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Jewels of theoretical physics

Classification of solvable models
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Not exclusive. Ferromagnetic Heisenberg chain is 

integrable & Frustration-free! (H. Bethe, 1931)

• Integrable systems

Free fermions/bosons, Bethe ansatz

Infinitely many conserved charges

• Frustration-free systems

Ground state (g.s.) minimizes each local Hamiltonian

Explicit g.s., but hard to obtain excited states

• Frustration-free spin chains related to combinatorics

• Peculiar entanglement properties 

Non-area law behavior of EE (volume-law, …)

• SUSY and super-frustration-free systems?

 Today’s subject



A crash course in inequalities
Positive semidefinite operators 
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: finite-dimensional Hilbert space.

A, B: Hermitian operators on 

Appendix in H.Tasaki, Prog. Theor. Phys. 99, 489 (1998).

 Important lemmas 

• Lemma 1. iff all the eigenvalues of A are nonnegative.

• Lemma 2. Let be an arbitrary matrix on    . Then 

Cor. A projection operator              is p.s.d.

• Lemma 3. If             and           , we have 

• Definition 1. We write            and say A is 

positive semidefinite (p.s.d.)  if 

• Definition 2. We write               if  
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Frustration-free systems
Anderson’s bound (Phys. Rev. 83, 1260 (1951). 

• Total Hamiltonian:

• Sub-Hamiltonian: hj that satisfies

(         is the lowest eigenvalue of hj )

(The g.s. energy of H) =: 
Gives a lower bound on 

the g.s. energy of AFM 

Heisenberg model.

 Frustration-free Hamiltonian 

The case where the equality holds. 

(Pseudo-)Definition. is said to be frustration-free

when the g.s. minimizes individual sub-Hamiltonians hj.

Ex.) S=1 Affleck-Kennedy-Lieb-Tasaki (AKLT), Kitaev’s toric code, …
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Ferromagnetic Heisenberg chain
Hamiltonian (S=1/2, OBC) 

• SU(2) symmetry

• hj is p.s.d. as it is a projector to singlet

Spin-singlet state
Ground states

• All-up state

is a zero-energy state of of each hj  All-up state is a g.s. of H

• Other g.s.: 

• Unique in each total Sz sector (due to Perron-Frobenius thm.)



Graphical representation

Spin configs  lattice paths Example (N=6)

• Spin state at site j:

Height between j and j+1:

• Eigenvalue of total Sz = (the last height)/2    

Graphical reps. of G.S.

• The states in Sz =M sector 

 starting from height zero

ending at

• G.s. in Sz =M sector 

= Equal-weight superposition

of all such states  

• Local transition rule
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t-deformed model 
Hamiltonian (S=1/2, OBC) 

t-deformed singlet (t>0)

t1 SU(2) spin singlet

• XXZ chain with boundary field

• Uq(sl2) with q=t. H commutes with

Ground states

• annihilated by each hj is a g.s. of H.  

• Other g.s.: Unique in each M sector

Alcaraz, Salinas, Wreszinski, PRL 75 (1995), Gottstein, Werner (1995).

Alcaraz et al., JPA 20 (1987), Pasquier-Saleur, NPB 330 (1990)
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Graphical representation 
Graphical g.s.

• Local g.s. of hj

• Transition rule

• G.s. in Sz =M sector 

= Area-weighted superposition

of states s.t.

• as a q-binomial

Area difference

 coefficient t

Anything to do with Fridkin? 
• Not that much…

• Studied a non-frustration-free case

Fridkin, Stroganov, Zagier, JPA 33 (2000); JSP 102 (2001)

• G.s. energy takes a very simple form! No finite-size effect. 
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• Controlled swap that maps (c,a,b)  (c,a’,b’)

• (Classically) universal, i.e., any logical or arithmetic operation 

can be constructed entirely of Fredkin gates. 

• Quantum version = unitary logic gate

Implementation using photons: R.B.Patel et al., Sci. Adv. 2 (2016)
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Fredkin’s work 
Edward Fredkin (1934-)

 Fredkin gate

• Physicist and computer scientist. 

