研究業績 Publications

原著論文
1. Hiruma, K*., Aoki, S., Takino, J., Higa, T., Utami, YD., Shiina, A., Okamoto, M., Nakamura, M., Kawamura, N., Ohmori, Y., Sugita, R., Tanoi, K., Sato, T., Oikawa, H., Minami, A., Iwasaki, W., Saijo, Y. (2023). A fungal sesquiterpene biosynthesis gene cluster critical for mutualist-pathogen transition in Colletotrichum tofieldiae. Nature Commun. in press.
2. Nguyen TAN, Higa T, Shiina A, Utami YD, Hiruma K (2023). Exploring the roles of fungal-derived secondary metabolites in plant-fungal interactions. Physiological and Molecular Plant Pathology, in press.  Special issue: The 12th Japan-US Seminar in Plant Pathology: Remodeling of the plant-microbe environment during disease, defense, and mutualism.
3. Mukai M, Hiruma K*, Nhishigaki T, Utami YD, Otaka J, Yoshihashi T, Sarr PS, Oo AZ, Takai T, Tujimoto Y* (2022).  Dysbiosis of the rhizosphere microbiome caused by γ-irradiation alters the composition of root exudates and reduces phosphorus uptake by rice in flooded soils.  Plant and Soil, In press..
4. Utami Y and Hiruma K (2022). Genome Resource of Colletotrichum spaethianum, the Causal Agent of Leaf Anthracnose in Polygonatum falcatum. the Causal Agent of Leaf Anthracnose in Polygonatum falcatum. PhytoFrontiers. https://doi.org/10.1094/PHYTOFR-12-21-0082-A, March, 2022.
5.Hori Y, Fujita H, Hiruma K, Narisawa K, Toju H (2021). Synergistic and Offset Effects of Fungal Species Combinations on Plant Performance. Front. Microbiol., 13 September 2021. https://doi.org/10.3389/fmicb. 2021.713180
6. Okada K, Kubota Y, Hirase T, Otani K, Goh T, Hiruma K, Saijo Y. Uncoupling root hair formation and defense activation from growth inhibition in response to damage‐associated Pep peptides in Arabidopsis thaliana. New Phytol, 229(5):2844-2858. doi: 10.1111/nph.17064.
7. Shinya T, Yasuda S, Hyodo K, Tani R, Hojo Y, Fujiwara Y, Hiruma K, Ishizaki T, Fujita Y, Saijo Y and Ivan G (2018). Integration of danger peptide signals with HAMP signaling amplifies the anti-herbivore defense responses in rice. Plant J 94, 626-637.
8. Ogita N, Okushima Y, Tokizawa M, Yamamoto Y, Tanaka M, Seki M, Makita Y, Matsui M, Okamoto-Yoshiyama K, Sakamoto T, Kurata T, Hiruma K, Saijo Y, Takahashi N and Umeda M* (2018). Identifying the target genes of SUPPRESSOR OF GAMMA RESPONSE 1, a master transcription factor controlling DNA damage response in Arabidopsis. Plant J 94, 439-453.
9. Piślewska-Bednarek M, Nakano RT, Hiruma K, Pastorczyk M, Sánchez-Vallet A, Singkaravanit-Ogawa S, Ciesiołka D, Takano Y, Molina A, Schulze-Lefert P and Bednarek P (2017). Glutathione transferase U13 functions in pathogen-triggered glucosinolate metabolism. Plant Physiol 163, 659-664.
10. Hiruma K, Gerlach N, Sacristán S, Nakano RT, Hacquard S, Kracher B, Neumann U, Ramirez D, Bucher M, O’Connell RJ* and Schulze-Lefert P (2016). Root Endophyte Colletotrichum tofieldiae confers plant fitness benefits that are phosphate status dependent. Cell 165, 464-474.

