2017). [Highlighted at Cover Picture]

     
  4. Hydroboration of Alkynes Catalyzed by Pyrrolide-Based PNP Pincer-Iron Complexes
    K. Nakajima, T. Kato, and Y. Nishibayashi
    Org. Lett., 19, 4323–4326 (2017). [Highlighted at Organic Chemistry Portal]

     
  5. Catalytic Nitrogen Fixation via Direct Cleavage of Nitrogen–Nitrogen Triple Bond of Molecular Dinitrogen under Ambient Reaction Conditions
    K. Arashiba, A. Eizawa, H. Tanaka, K. Nakajima, K. Yoshizawa, and Y. Nishibayashi
    Bull. Chem. Soc. Jpn.90, 1111–1118 (2017). [BCSJ Award Article] [Highlighted at Cover Picture]

     
  6. Synthesis and Reactivity of Iron- and Cobalt-Dinitrogen Complexes Bearing PSiP-Type Pincer Ligand toward Nitrogen Fixation
    R. Imayoshi, K. Nakajima, J. Takaya, N. Iwasawa, and Y. Nishibayashi
    Eur. J. Inorg. Chem., in press (2017). [Highlighted at Cover Picture] [Cover Profile]

     
  7. Remarkable Catalytic Activity of Dinitrogen-Bridged Dimolybdenum Complexes Bearing NHC-Based PCP-Pincer Ligands toward Nitrogen Fixation
    A. Eizawa, K. Arashiba, H. Tanaka, S. Kuriyama, Y. Matsuo, K. Nakajima, K. Yoshizawa, and Y. Nishibayashi
    Nature Communications8, 14874 (2017). 
  8. Vanadium-Catalyzed Reduction of Molecular Dinitrogen into Silylamine under Ambient Reaction Conditions
    R. Imayoshi, K. Nakajima, and Y. Nishibayashi
    Chem. Lett., 46, 466–468 (2017). [Selected as Editor's Choice Paper]
  9. Catalytic Activity of Thiolate-Bridged Diruthenium Complexes Bearing Pendent Ether Moieties toward Oxidation of Molecular Dihydrogen
    M. Yuki, K. Sakata, S. Kikuchi, H. Kawai, T. Takahashi, M. Ando, K. Nakajima, and Y. Nishibayashi
    Chemistry-A European Journal, 23, 1007-1012 (2017). [Highlighted at Cover Picture] [Selected as Hot Paper]
  10. é·ç§»é‡‘属窒素錯体を用ã„ãŸè§¦åª’的窒素固定åå¿œã®æœ€è¿‘ã®é€²å±•
    西林ä»æ˜­
    Organometallic News, 63-67 (2017).
  11. Catalytic Nitrogen Fixation Using Molybdenum–Dinitrogen Complexes as Catalysts
    A. Eizawa and Y. Nishibayashi
    Topics in Organometallic Chemistry – Nitrogen Fixation; Ed. Y. Nishibayashi, Springer, 153-169 (2017).
  12. Catalytic Transformations of Molecular Dinitrogen by Iron and Cobalt–Dinitrogen Complexes as Catalysts
    S. Kuriyama and Y. Nishibayashi
    Topics in Organometallic Chemistry – Nitrogen Fixation; Ed. Y. Nishibayashi, Springer, 215-234 (2017).
  13. アンモニアã«ã‚ˆã‚‹ã‚¨ãƒãƒ«ã‚®ãƒ¼è³‡æºé©å‘½ã‚’目指ã—ã¦
    –分å­è§¦åª’を利用ã—ãŸã‚¢ãƒ³ãƒ¢ãƒ‹ã‚¢åˆæˆåå¿œ–
    西林ä»æ˜­ã€è’èŠå’Œä¹Ÿã€æ°¸æ¾¤ã€€å½©
    ç¾ä»£åŒ–å­¦, 5月å·, 30-36 (2017).
  14. 触媒的ä¸æ–‰ãƒ—ロパルギルä½ç½®æ›åå¿œã®é–‹ç™º
    西林ä»æ˜­
    有機åˆæˆåŒ–å­¦å”会誌, 75, 2-13 (2017).
  15. 「æ±äº¬å¤§å­¦å·¥å­¦æ•™ç¨‹ã€€ç„¡æ©ŸåŒ–学Ⅱ(錯体化学)ã€ï¼ˆåˆ†æ‹…)
    石井和之ã€åŒ—æ¢åšå½¦ã€è¥¿æž—ä»æ˜­
    丸善出版 (2017予定).

