1. Home
  2. Publications

Publications



Publications 2021-

2024年
  1. Computational Screening of PCP-Type Pincer Ligands for Mo-Catalyzed Nitrogen Fixation 
    A. Egi, H. Tanaka, T. Nakamura, K. Arashiba, Y. Nishibayashi, and K. Yoshizawa
    Bull. Chem. Soc. Jpn., 97, in press (2024).
  2. Electrochemical Ammonia Oxidation Catalysed by Ruthenium Complexes: Investigation of Substituent Effect of Axial Pyridine Ligands 
    H. Toda, R. Kanega, T. Yano, T. Yoshikawa, S. Kuriyama, Y. Himeda, K. Sakata, and Y. Nishibayashi
    Chem. Lett.53, upae040 (2024). [Open Access] [優秀論文: Editor's Choice] 
  3. 常温常圧アンモニア合成に関する研究進展
    田邊資明、西林仁昭
    日本エネルギー学会機関誌 えねるみくす, 5月号, 103, 00-00 (2024).
  4. 常温常圧で進行する窒素固定法:新規分子触媒の開発と展望
    田邊資明、西林仁昭
    化学と教育, 2月号, 72, 62-65 (2024).
  5. 錯体化学会選書「錯体触媒化学」(小島隆彦編集)
    窒素固定
    田邊資明、西林仁昭(分担)
    三共出版 (2024年).
2023年
  1. Design, Synthesis and Reactivity of Dimolybdenum Complex Bearing Quaterphenylene-bridged Pyridine-Based PNP-type Pincer Ligand
    A. Eizawa, K. Arashiba, H. Tanaka, A. Konomi, K. Yoshizawa, and Y. Nishibayashi
    Dalton Transactions52, 14012-14016 (2023).​
  2. Catalytic Ammonia Oxidation Using Ammonia Solution under Electrochemical Conditions: Investigation on Axial Ligand of Ruthenium Catalysts
    H. Toda, K. Kuroki, R. Kanega, T. Yano, T. Yoshikawa, S. Kuriyama, Y. Himeda, K. Sakata, and Y. Nishibayashi
    Bull. Chem. Soc. Jpn.96, 980-988 (2023). [Open Access] [優秀論文:Selected Paper] 
  3. Catalytic Activity of Molybdenum Complexes Bearing PNP-Type Pincer Ligand toward Ammonia Formation
    T. Mitsumoto, Y. Ashida, K. Arashiba, S. Kuriyama, A. Egi, H. Tanaka, K. Yoshizawa, and Y. Nishibayashi
    Angew. Chem. Int. Ed.62, e202306631 (2023). [Open Access] [Highlight at Frontispiece]
  4. Catalytic Production of Ammonia from Dinitrogen Employing Molybdenum Complexes Bearing N-Heterocyclic Carbene-Based PCP-Type Pincer Ligands
    Y. Ashida, T. Mizushima, K. Arashiba, A. Egi, H. Tanaka, K. Yoshizawa, and Y. Nishibayashi
    Nature Synthesis2635-644 (2023). [Open Access] [Highlighted at News & Views in Nature Synthesis]
    [ChemRxiv, preprint (2022)]
