Rigorous Statistical Mechanics and Related Topics @ Kyoto Univ. 2024/11/11

Integrable SYK models

Hosho Katsura (UTokyo)

With Soshun Ozaki (UTokyo); Eiki Iyoda (Tokai Univ.), Takahiro Sagawa (UTokyo)

S. Ozaki and H. Katsura, arXiv:2402.13154 [cond-mat.str-el] (2024)

E. Iyoda, H. Katsura, and T. Sagawa, Phys. Rev. D 98, 086020 (2018)

Outline

- 1. Majorana fermion models
 - Introduction & Motivation
 - Clean Majorana SYK
 - Clean supersymmetric Majorana SYK
- 2. Static and dynamical properties of H_4
 - Finite-T entropy & spectral form factor
 - Out-of-time order correlator (OTOC)
- 3. Complex fermion models
 - Clean complex SYK
 - Clean supersymmetric complex SYK
 - 4. Summary

$$H_4 = -\sum_{i < j < k < l} \gamma_i \gamma_j \gamma_k \gamma_l$$
$$Q_3 = i \sum_{i < j < k} \gamma_i \gamma_j \gamma_k$$

i < j < k

Spin-1/2 operators

 \blacksquare Pauli matrices acting on \mathbb{C}^2

$$\mathbb{1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \sigma^x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma^y = \begin{pmatrix} 0 & -\mathbf{i} \\ \mathbf{i} & 0 \end{pmatrix}, \quad \sigma^z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Commutation & anti-commutation relations

$$[\sigma^a, \sigma^b] = 2i \sum_{c=x,y,z} \epsilon^{abc} \sigma^c, \qquad \{\sigma^a, \sigma^b\} = 2\delta^{ab} \mathbb{1}$$

[A,B] = AB - BA $\{A, B\} = AB + BA$

- Spin operators acting on $(\mathbb{C}^2)^{\otimes L}$ Lattice sites: *j*=1, 2, ..., *L*
 - Spin operators at site *j* L-i $\sigma_i^a = \overbrace{\mathbb{1} \otimes \cdots \otimes \mathbb{1}}^{a} \otimes \sigma^a \otimes \overbrace{\mathbb{1} \otimes \cdots \otimes \mathbb{1}}^{a} \qquad (a = x, y, z)$
 - They square to the identity $(\sigma_i^a)^2 = \mathbb{1}^{\otimes L} = 1$
 - They commute on different sites, but anti-commute on the same site

Fermion operators

Majorana fermions γ_i (i = 1, 2, ..., N) Assume even N

- Defining relations
 - Their own Hermitian conjugate (adjoint)
 - Mutually anti-commuting
- Explicit representation

$$\gamma_{2j-1} = \left(\prod_{\ell < j} \sigma_{\ell}^z\right) \sigma_j^x, \qquad \gamma_{2j} = \left(\prod_{\ell < j} \sigma_{\ell}^z\right) \sigma_j^y$$

- Act on a spin chain of length L=N/2
- Complex (spinless) fermions
 - Creation and annihilation operators c_i^{\dagger}, c_j (i, j = 1, 2, ..., L)
 - Defining relations
 - Majorana rep.

$$\{c_i, c_j^{\dagger}\} = \delta_{i,j}, \quad \{c_i, c_j\} = \{c_i^{\dagger}, c_j^{\dagger}\} = 0$$
$$c_j^{\dagger} = \frac{1}{2}(\gamma_{2j-1} - i\gamma_{2j}), \quad c_j = \frac{1}{2}(\gamma_{2j-1} + i\gamma_{2j})$$

$$\gamma_i^{\dagger} = \gamma_i \quad (\gamma_i^* = \gamma_i)$$
$$\{\gamma_i, \gamma_j\} = 2\delta_{i,j}$$

$$\begin{aligned} \gamma_1 &= \sigma_1^x, \qquad \gamma_2 = \sigma_1^y \\ \gamma_3 &= \sigma_1^z \sigma_2^x, \quad \gamma_4 = \sigma_1^z \sigma_2^y \end{aligned}$$

Majorana SYK model

- Sachdev-Ye-Kitaev model
 - Hamiltonian

$$H_{\rm SYK} = \sum_{1 \le i < j < k < l \le N} J_{ijkl} \gamma_i \gamma_j \gamma_k \gamma_l$$