2016å¹´

  1. Nickel- and Photoredox-Catalyzed Cross-Coupling Reactions of Aryl Halides with 4-Alkyl-1,4-dihydropyridines as Visible Light-Mediated Formal Nucleophilic Alkylation Reagents
    K. Nakajima, S. Nojima, and Y. Nishibayashi
    Angew. Chem. Int. Ed. 55, 14106–14110 (2016).
  2. Iron-Catalyzed [2+2+2] Cycloaddition Reactions of Diynes with Oxyphosphaethynes to Construct 2-Phosphaphenol Derivatives
    K. Nakajima, W. Liang, and Y. Nishibayashi
    Org. Lett. 18, 5006–5009 (2016).
  3. Azaferrocene-Based PNP-Type Pincer Ligand: Synthesis of Molybdenum, Chromium, and Iron Complexes and Reactivity toward Nitrogen Fixation
    S. Kuriyama, K. Arashiba, K. Nakajima, H. Tanaka, K. Yoshizawa, and Y. Nishibayashi
    Eur. J. Inorg. Chem., 4856–4861 (2016).
  4. Direct Transformation of Molecular Dinitrogen into Ammonia Catalyzed by Cobalt Dinitrogen Complexes Bearing Anionic PNP Pincer Ligands
    S. Kuriyama, K. Arashiba, H. Tanaka, Y. Matsuo, K. Nakajima, K. Yoshizawa, and Y. Nishibayashi
    Angew. Chem. Int. Ed. 55, 14291–14295 (2016). [Highlighted at Cover Picture] [Selected as Hot Paper]
     
  5. Catalytic Transformation of Dinitrogen into Ammonia and Hydrazine by Iron-Dinitrogen Complexes Bearing Pincer Ligand 
    S. Kuriyama, K. Arashiba, K. Nakajima, Y. Matsuo, H. Tanaka, K. Ishii, K. Yoshizawa, and Y. Nishibayashi
    Nature Communications, 7, 12181 (2016).
  6. Construction of Chiral Tri- and Tetra-arylmethanes Bearing Quaternary Carbon by Using Copper-Catalyzed Enantioselective Propargylation of Indoles with Propargylic Esters
    K. Tsuchida, Y. Senda, K. Nakajima, and Y. Nishibayashi
    Angew. Chem. Int. Ed., 55, 9728–9732 (2016). [Highlighted in Synfacts, 2016, 11]
  7. Visible Light-Mediated Aromatic Substitution Reactions of Cyanoarenes with 4-Alkyl-1,4-dihydropyridines via Dual Carbon-Carbon Bonds Cleavage
    K. Nakajima, S. Nojima, K. Sakata, and Y. Nishibayashi
    ChemCatChem, 8, 1028–1032 (2016). [Highlighted at Cover Picture] [Cover Profile]
      