Early pioneer of Digital Physics.

• Primary contributions to reversible 

computing and cellular automata     (from Wikipedia)    

Input Output

Generalization
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Fredkin spin chain 
Hamiltonian (S=1/2, OBC, N even)

Salberger and Korepin, 

Rev. Math. Phys. 29 (2017)

• Lacks SU(2) symmetry, but preserves U(1). PT-like symmetry

• Equivalence classes

H is block-diagonal w.r.t. disconnected sectors 

• Bulk terms ~ Fredkin gates
& reflected one

• Boundary term
Fredkin moves



• Equal-weight superposition 

of all Dyck paths

• FM state with M =0 projected to the Dyck sector

• Catalan number!
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Ground states 
 Importance of

• G.S. of the bulk term  highly degenerate!

Penalized by H∂
• Only one of them is annihilated by H∂

Dyck paths

• Paths from (0,0) to (N,0)

• Never pass below the x axis  

Graphical reps. of g.s.



t-deformed model 
Hamiltonian (S=1/2, OBC)   Salberger et al., J.Stat.Mech. (2017)  

• Bulk terms t-deformed singlet (t>0)

Graphical g.s.

• Area-weighted superposition 

of all Dyck paths

• Unique g.s.

• Projection of the g.s. of DW XXZ

• Carlitz-Riordan q(=t) Catalan number

• The same equivalence classes as t=1(undeformed)

• Boundary term
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Colorful (higher-spin) model 
Spin statescolored steps

s=3 (spin-5/2)
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Colored Dyck paths

• Paths from (0,0) to (N,0)

• Never go below the x axis

• Matched ↑ and ↓ steps 

have the same color  

 Frustration-free models

- Undeformed model: Salberger and Korepin, Rev. Math. Phys. 29 (2017)

- Deformed model: Salberger et al., J.Stat.Mech. (2017)



Ground states 
Hamiltonian (OBC)

• Boundary term:

• Bulk term: Sum of projectors.

• Transition rules

Graphical g.s.

• Area-weighted superposition 

of all colored Dyck paths

• Unique g.s. of H

• Normalization

Norm for colorless (s=1) model

• Invariant under permutation of colors
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Movassagh-Shor’s integer spin chains 
 Frustration-free models

- Spin-1: Bravyi et al., PRL 109 (2012)

- Spin-s: Movassagh and Shor, PNAS 113 (2016)

- Deformed model: Zhang, Ahmadain, Klich, PNAS 114 (2017)

Colored Motzkin paths
• Flat step  m=0, up/down step with c  m=±c (c=1,…,s)

• Paths from (0,0) to (N,0)

• Never go below the x axis

• Matched ↑ and ↓ steps 

have the same color

Ground state

• Equal (or weighted) superposition of all colored Motzkin paths

• Peculiar entanglement properties. Critical at t=1 (undeformed case) 
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Quantum entanglement  
Schmidt decomposition
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A B

Reduced density matrix

• Entanglement (von Neumann) entropy

• Entanglement spectrum

Li and Haldane, PRL 101 (2008)

System

• Many-body g.s. (normalized)

• Orthonormal states

• Schmidt coefficient

Schmidt rank = (The number of             )



L

A B

N

• Area law: S is bounded by a constant

• Volume law: 

• CFT scaling:

• Gapped spectrum  area law (Hastings’ thm., J.Stat.Mech. (2007))  

Entanglement in Fredkin chain 
Scaling of Entanglement entropy (EE) in 1D
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EE phase diagram 

• Colorless (s=1) case

• Colorful (s>1) case

• Non-area law implies 

gapless spectrum above g.s.

• Volume law when s>1, t>1

though H consists of local terms

Cf.) Vitagliano et al., NJP 12 (2010); 

Ramirez et al., J.Stat.Mech (2014)

Contraposition



• System size:      ,  subsystem=left half 

• EE of subsystem A: n

A B

2n

Half-chain entanglement

 q-ballot numbers (q=t)
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• : A path from (0,0) to (n,m)

• A(w): Area between w and the x-axis

•

Ex.)

EE in terms of Mn,m

• Normalization                  Carlitz-Riordan q-Catalan num.