Sachdev & Ye, PRL **70** (1993), arXiv:cond-mat/**92**12030; Kitaev, Talks at KITP (2015); Maldacena, Stanford, PRD **94** (2016)

- $J_{ijkl} \in \mathbb{R}$: Gaussian with zero mean and variance $J/N^{3/2}$
- Consists of all-to-all coupling terms
- Tractable in the large-N limit
- Toy model for holographic duality
- Maximally chaotic (OTOC saturates the chaos bound)
- What if all the couplings are equal?
 - Turns out to be *integrable!*
 - Can we still find a signature/remnant of chaos?
 - YES! OTOC shows exponential growth at early times. A precursor of chaos?

Clean Majorana SYK model

Hamiltonian

$$H_4 = -\sum_{1 \le i < j < k < l \le N} \gamma_i \gamma_j \gamma_k \gamma_l$$

Lau, Ma, Murugan & Tezuka, JPA **54**, 095401 (2021)

<u>Majorana \rightarrow spins</u>

 $\gamma_1 = \sigma_1^x, \qquad \gamma_2 = \sigma_1^y$

• N=4 $H_4 = -\gamma_1 \gamma_2 \gamma_3 \gamma_4 = \sigma_1^z \sigma_2^z$ $\gamma_3 = \sigma_1^z \sigma_2^x, \quad \gamma_4 = \sigma_1^z \sigma_2^y$

- Just a 2-site Ising model! Trivially integrable.
- H_4 with N > 4 does not seem integrable...

Level-spacing distribution

Casati et al, PRL 54 (1985), Pal & Huse, PRB 82 (2010)

- Collect the energy levels in the middle of the spectrum $E_j E_{GS} \in [0.4N^2, 0.5N^2]$
- Adjacent gaps $\delta_j = E_j E_{j-1}$
- Poisson distribution!
 Is H₄ integrable?? YES!

Integrability of quadratic case: warm-up

■Quadratic all-to-all Hamiltonian (*N*: even)

 $H_2 = i \sum \gamma_i \gamma_j$ Lau *et al*, JPA **54** (2021) $1 \le i \le j \le N$

• Subject to twisted boundary conditions:

 $T\gamma_{i}T^{-1} = \gamma_{i+1}$ if $1 \le j < N; \quad T\gamma_{N}T^{-1} = -\gamma_{1}$

• Fourier transform (k = 1, 2, ..., N/2)

$$f_k = \frac{1}{\sqrt{2N}} \sum_{j=1}^{N} e^{i(j-1)\theta_k} \gamma_j, \quad f_k^{\dagger} = \frac{1}{\sqrt{2N}} \sum_{j=1}^{N} e^{-i(j-1)\theta_k} \gamma_j$$

 θ_k 's are determined so that

$$Tf_k^{(\dagger)}T^{-1} = e^{\pm i\theta_k}f_k^{(\dagger)} \qquad \Longrightarrow \qquad \theta_k = \frac{(2k-1)\pi}{N}$$

 They are complex fermions obeying $\{f_k, f_\ell^{\dagger}\} = \delta_{k,\ell}, \quad \{f_k, f_\ell\} = \{f_{\iota}^{\dagger}, f_{\ell}^{\dagger}\} = 0$

Diagonal form of H_2 $H_2 = \sum_{k=1}^{N/2} \epsilon_k \left(f_k^{\dagger} f_k - \frac{1}{2} \right)$

$$\epsilon_k = 2\cot\frac{\theta_k}{2}$$

7/27

Dispersion relation

$$H_2 = \sum_{k=1}^{N/2} \epsilon_k \left(f_k^{\dagger} f_k - \frac{1}{2} \right), \quad \epsilon_k = 2 \cot \frac{(2k-1)\pi}{2N}$$

- Eigen-operator: $[H_2, f_k^{\dagger}] = \epsilon_k f_k^{\dagger}$
- Many-body eigenstates
 - Vacuum state: $|vac\rangle$ s.t. $f_k |vac\rangle = 0 \forall k \text{ and } \langle vac |vac\rangle = 1$
 - Fock states

 $|n_1, n_2, ..., n_{N/2}\rangle = (f_1^{\dagger})^{n_1} (f_2^{\dagger})^{n_2} \cdots (f_{N/2}^{\dagger})^{n_{N/2}} |\text{vac}\rangle {}_{\mathbf{6}}$

