トップ 差分 一覧 ソース 検索 ヘルプ PDF RSS ログイン

物性セミナー/2023-12-20

2023年 冬学期 第5回 物性セミナー

 講師 坂田 綾香 氏(統計数理研)

 題目 グラフィカルモデルを用いた確率推論の回帰問題における展開

 日時 2023年 12月 20日 【水】 午後4時50分ー6時15分前後  (注)いつもと違う曜日

 場所 16号館 829およびオンライン  (注)今期はいつもの827ではなく、829です

オンラインで参加される方へ:

・オンライン参加の方へ:物性セミナーMLに登録されている方は、セミナー案内メールでZoomアドレスを通知します。登録のない方は、以下で予め登録をお願いします。(自動的に物性セミナーMLへ登録されます。)

登録フォーム https://docs.google.com/forms/d/e/1FAIpQLSdT67ZsTDiKsvutP59tY4tOUlx4WTInMKkTQIGWLqYCrPAQKA/viewform

アブストラクト

グラフィカルモデルとは確率モデルの一つで、指数型分布族を表現することができる。グラフ表現を用いることで効率的な推論やアルゴリズムの構築が可能となる。特に、グラフィカルモデル上で定義される確率伝搬法と呼ばれるアルゴリズムは、統計力学におけるベーテ近似と対応することが知られる。本講演では特に、確率伝搬法を用いた予測誤差評価法を紹介する。予測誤差は一般に未知データの元で定義されるが、グラフ構造やグラフ上で定義される関数を微小変化させることで予測誤差を推定できることを示す。

参考文献

[1] Obuchi & Sakata, Journal of Physics A: Mathematical and Theoretical (2019).

[2] Sakata, Journal of Physics A: Mathematical and Theoretical (2023).

宣伝用ビラ

KMB20231220.pdf(22)

物性セミナーのページ

http://park.itc.u-tokyo.ac.jp/KMBseminar/wiki.cgi/BusseiSeminar

[ページのアクセス数: 0282022]

最終更新時間:2023年12月15日 19時54分04秒