  8. Synthetic Utilization of α-Aminoalkyl Radicals and Related Species in Visible Light Photoredox Catalysis
    K. Nakajima, Y. Miyake, and Y. Nishibayashi
    Acc. Chem. Res., 49, 1946–1956 (2016).
  9. Interplay between Theory and Experiment for Ammonia Synthesis Catalyzed by Transition Metal Complexes
    H. Tanaka, Y. Nishibayashi, and K. Yoshizawa
    Acc. Chem. Res., 49, 987–995 (2016).
  10. Catalytic Dinitrogen Fixation to Form Ammonia at Ambient Reaction Conditions Using Transition Metal-Dinitrogen Complexes
    Y. Tanabe and Y. Nishibayashi
    Chemical Record, 16, 1549–1577 (2016).
  11. 分å­è§¦åª’を用ã„ãŸçª’素固定法ã®æœ€è¿‘ã®é€²å±•
    田邊資明ã€è¥¿æž—ä»æ˜­
    エãƒãƒ«ã‚®ãƒ¼ãƒ»è³‡æº, 37, No. 6, 1–5 (2016).
  12. 常温常圧下ã§ã®è§¦åª’的窒素固定法開発ã®æœ€è¿‘ã®é€²å±•
    田邊資明ã€è¥¿æž—ä»æ˜­
    日本エãƒãƒ«ã‚®ãƒ¼å­¦ä¼šèªŒ, 5月å·, 95, 371-381 (2016).
  13. 特集ã«ã‚ãŸã£ã¦-ãƒãƒ¼ãƒãƒ¼ãƒ»ãƒœãƒƒã‚·ãƒ¥æ³•ã‚’超ãˆã‚‹ã‚¢ãƒ³ãƒ¢ãƒ‹ã‚¢åˆæˆæ³•é–‹ç™ºã¸ã®æŒ‘戦-
    西林ä»æ˜­
    ファインケミカル, 3月å·, 45, 5–6 (2016).
  14. é·ç§»é‡‘属錯体を触媒ã¨ã—ã¦åˆ©ç”¨ã—ãŸè§¦åª’的アンモニアåˆæˆæ³•ã®é–‹ç™º
    田邊資明ã€è¥¿æž—ä»æ˜­
    ファインケミカル, 3月å·, 45, 7-18 (2016). [Hydrogen Energy Sciety, 3, 12–23 (2016)]
  15. éžç™½é‡‘分å­è§¦åª’ã«ã‚ˆã‚‹è§¦åª’的水素酸化åå¿œã®é–‹ç™º
    çµåŸŽé›…弘ã€è¥¿æž—ä»æ˜­
    ENEOS Technical Review, 58, No.1, 12–18 (2016).
  16. 有機分å­è§¦åª’ã¨é·ç§»é‡‘属触媒ã¨ã‚’å”å¥çš„ã«åˆ©ç”¨ã—ãŸåˆ†å­å¤‰æ›åå¿œ
    三宅由寛ã€ä¸­å³¶ä¸€æˆã€è¥¿æž—ä»æ˜­
    有機分å­è§¦åª’ã®æœ€å‰ç·š (日本化学会 Current Review), 167–176 (2016).
  17. 「ウェイド 有機化学 原書7版〠å•é¡Œã®è§£ã方 (分担)
    中æ‘浩之ã€å²©æœ¬æ­¦æ˜Žã€æ–Žè—¤æ…Žä¸€ã€æŸ´ç”°é«˜ç¯„ã€ç”°ä¸­å¥ã€é•·æ¾¤å’Œå¤«ã€è¥¿æž—ä»æ˜­
    丸善出版 (2016).
  18. 温和ãªåå¿œæ¡ä»¶ä¸‹ã§ã®è§¦åª’的窒素固定法ã«é–¢ã™ã‚‹æœ€è¿‘ã®é€²å±•
    è’èŠå’Œä¹Ÿã€è¥¿æž—ä»æ˜­
    化学工業, 67, No.1, 1–5 (2016).