• 本論文がCell 165, 269-271 (2016) で紹介されています。
• Faculty 1000に推薦されました。

11. Hacquard S, Kracher B, Hiruma K, Munch P, Garrido-Oter R, Thon M, Weimann A, Damm U, Dallery J, Hainaut M, Henrissat B, Lespinet O, Sacristan S, Ver Loren van Themaat E, Kemen E, McHardy A, Schulze-Lefert P and O’Connell RJ (2016). Survival trade-offs in plant roots during colonization by closely related beneficial and pathogenic fungi. Nature Communications 7, DOI: 10.1038/ncomms11362.
12. Fukunaga S, Sogame M, Hata M, Singkaravanit-Ogawa S, Pislewska-Bednarek M, Onozawa-Komori M, Nishiuchi T, Hiruma K, Saitoh H, Terauchi R, Kitakura S, Inoue Y, Bednarek P, Schulze-Lefert P and Takano Y (2016). Dysfunction of Arabidopsis MACPF domain protein activates programmed cell death via tryptophan metabolism in MAMP-triggered immunity. Plant J 89,381-393.
13. Takahara H, Hacquard S, Kombrink A, Hughes HB, Halder V, Robin GP, Hiruma K, Neumann U, Shinya T, Kombrink E, Shibuya N, Thomma BP and O’Connell RJ (2016). Colletotrichum higginsianum extracellular LysM proteins play dual roles in appressorial function and suppression of chitin-triggered plant immunity. New Phytol 211, 1323-1337. doi: 10.1111/nph.13994.
14. Yamada K, Yamashita-Yamada M, Hirase T, Fujiwara T, Tsuda K, Hiruma K and Saijo Y (2015). Danger peptide receptor signaling in plants ensures basal immunity upon pathogen-induced depletion of BAK1. EMBO J 35, 46-61.
15. Ross A, Yamada K, Hiruma K, Yamashita-Yamada M, Lu X, Takano Y, Tsuda K and Saijo Y (2014). The Arabidopsis PEPR pathway couples local and systemic plant immunity. EMBO J 33, 62-75.
16. Hiruma K, Fukunaga S, Bednarek P, Pislewska-Bednarek M, Watanabe S, Narusaka Y, Shirasu K and Takano Y (2013). Glutathione and tryptophan metabolism are required for Arabidopsis immunity during the hypersensitive response to hemibiotrophs. Proc Natl Acad Sci U S A 110, 9589-9594.
プレスリリースしました。
http://www.kyoto-u.ac.jp/static/ja/news_data/h/h1/news6/2013/130521_1.htm

17. Hiruma K, Fukunaga S, Bednarek P and Takano Y (2013). Glutathione and tryptophan metabolites are key players in Arabidopsis nonhost resistance against Colletotrichum gloeosporioides. Plant Signal Behav 8. doi: 10.4161/psb.25603.
18. Watanabe S, Shimada T, Hiruma K and Takano Y (2013). Pathogen infection trial increases the secretion of proteins localized in the endoplasmic reticulum body of Arabidopsis. Plant Physiol 163, 659-664.
19. Hiruma K and Takano Y (2011). Roles of EDR1 in non-host resistance of Arabidopsis. Plant Signal Behav 6, 1831-1833.
20. Hiruma K, Nishiuchi T, Kato T, Bednarek P, Okuno T, Schulze-Lefert P and Takano Y (2011). Arabidopsis ENHANCED DISEASE RESISTANCE1 is required for pathogen-induced expression of plant defensins in nonhost resistance, and acts through interference of MYC2-mediated repressor function. Plant J 67, 980-992.
21. Hiruma K, Onozawa-Komori M, Takahashi F, Asakura M, Bednarek P, Okuno T, Schulze-Lefert P and Takano, Y (2010). Entry mode-dependent function of an indole glucosinolate pathway in Arabidopsis for nonhost resistance against anthracnose pathogens. Plant Cell 22, 2429-2443.
プレスリリースしました。
http://www.kyoto-u.ac.jp/static/ja/news_data/h/h1/news6/2010/100707_1.htm

著書
  1.Yuniar Devi Utami, 晝間敬 : メタオミクス解析を活用した植物有用微生物の単離同定, バイオスティミュラントハンドブ ック〜持続可能な農業実現に向けて〜(監修者:山内 靖雄氏、須藤修氏、和田哲夫氏),エヌ・ティー・エス社(2022) in press
2.Hiruma K (2020). Continuous Spectrum of Lifestyles of Plant-Associated Fungi Under Fluctuating Environments: What Genetic Components Determine the Lifestyle Transition? In: Pontarotti P. (eds) Evolutionary Biology—A Transdisciplinary Approach. Springer, Cham. https://doi.org/10.1007/978-3-030-57246-4_6
3. 晝間敬, 伊原彰紀, 岡田豪, 武富貴史, 山本豪志朗 (2018). 根圏微生物群の分布及びその共生効果の計測を通じた有用微生物の単離・活用 アグリバイオ 2(6) 595‐60.
4. 晝間敬 (2017). 病原菌と近縁な内生糸状菌とアブラナ科植物の共生関係 アグリバイオ 1(10) 1082‐1086.
5.李泰洪, 北川のぞみ, 晝間敬, 西條雄介 (2017). 植物免疫システムによる内生・共生微生物の制御. 環境バイオテクノロジー学会誌 17巻1号.
6. 晝間敬, Schulze-Lefert P (2016). 糸状菌Colletotrichum tofieldiaeはリン酸の欠乏した条件において宿主植物の根にリン酸を供給し成長を促進する. 新着論文レビュー
 http://first.lifesciencedb.jp/archives/12313
7. Hiruma K and Saijo Y (2016). Plant inoculation with the fungal leaf pathogen Colletotrichum higginsianum. Methods Mol Biol. 1398, 319-322.
8. Hiruma K and Saijo Y (2016). Methods for long-term stable storage of Colletotrichum species. Methods Mol Biol. 1398, 319-322.
9. 晝間敬、吉野香絵、高野義孝 (2011). 植物病原性カビの新たな侵入戦略、『化学と生物』 Vol.49:588-589.

