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Origin of magnetism 3/25

What’s the mechanism behind ferromagnetism?

Macroscopic number of spins 

(carried by electrons) are 

aligned in the same direction.

But why?

Coupling between spins 

• Dipole-dipole interaction  

Usually, too small (< 1K) to explain transition temperatures…

• Exchange interaction  

Direct exchange: J < 0  ferromagnetic (FM) 

Super-exchange: J > 0  antiferromagnetic (AFM)

( Si: spin at site i )

Heisenberg



Magnetism in ionic crystals 4/25

Magnetic ions (cations) do not 

directly couple each other. 

They interact via anions. 

Kanamori-Goodenough rules

• Simple examples (neglect orbital order)

d-orbital dp

Antiferromagnetic int. 

between mag. ions

dp

d

Ferromagnetic

(except for d5.)

Symmetry argument… Is there a more rigorous approach?

[From Wikipedia (perovskite)]



Hubbard model
Paradigmatic model of correlated electrons in solids

Hubbard (1963)

Kanamori, Gutzwiller
U

U

Manifestly SU(2) inv. 

Hopping and interaction 

terms do not commute…

Λ : Finite lattice

: Creation (annihilation) op. of electron with spin σ=↑ or ↓ at site x

: Number op.

• Operators 
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Hamiltonian

Hopping term

On-site repulsion

http://theor.jinr.ru/~kuzemsky/jhbio.html

http://theor.jinr.ru/~kuzemsky/jhbio.html


(Crude) derivation of super-exchange 6/25

 2-site Hubbard model 

Origin of exchange int. = electron correlation!

Can explain antiferromagnetic int. What about ferromagnetism? 

• Hamiltonian 

U

1 2

• 2nd order perturbation at half-filling,

Basis states: 

Pauli’s exclusion
↑↑

↑↓

↓↑

↓↓



Scarcity of exact/rigorous results
7/25

Hubbard model lacks general solutions. Numerically demanding… 

• Brandt-Giesekus, PRL 68 (1992)     Infinite-U Hubbard, RVB

• Nagaoka ferromagnetism (Infinite-U, 1 hole)
Nagaoka, Phys. Rev. 147 (1966); Tasaki, PRB 40 (1989)

• 1D Hubbard chain (Bethe ansatz)
Lieb-Wu, PRL, 20 (1968), “Absence of Mott transition …”

• Ferrimagnetism (spin-reflection positivity)
Lieb, PRL, 62; Erratum PRL 62 (1989).

G.S. on a bipartite at half-filling has Stot = ||A|-|B||/2.

Ferromagnetic states minimize Hhop & Hint simultaneously!

• Flat-band ferromagnetism (Frustration-free)
Mielke, JPA 24, L73, 3311 (1991); Tasaki, PRL 69, 1608 (1992).

Review: H.Tasaki, Prog. Theor. Phys. 99, 489 (1998).

Recent extensions by Miyao, arXiv:1712.05529



• Fermions carry flavor (α=1, …, n)

• Realization in cold-atom systems

Taie et al., Nat. Phys. 8 (2012).

Multi-component generalization
SU(n) Hubbard model

Rigorous results

• Nagaoka ferromagnetism 

in SU(n) Hubbard model

H.K. and A. Tanaka, 
Phys. Rev. A 87, 013617 (2013).

Underlying mechanism is the same as Puzzle & Dragons!
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• Ferromagnetism in a model with 

completely or nearly flat band

H.K. & K. Tamura, arXiv:1908.06286

[See 理学部ニュース 2019]



A crash course in inequalities
Positive semidefinite operators 

: finite-dimensional Hilbert space.

A, B: Hermitian operators on 

Appendix in H.Tasaki, Prog. Theor. Phys. 99, 489 (1998).

 Important lemmas 

• Lemma 1. iff all the eigenvalues of A are nonnegative.

• Lemma 2. Let be an arbitrary matrix on    . Then 

Cor. A projection operator              is p.s.d.

• Lemma 3. If             and           , we have 

• Definition 1. We write            and say A is 

positive semidefinite (p.s.d.)  if 

• Definition 2. We write               if  
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Frustration-free systems
Anderson’s bound (Phys. Rev. 83, 1260 (1951).) 

• Total Hamiltonian:

• Sub-Hamiltonian: hj that satisfies

(         is the lowest eigenvalue of hj )

(The g.s. energy of H) =: 
Used to obtain a lower 

bound on the g.s. energy 

of AFM Heisenberg model

 Frustration-free Hamiltonian 

The case where the equality holds. 

Ex.) S=1 Affleck-Kennedy-Lieb-Tasaki (AKLT), toric code, …

Definition. is said to be frustration-free

if there exists a state          such that                            for all j.

10/25

Flat-band ferro. 

is another example.
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SU(n) Hubbard model

Operators and Fock space 
• Finite lattice:

• Creation & annihilation operators at site x with color α

• Number operator:

• Vacuum:

• Many-particle states:     

Hamiltonian 

• Hopping term

• Interaction term

12/25



Symmetry of the model

Generators

• Total fermion number

• Color operators

• Color raising & lowring operators

They commute with the Hamiltonian.
NOTE) SU(n) symmetry for fixed Nf

Subspaces

• Hamiltonian is block-diagonal w.r.t.