- Occupation numbers: $n_k = 0$ or 1
- Eigen-energies of H_2 $E_2(n_1, n_2, ..., n_{N/2}) = -\sum_{k=1}^{N/2} (-1)^{n_k} \frac{\epsilon_k}{2}$

Integrability of $H_4 = -\sum \gamma_i \gamma_j \gamma_k \gamma_l$				9/27
Nontrivial identity $i < j < k < l$	1	i < j < k < l	$\gamma_i\gamma_j\gamma_k\gamma_l$	
$H_4 = \frac{1}{2} \left\{ (H_2)^2 - \frac{N(N-1)}{2} \right\}$	2	i < j = k < l	Yin	
	3	i < k < j < l	$-\gamma_i\gamma_k\gamma_j\gamma_l$	
 Proof by exhaustion 	4	i < k < j = l	$-\gamma_i\gamma_k$	
$(H_2)^2 = -\sum \sum \gamma_i \gamma_j \gamma_k \gamma_l = \cdots$	5	i < k < l < j	VithYUYj	
$i < j \ k < l$	6	i=k < j < l	$-\gamma_j\gamma_l$	
• Obviously, $[H_4, H_2] = 0$	7	i = k < j = l	-1	$\binom{N}{2}$
Eigenstates of H_4	8	i = k < l < j	AT Yj	
• Any eigenstate of H_2 is an eigenstate of H_4	9	k < i < j < l	$\gamma_k \gamma_i \gamma_j \gamma_l$	00000
 Solvable structure is similar to that 	10	k < i < j = l	$\frac{\gamma_{\kappa}}{i}$	
of the Hubbard + all-to-all interaction	11	k < i < l < j	$-\gamma_k\gamma_i\gamma_j\gamma_j$	
Hatsugai & Kohmoto, JPSJ 61 , 2056 (1992)	12	k < i = l < j	$-\gamma_k\gamma_j$	
	13	k < l < i < j	$\gamma_k \gamma_l \gamma_i \gamma_j$	

Ground states of H₄

- Every Fock state $|n_1, n_2, ..., n_{N/2}\rangle$ is an eigenstate of H_4
- Ground-states

Ground-sta	ates	6	act my		 	1
N=8	$\ket{1,0,0,0}, \ket{0,1,1,1}$	2	cotnx		 	1 1 1 1 1
<i>N</i> =10	$\ket{1,0,0,0,0}, \ \ket{0,1,1,1,1}$	-2	0.1	0.2 0	0.4	0.5
<i>N</i> =12	$\ket{1,0,0,0,0,0}, \ \ket{0,1,1,1,1,1}$	-4 -6	$\frac{1}{16}$	$\frac{3}{16}$	$\frac{5}{16}$	$\frac{7}{16}$
		L .		ı	;	i
<i>N</i> =24	$ 1,0,0,0,0,0,0,0,0,0,0,0\rangle, 0,1,1,1,1,1,1,1\rangle$	1, 1, 1, 1, 1,	$1,1\rangle$			
<i>N</i> =26	$ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0\rangle$, $ 0, 1, 1, 1, 1$, 1, 1, 1, 1, 1	1, 1, 0, 1	$,1\rangle$		
<i>N</i> =28	$ 1,0,0,0,0,0,0,0,0,0,0,1,1,0,0\rangle$, $ 0,1,1,1,0,0\rangle$,	1, 1, 1, 1, 1,	1, 1, 0, 0	$\left ,1,1\right\rangle$		
<i>N</i> =30	$ 1,0,0,0,0,0,0,0,0,1,0,0,1,1,0\rangle$, $ 0,1,1,0\rangle$,	, 1, 1, 1, 1	1, 1, 1, 0,	1, 1, 0, 0	,1 angle	
<i>N</i> =32	$ 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0\rangle$, $ 0, 1\rangle$, 1, 1, 1, 1, 1	1, 1, 1, 1, 1	, 0 , 1, 0 , 1	$, {f 0}, 1, 1 angle$	
	Hard to predict for $N \ge 2$	26				

Equivalent Ising model

Spin Hamiltonian

- Occupation number $n_k = f_k^{\dagger} f_k$ (k = 1, ..., N/2)
- Ising variables $\sigma_k = 2n_k 1$

$$H_4 = \sum_{k,\ell=1}^{N/2} J_{k\ell} \,\sigma_k \sigma_\ell + \text{const.} \qquad J_{k\ell} = \frac{1}{2} \cot\left(\frac{2k-1}{2N}\pi\right) \cot\left(\frac{2\ell-1}{2N}\pi\right)$$

- Classical Ising model! Any Ising spin σ_k is a conserved quantity.
- Long-ranged & frustrated! glassy...?

