物理学会@東北学院大学 (2016/3/21)

21pBA-3

乱れのある**Z**2トポロジカル絶縁体 と非可換指数定理

桂 法称 (東大院理) 高麗 徹 (学習院大理)

• H. Katsura & T. Koma, J. Math. Phys. 57, 021903 (2016).

2D class All topological insulators

- Time-reversal $\Theta^2 = -1$, particle-hole 0, chiral 0
- Examples Kane-Mele, BHZ model, QSHE (HgTe quantum well)
- \mathbf{Z}_2 index $\nu = 0, 1$ (k-space)

 $(-1)^{\nu} = \prod_{i=1}^{4} \frac{\operatorname{Pf}[w(\Gamma_i)]}{\sqrt{\operatorname{det}[w(\Gamma_i)]}}$

Kane-Mele, *PRL* **95** (2005) Fu-Kane, *PRB* **74** (2006).

Index in disordered systems?

- Niu-Thouless-Wu approach [*PRB* **31** (1985)] $(k_x, k_y) \rightarrow (\theta_x, \theta_y)$: boundary twists Essin-Moore, *PRB* **76**, 165307 (2007).
- Noncommutative Geometry & IQHE
 k-differentiation → Commutator in real space

Avron, Seiler & Simon, CMP 159, 399 ('94).

Noncommutative ver. Z_2 *index* (A \rightarrow AII)

Rigorous

& practical!!

1/9

Time-reversal symmetry (TRS)

• Time reversal $\Theta = VK$ (V: unitary, K: complex conjugation)

Antiunitary operation!

Standard choice: $V = I \otimes (-i\sigma_y)$ with $\Theta^2 = -1$.

• TRS

Hamiltonian *H* commutes with Θ , $[H, \Theta] = 0$. *H* has (i) even-TRS if $\Theta^2 = +1$, (ii) odd-TRS if $\Theta^2 = -1$.

Kramers' theorem

Consider a Hamiltonian *H* with odd-TRS. Every energy eigenvalue of *H* is at least two-fold degenerate (even deg.).

Proof) Let φ_1 be an eigenstate of *H*. φ_1 and $\varphi_2 = \Theta \varphi_1$ have the same energy and $\langle \varphi_1, \varphi_2 \rangle = 0$, because

 $\langle \varphi_1, \varphi_2 \rangle = \langle \Theta \varphi_2, \Theta \varphi_1 \rangle = \langle \Theta^2 \varphi_1, \Theta \varphi_1 \rangle = -\langle \varphi_1, \Theta \varphi_2 \rangle = -\langle \varphi_1, \varphi_2 \rangle$

Lattice model

Setting

- Lattice Z² (infinite square lattice), dual lattice (Z²)*
- Wavefunction $\varphi_{a,\sigma}(x)$ (a=1,...,r, $\sigma=\uparrow,\downarrow, x\in \mathbb{Z}^2$)
- Tight-binding Hamiltonian *H* with odd-TRS: $\Theta = VK$, $\Theta^2 = -1$ Short-ranged, may be inhomogeneous
- Flux operator U $(U\varphi_{a,\sigma})(x) = e^{i\theta(x)}\varphi_{a,\sigma}(x)$

Pair of projections

- Assumptions (i) Fermi level $E_{\rm F}$ lies in the gap, (ii) [V, U]=0
- Fermi projection P_F Projection to the states below $E_{\rm F}$. $(P_{\rm F})^2 = P_{\rm F}$ $P_{\rm F} = \frac{1}{2\pi i} \oint_{C} (z - H)^{-1} dz$
- Projection UP_FU* $(UP_FU^*)^2 = UP_FU^*$, because $U^*U = 1$ and $(P_F)^2 = P_F$.

Z₂ topological index (Noncommutative ver.) ^{4/9}

$$\operatorname{Ind}(P_{\mathrm{F}}, UP_{\mathrm{F}}U^{*}) := \dim \ker \left(\underline{P_{\mathrm{F}} - UP_{\mathrm{F}}U^{*} - 1}\right) \mod 2$$

$$A$$

Index = The number of eigenstates of A with eigenvalue $\lambda = 1 \mod 2$.

The index is 0 or 1, and

- Quantized without ensemble average Previous work: Prodan & Schulz-Baldes, 1402.5002, ... requires the ergodicity of probability measure.
- Reduces to *k*-space **Z**₂ index (translation invariant case)
- Robust against any odd-TRS perturbations Operator A is compact.
- But meaningful only in the infinite-volume limit
- A truncated version is useful in numerics
- NOTE) Chern number Tr $A^3 = 0$ from TRS.