総説 Reviews
1. 椎名昭斗, Yuniar Devi Utami, 晝間敬 (2023). 環境変動がもたらす植物根圏微生物の集団・個体レベルでの動的変化 植物科学最前線 DOI: 10.24480/bsj-review.14a6.00241
2, Utami Y.D, NGUYEN T.A.N, Hiruma K (2022). Investigating plant–microbe interactions within the root (2022). Archives of Microbiology, in press.
3. Hiruma K (2019). Roles of plant-derived secondary metabolites during interactions with pathogenic and beneficial microbes under conditions of environmental stress. Microorganisms 7, doi: 10.3390/microorganisms7090362.
4. Hiruma K, Kobae Y and Toju H. (2018). Beneficial associations between Brassicaceae plants and fungal endophytes under nutrient-limiting conditions: evolutionary origins and host–symbiont molecular mechanisms. Current Opinion in Plant Biology 44:145-154.
5. Toju H, Peay KG, Yamamichi M, Narisawa K, Hiruma K, Naito K, Fukuda S, Ushio M, Nakaoka S, Onoda Y, Yoshida K, Schlaeppi K, Bai Y, Sugiura R, Ichihashi Y, Minamisawa K and Kiers ET (2018). Core microbiomes for sustainable agroecosystems. Nature plants 4, 247-257.
6. Hiruma K and Saijo Y (2018). Plant growth promotion by beneficial fungi in phosphate-starved conditions. Jpn. J. Phytopathol. 84 Issue 2, 78-84.


特許
1. Sacristan S, Schulze-Lefert P, O’Connell RJ and Hiruma K (2013). Use of Colletotrichum tofieldiae for promoting plant growth. Application number: EP20130197811, Filing date: 17.12.


招待講演・シンポジウム
海外
1. Hiruma K. A comparative analysis between closely-related plant mutualistic and parasitic fungi (23rd Evolutionary Biology Meeting 2019, Marseilles, France Sep, 2019).
2. Hiruma K. The beneficial associations between a root-associated fungal endophyte and Brassicaceae vegetables in field (The 30th International Conference on Arabidopsis Research (ICAR2019) 2019, Wuhan, China 16-21 June, 2019).
3. Hiruma K. Transition between pathogenic and mutualistic lifestyles of Colletotrichum fungi associated with plant roots (Sino-German Symposium: Microbiomics and Plant Health, Huazhong Agricultural University, Wuhan, China 24-30 Sep, 2018).

国内
1. 晝間敬  根圏微生物叢による植物生長促進機構の理解およびその活用に向けて (植物制御技術の高度化と実用) 第61回日本植物生理学会
2. 晝間敬 多機能性植物共生糸状菌による共生効果発揮機構の理解およびその野外圃場展開 (フィールドにおける生命現象の解明とその制御に向けた基盤技術の創出、日本育種学会 第136回講演会・奈良 2019年9月
3. 晝間敬 内生糸状菌との相互作用を介したアブラナ科植物の生存戦略 (植物生長促進微生物研究の新潮流、日本農芸化学会2019年度大会・東京 2019年3月)
4. 晝間敬 植物と根圏微生物群の協調的及び拮抗的相互作用機構 (植物・微生物相互作用ワークショップ、岡山大学資源植物科学研究所主催・倉敷 2018年11月21日)
5. 晝間敬 内生糸状菌との相互作用を介したアブラナ科植物のリン栄養獲得戦略 (植物の窒素およびリン栄養獲得戦略、日本植物学会・広島
14-16 Sep, 2018).
6. 晝間敬 内生糸状菌とシロイヌナズナのリン栄養依存的な共棲関係の理解及びその効果の強化に向けて (土壌微生物を起点とする微生物生態研究の新展開:目からウロコの新発見、環境微生物系学会合同大会・仙台、 24-31 August, 2017).
7. 晝間敬 根圏微生物群による植物共生機構の理解に向けたトランスクリプトーム解析(トランスクリプトーム・データ解析技術ワークショップ、CREST植物頑健性主催・東京 2017).
8. 晝間敬 Colletotrichum属の内生糸状菌とアブラナ科植物間での栄養条件依存的な共生関係 (植物病理学会平成28年度感染生理談話会・神戸、10-12 August 2016).
9. Hiruma K Phosphate dependent plant growth promotion by the root endophyte Colletotrichum tofieldiae (Multifaceted functions of plant-soil microbe symbioses and the molecular mechanisms,日本植物生理学会・盛岡、18-20 Mar, 2016).

東京大学 The University of Tokyo

大学院総合文化研究科・教養学部 The University of Tokyo, Komaba

広域科学専攻 生命環境科学系 Department of Life Sciences

統合自然科学科