Low-energy states

- Many low-energy states near the g.s.
- Number of states with $E \in [E_{GS}, E_{GS} + \Delta E]$

 $W(\Delta E) \simeq a \times 2^{N/2} \sqrt{\Delta E}, \quad a \simeq 0.007$

• Entropy in the *T*=0 limit: $S/N \sim \frac{1}{2} \log 2$

Supersymmetric (SUSY) SYK models

- $\blacksquare \mathcal{N} = 1$ SUSY quantum mechanics
 - Fermionic parity $(-1)^F$
 - Supercharge $Q(=Q^{\dagger})$ anti-commuting with $(-1)^{F}$
 - Hamiltonian $H = Q^2$
 - Symmetry $[H, (-1)^F] = [H, Q] = 0$
 - Spectrum of H
 - \succ $E \ge 0$ for all states; E > 0 states come in pairs $\{|\psi\rangle, Q|\psi\rangle\}$
 - \succ E = 0 state, if exists, must be annihilated by Q
- **SUSY SYK** Fu, Gaiotto, Maldacena & Sachdev, *PRD* **95** (2017)
 - Fermionic parity $(-1)^F = i^{N/2} \gamma_1 \gamma_2 \cdots \gamma_N$

Q

- Supercharge
- Hamiltonian

$$(-1)^{-1} = 1 \qquad \forall 1 \ \forall 2 \ \cdots \ \forall N$$
$$Q_{\text{SYK}} = i \sum_{1 \le i < j < k \le N} C_{ijk} \gamma_i \gamma_j \gamma_k \qquad \langle C_{ijk} \rangle = 0, \quad \langle C_{ijk}^2 \rangle =$$
$$H_{\text{SYK}}^{\text{SUSY}} = (Q_{\text{SYK}})^2$$

2J

 $\overline{N^2}$

Witten, NPB **202**, 253 (1982)

Clean SUSY Majorana SYK

Supercharge & Hamiltonian

Integrability of H_4^{SUSY}

- $H_4^{\text{SUSY}} = (H_{\text{free}})^2$ follows from $[H_{\text{free}}, \chi_0] = 0, \ (\chi_0)^2 = 1$
- Any eigenstate of $H_{\rm free}$ is an eigenstate of $H_4^{\rm SUSY}$
- Diagonal form

$$H_{\text{free}} = \sum_{k=1}^{\frac{N}{2}-1} \epsilon_k \left(g_k^{\dagger} g_k - \frac{1}{2} \right), \quad \epsilon_k = 2 \cot\left(\frac{k\pi}{N}\right), \quad g_k = \sqrt{\frac{2}{N}} \sum_{j=1}^{N} \exp\left(i\frac{2(j-1)k}{N}\pi\right) \gamma_j$$

Ground states & low-energy states

Ground states

- 4-fold degenerate due to $[H_4^{SUSY}, Q_3] = [H_4^{SUSY}, \chi_0] = 0$
- Energy per particle

N	6	8	10	12	14	16	18	20
$E_{\rm GS}/N$	2/9	1/8	0.042	1.99×10^{-3}	0	2.36×10^{-4}	3.05×10^{-4}	5.75×10^{-5}

- Curious identity: $-\frac{1}{\sin(\pi/7)} + \frac{1}{\sin(2\pi/7)} + \frac{1}{\sin(3\pi/7)} = 0 \left[\cot\theta + \cot\left(\frac{\pi}{2} \theta\right) = \frac{2}{\sin 2\theta} \right]$
- Zero energy at other N? SUSY restoration?
- Low-energy states
 - Many nearly zero-energy states
 - Has a sharper *E*=0 peak than H_4
 - Residual entropy in the T=0 limit

$$S/N \sim \frac{1}{2}\log 2$$

Outline

- 1. Majorana fermion models
 - Introduction & Motivation
 - Clean Majorana SYK
 - Clean supersymmetric Majorana SYK
- 2. Static and dynamical properties of H_4
 - Finite-T entropy & spectral form factor
 - Out-of-time order correlator (OTOC)
- 3. Complex fermion models
 - Clean complex SYK
 - Clean supersymmetric complex SYK
- 4. Summary