Outline of the proof

Eigenvalues of $A = P_{\rm F} - U P_{\rm F} U^*$

 $A\varphi = \lambda \varphi$. The eigenvalues must satisfy $-1 \le \lambda \le 1$.

Kramers' theorem for *A*: Multiplicity of λ must be even if $0 < |\lambda| < 1$.

Multiplicity is finite except for $\lambda = 0$.

"Kramers" pair: $\varphi_1, \ \varphi_2 = BU\Theta\varphi_1$ $B := 1 - P_F - UP_FU^*$

Algebraic relations $\{A, B\} = 0$, $A^2 + B^2 = 1$, [U, V] = 0ensure that i) φ_2 is nonvanishing, ii) φ_1 and φ_2 are orthogonal.

 λ =1 is always pair-created or pair-annihilated! Abrupt change of λ is not allowed

Stability (continuity of λ) can be proved using min-max theorem.

Bernevig-Hughes-Zhang model

Effective model for QSHE in HgTe quantum well

BHZ, Science **314** (06), Konig et al., Science **318** (07). *First experimental realization!*

- Lattice model
 - Lattice **Z**² (square lattice)
 - Wavefunction $\varphi_{a,\sigma}(x)$ (a=s,p, $\sigma=\uparrow,\downarrow$, $x\in \mathbb{Z}^2$)
 - Tight-binding Hamiltonian H
 - a. On-site potential ϵ_a (a = s, p)
 - b. Hopping in *x* or *y s-p mixing (spin-orbit)*

 $t_{\mu,\sigma} = \begin{pmatrix} t_{ss} & t_{sp}e^{i\sigma\theta_{\mu}} \\ t_{sp}e^{-i\sigma\theta_{\mu}} & -t_{pp} \end{pmatrix} \quad (\mu = \pm x, \pm y)$

CdTe

HgTe

CdTe

A simple case: $\epsilon_s = m$, $\epsilon_p = -m$, $t_{ss} = t_{pp} = t_{sp} = t$, Z_2 index in *k*-space is *nontrivial* if |m/t| < 2.

6/9

Finite-size approximation of index

- Numerical procedure
 - Consider a lattice torus (N by N) with PBC
 - Fermi projection $P_{\rm F} = \sum_{E_n < E_{\rm F}} |\psi_n\rangle \langle \psi_n|$
 - Calculate projection $A = P_{\rm F} U P_{\rm F} U^*$
 - Truncated A supported in domain D $A \rightarrow A_D$ D is chosen, e.g. N/2 by N/2.
 - Compute eigenvalues of A_D

■ Uniform case (Warm-up) Linear size: N = 36 (# of states = 5184) Parameters: m = 1.0, t = 1.0 ($E_F = 0$)

Desired result! dim ker (A-1) mod 2 = 1

(First few) largest eigenvalues of *A_D* {**0**. **99999**, 0.52116, 0.52116, 0.394446, 0.394446, ...}

Disordered case

On-site disorder (odd-TRS)

 $\epsilon_s = -\epsilon_p = m \quad \Longrightarrow \quad m_x = m + W \,\delta m_x \quad \delta m_x \in [-0.5, 0.5]$

- m = 1.0, t = 1.0, W = 0.3 (N=32) Eigenvalues of A_D : $\{0.99999, 0.52860, 0.52860, 0.39644, 0.39644, ...\}$ Topological! Z_2 index =1
- m = 4.0, t = 1.0, W = 0.3 (N=32) Eigenvalues of A_D : $\{0.23380, 0.23380, 0.16879, 0.16879, 0.08973, 0.08973, ...\}$

Excellent quantization! (At least for weak disorder)

Spatial profile of ker (A_D-1)

The corresponding state is *localized* at the center of the flux operator *U*.

Seems like an analog of edge state.

Summary

- Studied 2D disordered insulators with time-reversal symmetry
- Operator theoretic definition of Z_2 topological index $Ind(P_F, UP_FU^*) = dim \ker (P_F - UP_FU^* - 1) \mod 2$
- Proved quantization and robustness
- Application to Bernevig-Hughes-Zhang model

Future directions

- Phase diagrams of disordered TI Reproduce Yamakage *et al.*, *PRB* **87** ('13)?
- What is the index for **3D TI** with disorder? Strong or weak? Metallic surface v.s. dark side
- Can exhaust all possible cases in periodic table? Work in progress...