  5. Interplay of Diruthenium Catalyst in Controlling Enantioselective Propargylic Substitution Reactions with Visible Light-generated Alkyl Radicals
    Y. Zhang, Y. Tanabe, S. Kuriyama, K. Sakata, and Y. Nishibayashi
    Nature Communications14, 859 (2023). [Open Access]
    [Highlighted at Nature Research Chemistry Community]
    [Research Square, preprint (2022)]
  6. Coordination Structure of Samarium Diiodide in Tetrahydrofuran–Water Mixture
    A. Yamamoto, X. Liu, K. Arashiba, A. Konomi, H. Tanaka, K. Yoshizawa, Y. Nishibayashi, and H. Yoshida
    Inorg. Chem.62, 5348-5356 (2023).​ [Highlight at Cover Picture]
  7. Preparation and Reactivity of Rhenium–Nitride Complexes Bearing PNP-Type Pincer Ligands toward Nitrogen Fixation
    F. Meng, S. Kuriyama, A. Egi, H. Tanaka, K. Yoshizawa, and Y. Nishibayashi
    Organometallics (invitation for special issue “Early Transition Metals in Organometallic Chemistry"), 42, 1065-1076 (2023). [Highlighted at Cover Picture]
  8. Direct Synthesis of Organonitrogen Compounds from Dinitrogen Using Transition Metal Complexes: Leap from Stoichiometric Reactions to Catalytic Reactions
    S. Suginome and Y. Nishibayashi
    ChemCatChem (Concept)15, e202300850 (2023).​ [Open Access]
  9. ハーバー・ボッシュ法を超えるアンモニア合成への挑戦
    西林仁昭
    希土類, 83, 7-10 (2023).
  10. ルテニウム触媒による不斉プロパルギル位置換反応の最近の進展[特集 ルテニウム錯体による有機合成の最新研究]
    田邊資明、西林仁昭
    ファインケミカル, 11月号, 52, 38-46 (2023).
  11. 「東京大学工学教程 無機化学Ⅱ(金属錯体化学)」
    石井和之、北條博彦、西林仁昭(分担)
    丸善出版 (2023年).
  12. ドラマチック有機合成:感動の瞬間100
    94 アンモニア生成反応のブレークスルー 予想していなかった水との特異な反応性 西林仁昭
    有機合成化学協会編 化学同人 (2023年).
  13. 可視光を利用したアンモニア生成反応の開発−太陽光と空気から地球にやさしいパンをつくる−
    西林仁昭、荒芝和也、栗山翔吾、山崎泰臣​
    化学78, No. 3, 12-17 (2023).​
  14. 触媒的窒素固定反応の破壊的イノベーションを目指して
    −これまでの研究生活を振り返って
    西林仁昭​
    化学と工業76, 102-104 (2023).​
2022年
  1. Catalytic Nitrogen Fixation Using Visible Light Energy
    Y. Ashida, Y. Onozuka, K. Arashiba, A. Konomi, H. Tanaka, S. Kuriyama, Y. Yamazaki, K. Yoshizawa, and Y. Nishibayashi
    Nature Communications137263 (2022). [Open Access] [Top 25 Chemistry and Materials Sciences Articles of 2022]
    [ChemRxivpreprint (2022)] 