With Soshun Ozaki arXiv:2402.13154

Free energy and entropy

• Reminder
$$H_4 = \frac{1}{2} \left\{ (H_2)^2 - \frac{N(N-1)}{2} \right\}, \quad H_2 = \sum_{k=1}^{N/2} \epsilon_k \left(f_k^{\dagger} f_k - \frac{1}{2} \right)$$

Partition function

$$Z(\beta) = \text{Tr} \exp\left[-\beta \frac{(H_2)^2}{2}\right] = 2^{N/2} \sqrt{\frac{2}{\pi\beta}} \int_{-\infty}^{\infty} e^{-2x^2/\beta} \prod_{k=1}^{N/2} \cos(\epsilon_k x) \, dx$$

Stratonovich-Hubbard tr.
Free energy $F(T) \sim -\frac{NT}{2} \log 2$
Entropy/N $s(T) = -\frac{1}{N} \frac{dF}{dT} \sim \frac{1}{2} \log 2$
High T
High T
High T

V/1 0.25

0.2

0.15

0.1

Low T

100

N

N/2

16/27

Numerical results

1000

Original SYK

 $s(T \rightarrow 0) = \frac{1}{2}\log(1.592)$ Maldacena et al., JHEP **106** (2016)

T independence Similar to the random energy model B. Derrida, Phys. Rev. B 24, 2613 (1981)

Spectral form factor

- Definition $g(t,\beta) = \left|\frac{\mathrm{Tr}e^{(\mathrm{i}t-\beta)H_4}}{\mathrm{Tr}e^{-\beta H_4}}\right|^2$
- Early-time behavior
 - Boils down to combinatorics

$$g(t,0) = 1 - \binom{N}{4}t^2 + O(t^4)$$

- Late-time behavior

 - Yet to get a closed form But likely to be $g(t,0) \simeq \frac{0.16}{N^2 t}$
- Intermediate-time region
 - Unlike the original SYK, no dip-ramp-plateau structure

Time evolution by H₄

■ Warm-up: quadratic case

$$H_{2} = i \sum_{i < j} \gamma_{i} \gamma_{j} = \sum_{k=1}^{N/2} \epsilon_{k} \left(f_{k}^{+} f_{k}^{-} - \frac{1}{2} \right), \quad f_{k}^{+} := f_{k}^{\dagger}, \ f_{k}^{-} := f_{k}, \ \epsilon_{k} = 2 \cot \frac{\theta_{k}}{2}$$
$$[H_{2}, f_{k}^{\pm}] = \pm \epsilon_{k} f_{k}^{\pm} \quad \Longrightarrow \quad e^{iH_{2}t} f_{k}^{\pm} e^{-iH_{2}t} = \exp(\pm i\epsilon_{k}t) f_{k}^{\pm} \qquad \qquad \theta_{k} = \frac{2k-1}{N}\pi$$

18/27

• Quartic case

$$H_{4} = -\sum_{i < j < k < l} \gamma_{i} \gamma_{j} \gamma_{k} \gamma_{l} = \frac{1}{2} \left\{ (H_{2})^{2} - \frac{N(N-1)}{2} \right\}$$
$$[H_{4}, f_{k}^{\pm}] = \left(\mp \epsilon_{k} H_{2} - \frac{1}{2} \epsilon_{k}^{2} \right) f_{k}^{\pm} \implies e^{iH_{4}t} f_{k}^{\pm} e^{-iH_{4}t} = \exp\left(\mp i \epsilon_{k} \underline{H_{2}}t - \frac{1}{2} \epsilon_{k}^{2}t \right) f_{k}^{\pm}$$

- Quasi-particle picture is broken!
- Time evolution of Majorana op. $\gamma_j(t) = e^{iH_4t}\gamma_j e^{-iH_4t} = \sqrt{\frac{2}{N}} \sum_{s=\pm}^{N/2} \exp\left(is(j-1)\theta_k + is\epsilon_k H_2 t - \frac{i}{2}\epsilon_k^2 t\right) f_k^s$

Out-of-time order correlator (OTOC)

- Indicator of initial value sensitivity (scrambling)
- Definition

$$C_{VW}(t) := \operatorname{tr}[\rho^{1/4}V(t)\rho^{1/4}W(0)\rho^{1/4}V(t)\rho^{1/4}W(0)]$$

- Quantum Lyapnov exponent λ
 - Early-time behavior

 $C_{VW}(t) \sim A + Be^{\lambda t}$

MSS bound

Maldacena, Shenker & Stanford, JHEP (2016)

$$\lambda \le \frac{2\pi}{\beta} = 2\pi T$$

Original SYK saturates this bound
 Maximally chaotic!