2015å¹´

  1. Recent Progress in Transition Metal-Catalyzed Reduction of Molecular Dinitrogen under Ambient Reaction Conditions
    Y. Nishibayashi
    Inorg. Chem. (forum article for special issue), 54, 9234–9247 (2015).
  2. Nitrogen Fixation Catalyzed by Ferrocene-Substituted Dinitrogen-Bridged Dimolybdenum-Dinitrogen Complexes: Unique Behavior of Ferrocene Moiety as Redox Active Site
    S. Kuriyama, K. Arashiba, K. Nakajima, H. Tanaka, K. Yoshizawa, and Y. Nishibayashi
    Chem. Sci., 6, 3940–3951 (2015).
  3. Synthesis of Phosphabenzenes by Iron-Catalyzed [2+2+2] Cycloaddition Reaction of Diynes with Phosphaalkynes
    K. Nakajima, S. Takata, K. Sakata, and Y. Nishibayashi
    Angew. Chem. Int. Ed., 54, 7597–7601 (2015).
  4. Catalytic Reduction of Dinitrogen into Ammonia by Use of Molybdenum-Nitride Complexes Bearing Tridentate Triphosphine as Catalysts
    K. Arashiba, E. Kinoshita, S. Kuriyama, A. Eizawa, K. Nakajima, H. Tanaka, K. Yoshizawa, and Y. Nishibayashi
    J. Am. Chem. Soc., 137, 5666–5669 (2015). [Highlighted at ChemistryViews]
  5. Cobalt-Catalyzed Transformation of Molecular Dinitrogen into Silylamine under Ambient Reaction Conditions
    R. Imayoshi, H. Tanaka, Y. Matsuo, M. Yuki, K. Nakajima, K. Yoshizawa, and Y. Nishibayashi
    Chemistry-A European Journal, 21, 8905–8909 (2015).
  6. Thiolate-Bridged Dinuclear Ruthenium- and Iron-Complexex as Robust and Efficient Catalysts toward Oxidation of Molecular Dihydrogen in Protic Solvents
    M. Yuki, K. Sakata, Y. Hirao, N. Nonoyama, K. Nakajima, and Y. Nishibayashi
    J. Am. Chem. Soc., 137, 4173–4182 (2015).
  7. Copper-Catalyzed Enantioselective Etherification of Propargylic Esters with Alcohols
    K. Nakajima, M. Shibata, and Y. Nishibayashi
    J. Am. Chem. Soc., 137, 2472–2475 (2015). [Highlighted in Synfacts, 2015, 5]
  8. Synthesis and Catalytic Activity of Molybdenum-Nitride Complexes Bearing Pincer Ligands
    E. Kinoshita, K. Arashiba, S. Kuriyama, A. Eizawa, K. Nakajima, and Y. Nishibayashi
    Eur. J. Inorg. Chem., 1789–1794 (2015).
  9. Radical Addition to Corannulene Mediated by Visible Light-Photoredox Catalysts
    K. Nakajima, Y. Ashida, S. Nojima, and Y. Nishibayashi
    Chem. Lett., 44, 545–547 (2015).
  10. Cooperative Catalytic Reactions: Enantioselective Propargylic Alkylation of Propargylic Alcohols with Enecarbamates Using Ruthenium and Phosphoramide Hybrid Catalysts
    Y. Senda, K. Nakajima, and Y. Nishibayashi
    Angew. Chem. Int. Ed., 54, 4060–4064 (2015). [Highlighted in Synfacts, 2015, 5]
  11. Synthesis and Reactivity of Molybdenum-Dinitrogen Complexes Bearing PNN-Type Pincer Ligand
    K. Arashiba, K. Nakajima, and Y. Nishibayashi
    Z. Anorg. Allg. Chem. (invitation for special issue), 641, 100–104 (2015).
  12. 白金触媒ã«åŒ¹æ•µã™ã‚‹ã‚¢ãƒŽãƒ¼ãƒ‰åˆ†å­è§¦åª’ã®é–‹ç™º
    çµåŸŽé›…弘ã€è¥¿æž—ä»æ˜­
    エãƒãƒ«ã‚®ãƒ¼ãƒ‡ãƒã‚¤ã‚¹, 2, No.7, 92–96 (2015).
  13. 常温常圧ã§ã®ã‚¢ãƒ³ãƒ¢ãƒ‹ã‚¢ã®åˆæˆ
    田邊資明ã€è¥¿æž—ä»æ˜­
    アンモニアを用ã„ãŸæ°´ç´ åˆ©ç”¨ã‚·ã‚¹ãƒ†ãƒ , 87-101 (2015).
  14. Molybdenum-Catalyzed Reduction of Molecular Dinitrogen under Ambient Reaction Conditions
    Y. Nishibayashi
    Comptes rendus Chimie (invitation for special issue),18, 776–784 (2015).
  15. 温和ãªåå¿œæ¡ä»¶ä¸‹ã§ã®é·ç§»é‡‘属窒素錯体を分å­è§¦åª’ã¨ã—ã¦ç”¨ã„ãŸçª’素分å­ã‹ã‚‰ã®ã‚¢ãƒ³ãƒ¢ãƒ‹ã‚¢åˆæˆåå¿œã®é–‹ç™º
    西林ä»æ˜­
    触媒, 57, 33–38 (2015).
 


Molybdenum-catalyzed ammonia production with samarium diiodide and alcohols or water
Recruiting Postgraduate Students Recruiting Research Members Photo Album


Nishibayashi Lab.

Department of Applied Chemistry
School of Engineering
The University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
TEL : +81-3-5841-7708
FAX : +81-3-5841-1175
E-mail :
more


Links

Department of Applied Chemistry
Department of Systems Innovation Department of System Innovation, Faculity of Engineering, The University of Tokyo The University of Tokyo

Bookmark

hatena MyYahoo! Google del.icio.us