  2. Direct Synthesis of Cyanate Anion from Dinitrogen Catalysed by Molybdenum Complexes Bearing Pincer-Type Ligand
    T. Itabashi, K. Arashiba, A. Egi, H. Tanaka, K. Sugiyama, S. Suginome, S. Kuriyama, K. Yoshizawa, and Y. Nishibayashi
    Nature Communications13, 6161 (2022). [Highlighted at Nature Communications Editors’ Highlights webpage] [Open Access]
    [ChemRxivpreprint (2022)]
  3. Effect of Propargylic Substituents on Enantioselectivity and Reactivity in Ruthenium-Catalyzed Propargylic Substitution Reactions: A DFT Study
    K. Sakata, Y. Uehara, S. Kohara,T. Yoshikawa, and Y. Nishibayashi
    ACS Omega7, 36634-36642 (2022). [Open Access]
  4. Nitrogen Reduction by the Fe Sites of Synthetic [Mo3S4Fe] Cubes
    Y. Ohki, K. Munakata, R. Hara, M. Kachi, K. Uchida, M. Tada, R. E. Cramer, W. M. C. Sameera, T. Takayama, Y. Sakai, S. Kuriyama, Y. Nishibayashi, and K. Tanifuji
    Nature607, 86-90 (2022). [Highlighted at News & Views in Nature] [Open Access]
  5. Photoredox- and Nickel-Catalyzed Hydroalkylation of Alkynes with 4-Alkyl-1,4-dihydropyridines: Ligand-Controlled Regioselectivity
    Y. Zhang, Y. Tanabe, S. Kuriyama, and Y. Nishibayashi
    Chem. Eur. J.28, e202200727 (2022). [Highlighted at Cover Picture] [Selected as Hot Topic: Photocatalysis]
  6. Synthesis and Reactivity of Manganese Complexes Bearing Anionic PNP- and PCP-type Pincer Ligands toward Nitrogen Fixation
    S. Kuriyama, S. Wei, T. Kato, and Y. Nishibayashi
    Molecules (invitation for special issue), 27, 2373 (2022).  [Open Access]
  7. Synthesis and Reactivity of Cobalt-Dinitrogen Complexes Bearing Anionic PCP-type Pincer Ligands toward Catalytic Silylamine Formation from Dinitrogen
    S. Kuriyama, S. Wei, H. Tanaka, A. Konomi, K. Yoshizawa, and Y. Nishibayashi
    Inorg. Chem.61, 5190-5195 (2022). [Highlighted at Cover Picture]
  8. Catalytic Reduction of Dinitrogen to Ammonia and Hydrazine Using Iron–Dinitrogen Complexes Bearing Anionic Benzene-Based PCP-type Pincer Ligands
    S. Kuriyama, T. Kato, H. Tanaka, A. Konomi, K. Yoshizawa, and Y. Nishibayashi
    Bull. Chem. Soc. Jpn.95, 683-692 (2022). [BCSJ Award Article[Highlighted at Cover Picture[Open Access]
    [ChemRxiv, preprint (2021)]
  9. Catalytic Reduction of Dinitrogen into Ammonia and Hydrazine Using Chromium Complexes Bearing PCP-Type Pincer Ligand
    Y. Ashida, A. Egi, K. Arashiba, H. Tanaka, T. Mitsumoto, S. Kuriyama, K. Yoshizawa, and Y. Nishibayashi
    Chem. Eur. J.28, e202200557 (2022). [Highlighted at Cover Picture]
    [ChemRxiv, preprint (2021)]
  10. Reactivity of Molybdenum–Nitride Complex Bearing Pyridine-Based PNP-Type Pincer Ligand toward Carbon-Centered Electrophiles
    T. Itabashi, K. Arashiba, S. Kuriyama, and Y. Nishibayashi
    Dalton Transactions51, 1946-1954 (2022).
  11. Hydroboration and Hydrosilylation of Molybdenum–Nitride Complex Bearing PNP-type Pincer Ligand
    T. Itabashi, K. Arashiba, H. Tanaka, K. Yoshizawa, and Y. Nishibayashi
    Organometallics41, 366-373 (2022). [Highlighted at Cover Picture]
  12. Recent Advances in Catalytic Nitrogen Fixation Using Transition Metal–Dinitrogen Complexes under Mild Reaction Conditions
    Y. Tanabe and Y. Nishibayashi
    Coord. Chem. Rev. (invitation for special issue “Current Coordination Chemistry in Japan"), 472, 214783 (2022).​
  13. 分子触媒を用いた常温常圧下でのアンモニア合成の最先端研究
    田邊資明、西林仁昭​
    ペトロテック(公益社団法人 石油学会), 45, 768-773 (2022).
2021年
  1. Ruthenium- and Copper-Catalyzed Propargylic Substitution Reactions of Propargylic Alcohol Derivatives with Hydrazones
    S. Liu, Y. Tanabe, S. Kuriyama, K. Sakata, and Y. Nishibayashi
    Chem. Eur. J.27, 15650-15659 (2021). [Highlighted at Cover Picture] [Cover Profile] [Virtual Collection XXII International Symposium on Homogeneous Catalysis]