• Degenerate eigenstates in different subspaces are 

related to one another by                      .

Denote their eigenvalues by Nα.
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Hopping term

Diagonalization 

Boils down to the diagonalization of T=(tx,y)

• Eigen-operators

Let v be an eigenvector of T with eigenvalue ε.

Then, the operator  

satisfies

Acting with       on an eigenstate of           raised energy by ε.

• Eigenstates

is an eigenstate of           with energy 0.

General eigenstates take the form:

where
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Interaction Term

Diagonalization 

Already diagonal in the number basis!

• Eigenstates

is an eignstate of 

For example,                                             has energy 2U.  

15/25

What about the full Hamiltonian?

• Hopping and interaction terms do not commute!

• Not even frustration-free in general…

But for a hopping term with a flat band (at the bottom), 

the full Hamiltonian becomes frustration-free!



What are flat bands? 16/25

Single-particle eigenstates of Hhop

• Energy bands

In systems with translation symmetry, wave-num. 

k is a good quantum number.

• Flat band

Single-particle energy          is independent of k.

 1D example (Tasaki lattice)



Why frustration-free

• Positive-semi-definite Hopping matrix

• Kernel of T spanned by orthonormal 

• Zero-energy eigen-operators

• Interaction term is p.s.d. 

Frustration-free!

Because of the Pauli principle                   ,

• Many-body zero-energy state

(for fermion num. = D0)

Are they unique (up to trivial degeneracy)?

• In the SU(2) case, Mielke established a necessary and sufficient 

condition for the uniqueness [Mielke, Phys. Lett. A 174, 443 (1993)]

• Related to irreducibility of

17/25
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Model on 1D Tasaki lattice

 Lattice and hopping term

• Lattice:

• Periodic boundary conditions:

Identify site j with j+2M.

• Hopping term

2M

1

2

2M-13

 Localized eigen-operators of Hhop

The flat band is spanned by a-operators.

19/25
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Flat-band ferromagnetism

SU(n) Ferromagnetic (FM) states

• Fully polarized states

are ground states of H=Hhop+Hint

as it makes both Hhop and Hint vanish.
Frustration-free!

• Other FM ground states:

• Total number of FM states:

• Fix total fermion number:

 Theorem 1 (uniqueness of the FM ground states)

Consider the Hubbard Hamiltonian H with the total fermion 

number Nf=M. For arbitrary t >0 and U >0, the ground states 

of the Hamiltonian are SU(n) ferromagnetic states and unique 

apart from trivial degeneracy due to the SU(n) symmetry.

20/25

A slight generalization of R.-J. Liu et al., arXiv:1901.07004.



Outline of proof 21/25

Since Hhop≧0 and Hint≧0, any ground state of H must be 

annihilated by Hhop and Hint simultaneously. This further means

• Hamiltonian

b’s do not appear in g.s.

• Multiple occupancy of a’s are prohibited

• Examining the 2nd condition on top sites, we have

• In a subspace labeled by                     , the g.s. is an equal weight 

superposition of                                            ,  

(set of possible permutations). This state is equivalent to a FM state.



Model with nearly flat band 22/25

 Lattice and hopping term

• Hopping term

• Total Hamiltonian

 Theorem 2 (uniqueness of the FM ground states)

Consider the Hubbard Hamiltonian H with the total fermion 

number Nf=M. For sufficiently large t/s >0 and U/s >0, the 

ground states of H are SU(n) ferromagnetic states and unique 

apart from trivial degeneracy due to the SU(n) symmetry.

A natural SU(n) generalization of H. Tasaki, PRL 75, 4678 (1995).



Outline of proof (1) 23/25

Decoupling of the Hamiltonian

• Flat part

• Local term

Flat-band Hamiltonian 

(t=U=1)

 Lemma 1

If each local Hamiltonian hx is positive semi-definite, then 

the ground states of H are the same as those of Hflat. 



Outline of proof (2)

Proof of Lemma 1

• Fully polarized states                              are 

annihilated by Hflat and all hx. 

 They are eigenstates of H with 

• Frustration-free?

If each hx is p.s.d., any state annihilated by Hflat and all hx

is a ground states of H. 

• Uniqueness

Uniqueness of these ground states just follows from Theorem 1.

Positive semi-definiteness of hx

• Computer-assisted proof

By numerially diagonalizing hx

(5-site Hamiltonian), one can identify 

the region in which hx is p.s.d. 
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 Lemma 2

Suppose that t, U are infinitely large and 0 < κ <1. 

Then, hx is positive semi-definite.

Proof.) Based on the analysis of projected Hamiltonian

(Projected onto the space of finite-energy states.)

Remark. Lemma 2 ensures finite thresholds for t/s and U/s,

above which hx is positive semi-definite. 

Summary

• Reviewed rigorous results for Hubbard models

• Introduced SU(n) Hubbard model on 1D Tasaki lattice

• Ferromagnetism in the model with a completely flat band

• Ferromagnetism in the model with a nearly flat band
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Established rigorous example in a non-singular situation!