Operators: V, WDensity matrix: $\rho = e^{-\beta H}/Z$

OTOC in clean SYK H_4 at infinite T

OTOC of Majorana operators

■ Infinite-*T* OTOC

 $C_{ij}(t) = \text{Tr}[\gamma_i(t)\gamma_j(0)\gamma_i(t)\gamma_j(0)]$

Analytical result

$$F(t,0) = -\frac{2}{\pi} \int_0^\infty \frac{\sin u}{\sin u + 4t} du + O\left(\frac{1}{N}\right)$$
$$\sim \begin{cases} -1 + \frac{8}{\pi} (1 - \gamma - \log 4t)t & (t \ll 1) \\ -\frac{1}{2\pi t} & (t \gg 1) \end{cases}$$

 Similar late-time behavior in integrable models: Lin & Motrunich, PRB 97 (2018), ...

20/27

OTOC in clean SYK H₄ at finite T

■ Finite-*T* OTOC

 Can be computed using Stratonovich-Hubbard tr. + numerical integration

Early-time behavior

- Exponential growth at early times
- Fitting $A + Be^{\lambda t}$ to the data in $[0.1\beta, 0.2\beta]$ yields $\lambda \simeq 1.68\pi T$
- Consistent with the MSS bound $\lambda \leq 2\pi T$
- Catch: much shorter time scale than that of the original SYK $t_{\rm c} \sim \beta \log N$
- What about H_2 ?
 - No signature of scrambling

Outline

- 1. Majorana fermion models
 - Introduction & Motivation
 - Clean Majorana SYK
 - Clean supersymmetric Majorana SYK
- 2. Static and dynamical properties of H₄
 Finite-*T* entropy & spectral form factor
 Out-of-time order correlator (OTOC)
- 3. Complex fermion models
 - Clean complex SYK

4. Summary

Clean supersymmetric complex SYK

Clean complex SYK model

Complex (spinless) fermions

- Creation and annihilation operators: c_i^{\dagger}, c_j (i, j = 1, 2, ..., N)
- Canonical anti-commutation relations

$$\{c_i, c_j^{\dagger}\} = c_i c_j^{\dagger} + c_j^{\dagger} c_i = \delta_{i,j}, \quad \{c_i, c_j\} = \{c_i^{\dagger}, c_j^{\dagger}\} = 0$$

- Original model (disordered)
 - Hamiltonian Sachdev, PRX 5, (2015); Fu & Sachdev, PRB 94 (2016)

$$H_{\rm cSYK} = \sum_{1 \le j < i \le N} \sum_{1 \le k < l \le N} J_{ij;kl} c_i^{\dagger} c_j^{\dagger} c_k c_l$$

Complex Gaussian variables $J_{ij;kl} = -J_{ji;kl} = -J_{ij;lk} = J_{lk;ji}^*$ $\langle J_{ij;kl} \rangle = 0, \quad \langle |J_{ij;kl}|^2 \rangle = J^2/N^3$

Clean complex SYK model

• Hamiltonian Iyoda & Sagawa, PRA 97 (2018)

$$H_{c4} = \sum_{1 \le j < i \le N} \sum_{1 \le k < l \le N} c_i^{\dagger} c_j^{\dagger} c_k c_l$$

Is it integrable? YES! But not free-fermionic...