  2. Enantioselectivity in Ruthenium-Catalyzed Propargylic Substitution Reactions of Propargylic Alcohols with Acetone: A DFT Study
    K. Sakata, Y. Goto, T. Yoshikawa, and Y. Nishibayashi
    Chem. Asian J.16, 3760-3766 (2021).
  3. Manganese-Catalyzed Ammonia Oxidation into Dinitrogen
    H. Toda, K. Kuroki, R. Kanega, S. Kuriyama, K. Nakajima, Y. Himeda, K. Sakata, and Y. Nishibayashi
    ChemPlusChem86, 1511-1516 (2021). [Highlighted at Cover Picture] [one of the most downloaded during its first 12 months of publication in ChemPlusChem]
    [ChemRxiv, preprint (2020)]
  4. Cooperative Photoredox- and Nickel-Catalyzed Alkylative Cyclization Reactions of Alkynes with 4-Alkyl-1,4-dihydropyridines
    Y. Zhang, Y. Tanabe, S. Kuriyama, and Y. Nishibayashi
    J. Org. Chem.86, 12577-12590 (2021). [Highlighted at Cover Picture]
  5. Ammonia Formation Catalyzed by Dinitrogen-Bridged Dirhenium Complex Bearing PNP-Pincer Ligands under Mild Reaction Conditions
    F. Meng, S. Kuriyama, H. Tanaka, A. Egi, K. Yoshizawa, and Y. Nishibayashi
    Angew. Chem. Int. Ed.60, 13906-13912 (2021).
    [ChemRxiv, preprint (2020)]
  6. Catalytic Ammonia Formation with Electrochemically Reduced Samarium Diiodide from Samarium Triiodide and Water from Dinitrogen 
    K. Arashiba, R. Kanega, Y. Himeda, and Y. Nishibayashi
    Chem. Lett.50, 1356-1358 (2021). [Open Access]
  7. Development of Asymmetric Propargylic Substitution Reactions Using Transition Metal Catalysts
    Y. Nishibayashi
    Chem. Lett. (highlight review, invitation for the CSJ Award for Creative Work), 50, 1282-1288 (2021). [Highlighted at Cover Picture[Open Access] [Vol.50 Commemorative Highlight Review Collection
  8. Synthesis and Characterization of Rhodium Complex Bearing Anionic CNC-Type Pincer Ligand with Pyrrolide and Imidazo[1,5-a]pyridine-3-ylidene Moieties
    S. Kuriyama, W. Zhao, and Y. Nishibayashi
    Z. Anorg. Allg. Chem. (invitation for special issue), 647, 1408-1414 (2021).
  9. Ruthenium-Catalyzed Enantioselective Propargylic Phosphinylation of Propargylic Alcohols with Phosphine Oxides
    S. Liu, Y. Tanabe, S. Kuriyama, K. Sakata, and Y. Nishibayashi
    Angew. Chem. Int. Ed.60, 11231-11236 (2021).
  10. Comprehensive Insights into Synthetic Nitrogen Fixation Assisted by Molecular Catalysts under Ambient or Mild Conditions
    Y. Tanabe and Y. Nishibayashi
    Chem. Soc. Rev.50, 5201-5242 (2021). 
  11. Development of Catalytic Nitrogen Fixation Using Transition Metal Complexes Not Relevant to Nitrogenase
    S. Kuriyama and Y. Nishibayashi
    Tetrahedron (Tetrahedron Report)83, 131986 (2021). 
  12. Development of Catalytic Conversion of Nitrogen Molecular into Ammonia Using Molybdenum Complexes under Ambient Reaction Conditions
    Y. Ashida and Y. Nishibayashi
    Chem. Commun. (Feature Article)57, 1176-1189 (2021). [Highlighted at Cover Picture[Selected as Hot Articles]
  13. 有機合成のための新規触媒反応101(有機合成化学協会編)
    執筆分担
    栗山翔吾、西林仁昭
    東京化学同人(2021).
  14. マメ科植物根粒菌のニトロゲナーゼ酵素を用いた反応
    脱ハーバーボッシュ・新規アンモニア合成法
    田邊資明、西林仁昭
    化学工学誌, 8月号, 437-440 (2021).
  15. 遷移金属錯体触媒による常温常圧でのアンモニア合成
    田邊資明、西林仁昭
    有機ハイドライド/アンモニアの合成·脱水素プロセス (2021年).
  16. 遷移金属触媒を用いた不斉プロパルギル位置換反応の開発
    西林仁昭
    The Chemical Times1, 20-25 (2021).
    関東化学株式会社


Molybdenum-catalyzed ammonia production with samarium diiodide and alcohols or water
Recruiting Postgraduate Students Recruiting Research Members Photo Album


Nishibayashi Lab.

Department of Applied Chemistry
School of Engineering
The University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
TEL : +81-3-5841-7708
FAX : +81-3-5841-1175
E-mail :
more


Links

Department of Applied Chemistry
Department of Systems Innovation Department of System Innovation, Faculity of Engineering, The University of Tokyo The University of Tokyo

Bookmark

hatena MyYahoo! Google del.icio.us