January 2020

MathJax demonstration \[ \frac{\pi}{2} = \left( \int_{0}^{\infty} \frac{\sin x}{\sqrt{x}} dx \right)^2 = \sum_{k=0}^{\infty} \frac{(2k)!}{2^{2k}(k!)^2} \frac{1}{2k+1} = \prod_{k=1}^{\infty} \frac{4k^2}{4k^2 - 1} \]







[2001.07723] Field Tensor Network States (Nielsen, Cirac, Sierra)

  • [2001.07757] Non-linear Onsager relations for Gaussian quantum maps (Salazar)
  • [2001.08046] On Schur problem and Kostka numbers (Zuber)
  • [2001.07923] Scanning space-time with patterns of entanglement, cluster algebra, Y-system (Péter Lévay)
  • [2001.07580] Revealing neutrino nature and CPT violation with decoherence effects (Buoninfante)
  • [2001.07221] Randomness-Assisted Exponential Hierarchies, Anderson localization (Tropper)















  • Hosho Katsura's arXiv