Proof of the volume law (s>1, t>1)
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• s=1  Area law, s>1  Volume law

• For s>1 and t infinity, each matched

pair is maximally entangled.

 Lemma (bound on Mn,m) Young

diagram

Proof) Based on Lemma and Gibbs inequality.  

 Theorem

𝑛 𝑛

where

with P(k) the integer partition of k.



Other results
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 Finite-size gap 
• Colorless (s=1) case

gapped

• Colorful (s>1) case

gapped

- Gap for t<<1 can be proved using Knabe’s method.

- Power law at t=1. Movassagh, arXiv:1609.09160.

- Exponentially or super-exponentially small gap for t>1.

Udagawa-Katsura, JPA 50 (2017); Zhang-Klich, JPA 50 (2017)

Magnetization

Antiferro-

magnetic
Zero bulk M

Domain

wall



Fradkin’s work
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Eduardo Fradkin Edward Fredkin

 Fradkin’s paper on Fredkin chain

• Argentinian-American theoretical physicist at

University of Illinois at Urbana-Champaign.

• Working in various areas of cond-mat. 

physics (FQHE etc.) using QFT approaches     (from Wikipedia)    

• Quantum Lifshitz model in 1+1D

Continuum counterpart (≠ continuum limit) of Fredkin chain

Dynamical exponent z = 2

• DMRG study on the original (lattice) model

z ~ 3.23 (z0 ~ 2.76) for the lowest excitation with 

• Fredkin-Heisenberg chain

- Chen, Fradkin, Witczak-Krempa, JPA 50, 464002 (2017)
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• E ≧ 0 for all states, as H is p.s.d

• E > 0 states come in pairs

• E = 0 state must be annihilated by Q

N=1 Supersymmetric (SUSY) QM 26/30

Algebraic structure

Spectrum of H

Energy

0

G.S. energy = 0  SUSY unbroken

G.S. energy > 0  SUSY broken

• Fermionic parity: 

• Supercharge: anti-commutes with

• Hamiltonian: 

• Symmetry: 

(F: total fermion num.)



27/30
Super-frustration-free systems
 “Local” supercharge

• Total supercharge:

• Local supercharge: Each qj anti-commutes with 

Definition. is said to be super-frustration-free

if there exists a state        such that                   for all j. 

Lattice Majorana fermions

・・・

• Fermionic parity: 

• Complex fermions from Majoranas

Each γ fermion carries 

quantum dimension      
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Majorana-Nicolai model
Definition

• Supercharge 

• Hamiltonian

consists of quadratic and quartic terms in γ

Phase diagram

- Sannomiya-Katsura, arXiv:1712.01148

- O’Brien-Fendley, arXiv:1712.0662, PRL 120 (2018) [More general] 

• Free-fermionic when g>>1. Rigorous upper bound on  gc.

• Integrable at g=0, super-frustration-free at g=±1. 

(NG fermion with 

cubic dispersion)
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Super-frustration-free at g=1

• : Local H of Kitaev chain in a trivial phase

• : Local H of Kitaev chain in a topological phase

• has two g.s. annihilated by all local q.

Easy to write down their explicit forms.    

Nicolai models with N=2 SUSY

• Nicolai, JPA 9, 1497 (1976); 

JPA 10, 2143 (1977)

• Sannomiya-Katsura-Nakayama, 

PRD 94, 045014 (2016); PRD 95, 065001 (2016)

G.S. degeneracy grows exponentially with system size.

• Schoutens et al., in preparation(?), counting the number of g.s.



Summary
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• Studied frustration-free Fredkin chains described by Dyck paths

• Rigorous results on entanglement entropy, finite-size gap, etc.

Colorless (s=1) case

gapped

Colorful (s>1) case

gapped

• Studied super-frustration-free fermionic systems

What I did not touch on

• Determinant formula for q-Carlitz-Riordan, Grothendieck poly?

Y. Ueno, J. Alg. 116, 261 (1988)

• Stochastic model corresponding to Fredkin chain

• Connection to Temperley-Lieb and Artin group?

Volume law