Integrability of H_{c4}

Factorization

 $H_{c4} = A^{\dagger}A \ge 0, \qquad A = \sum_{1 \le k < l \le N} c_k c_l = \frac{1}{2} d_{c_k}$

Iyoda, Katsura & Sagawa, PRD **98** (2018)

24/27

Antisymmetric matrix

$$\mathbf{c} = (c_1, \dots, c_N)$$
$$\mathcal{A}_{ij} = \begin{cases} 1 & i < j \\ 0 & i = j \\ -1 & i > j \end{cases}$$

Canonical form

- *A* is non-diagonalizable, but \mathcal{A} can be taken to $\mathcal{K} = \mathcal{O}\mathcal{A}\mathcal{O}^{\mathrm{T}} = \begin{pmatrix} 0 & \lambda_{1} & O \\ -\lambda_{1} & 0 & O \\ O & -\lambda_{2} & 0 \\ & & & \ddots \end{pmatrix}, \quad \lambda_{k} = \cot\left(\frac{2k-1}{2N}\pi\right)$ *A* in the new basis:

$$A = \frac{1}{2} \boldsymbol{f}^{\mathrm{T}} \, \mathcal{K} \, \boldsymbol{f} = \sum_{k=1}^{N/2} \lambda_k \, f_{k\uparrow} f_{k\downarrow}, \qquad \boldsymbol{f} = \mathcal{O} \boldsymbol{c} = (f_{1\uparrow}, f_{1\downarrow}, f_{2\uparrow}, f_{2\downarrow}, ...)$$

Equivalent to a known model!

- Particular case of Richardson-Gaudin model
- Bethe-ansatz solvable
- E=0 states are in 1-to-1 correspondence with the lowest-weight states of η SU(2) Yang, PRL 63 (1989)

nicharuson, JMP **6**, 1034 (1965); Gaudin's book

N/2

$$\eta = \sum_{k=1} f_{k\uparrow} f_{k\downarrow}$$
$$\dim \ker A = \dim \ker \eta^-$$

Supersymmetric version

- $\blacksquare \mathcal{N} = 2$ SUSY quantum mechanics
 - Supercharges
 - Fermionic parity $\{Q, (-1)^F\} = \{Q^{\dagger}, (-1)^F\} = 0$
 - Hamiltonian
 - Symmetry

■ Spectrum of *H*

- $E \ge 0$ for all states
- E > 0 states come in pairs $\{|\psi\rangle, Q^{\dagger}|\psi\rangle\}$
- E = 0 iff a state is a SUSY singlet

SUSY cSYK

- Supercharge
- Hamiltonian

 $H_{\rm cSYK}^{\rm SUSY} = \{Q_{\rm cSYK}, Q_{\rm cSYK}^{\dagger}\}$

Nicolai, JPA **9**, 1497 (1976); Witten, NPB **202**, 253 (1982)

 $Q_{\text{cSYK}} = i \sum_{1 \le i < j < k \le N} D_{ijk} c_i c_j c_k \qquad \langle D_{ijk} \rangle = 0, \quad \langle |D_{ijk}|^2 \rangle = \frac{2J}{N^2}$

 $Q, Q^{\dagger}, \qquad Q^2 = 0, \ (Q^{\dagger})^2 = 0$

 $H = \{Q, Q^{\dagger}\} = QQ^{\dagger} + Q^{\dagger}Q$

 $[H,Q] = [H,Q^{\dagger}] = [H,(-1)^{F}] = 0$

Fu, Gaiotto, Maldacena & Sachdev, PRD **95** (2017); Sannomiya, Katsura & Nakayama, PRD **95** (2017)

Clean SUSY complex SYK

Sum of two commuting Richardson-Gaudin Hamiltonians!

Explains the degeneracies observed numerically

Summary

List of integrable SYK-like models

Clean Majorana SYK

$$H_4 = -\sum_{i < j < k < l} \gamma_i \gamma_j \gamma_k \gamma_l$$

- Clean SUSY Majorana SYK $Q_3 = i \sum \gamma_i \gamma_j \gamma_k, \quad H_4^{SUSY} = (Q_3)^2$

i < j < k

• Clean complex SYK $H_{c4} = \sum_{j < i} \sum_{k < l} c_i^{\dagger} c_j^{\dagger} c_k c_l$

- Clean SUSY Complex SYK $Q_{c3} = \sum_{i < j < k} c_i c_j c_k, \quad H_{c4}^{SUSY} = \{Q_{c3}, Q_{c3}^{\dagger}\}$

• Discussed static and dynamical properties of H_4 :

- Level statistics: Poisson distribution \rightarrow Integrable
- Residual entropy reminiscent of the original SYK
- Spectral form factor: No dip-ramp-plateau structure
- OTOC: Exponential growth (early times) Precursor of quantum chaos?

