Intertwining construction of flat bands

Hosho Katsura（Dept．Phys．，Univ．Tokyo）

Collaborators：
Tomonari Mizoguchi，Isao Maruyama，Yasuhiro Hatsugai

T．Mizoguchi，H．Katsura，I．Maruyama，and
Institute for Trans－Scale Physics of Quantum Science Intelligence Institute

Y．Hatsugai，Phys．Rev．B 104， 035155 （2021）

Outline

1. Introduction \& Motivation

- What are flat bands
- My recent activity

2. Intertwining relation

- Graph theory in a nutshell
- ADE Dynkin diagrams
- Graph intertwiner

3. Application to flat bands

- Decorated honeycomb lattice
- Decorated Haldane model
- Decorated diamond lattice in 3D and 4D

4. Summary

What are flat bands

- Single-particle Schrödinger equation

$$
\begin{aligned}
& \hat{H} \psi=\epsilon \psi \\
& \lim _{V \rightarrow \infty} \frac{\text { deg. }}{V}=r>0
\end{aligned}
$$

- It may happen that there exists an energy eigenvalue with macroscopic degeneracy.
deg. : degeneracy
V : volume
- Flat band: space of states spanned by these degenerate eigenstates
- Examples
- Continuous space: Landau levels
- Lattice: Kagome, pyrochlore, ...
- Old subject... Weaire-Thorpe, Phys. Rev. B 4 (1971)
-What are they good for?
- Kinetic energy is quenched
- Interesting playground for studying correlation physics Fractional quantum Hall effect, ferromagnetism, superconductivity, ...

Band structure

From Wikipedia

Today’s subject

- How to construct tight-binding models with flat bands?
- Various constructions
- Line-graph construction: Mielke
- Cell construction: Tasaki, (recent extension: Hatsugai, Mizoguchi)
- Imbalance-type: Sutherland, ...
- Resonance-type: Katsura-Maruyama, ...
- What is the mathematical structure behind them?
- Intertwining relation
- Two matrices A and \tilde{A}
- $A C=C \tilde{A}$
- A and \tilde{A} have common eigenvalues
- Covers many known examples
- Applications to tight-binding models

Decorated honeycomb

Outline

1. Introduction \& Motivation

- What are flat bands
- My recent activity

2. Intertwining relation

- Graph theory in a nutshell
- ADE Dynkin diagrams
- Graph intertwiner

3. Application to flat bands

- Decorated honeycomb lattice
- Decorated Haldane model
- Decorated diamond lattice in 3D and 4D

4. Summary

Graph Theory in a nutshell

- Graph $G(V, E)$
- A pair of V, a set of vertices, and E, a set of edges
- Sometimes called undirected graph $\quad(i, j)=(j, i)$

Math.	Phys.
graph	lattice
vertex	site
edge	bond/link

- Example
- 4-site graph

$$
\begin{aligned}
& V=\{1,2,3,4\} \\
& E=\{(1,2),(1,3),(2,3),(3,4)\}
\end{aligned}
$$

- Adjacency matrix $A(G)$
- $i, j \in V$ are said to be adjacent if there exists $(i, j) \in E$
- Matrix elements

$$
a_{i, j}=\left\{\begin{array}{cc}
1 & \text { if } i \text { and } j \text { are adjacent } \\
0 & \text { otherwise }
\end{array}\right.
$$

$$
A(G)=\left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right) \begin{gathered}
\\
1 \\
2 \\
3 \\
4
\end{gathered}
$$

- Spectrum of $A(G)$ is an important characteristic of G !

$$
\operatorname{spec}(A(G))=\{-1.48 \ldots,-1,0.31 \ldots, 2.17 \ldots\}
$$

ADE Dynkin diagrams

- Ubiquitous in Math. and Phys.
- Classification of semisimple Lie algebras
- Classification of modular invariant partition functions of 2d CFT
- Perron-Frobenius eigenvector of $A(G)$ \rightarrow Solution of Yang-Baxter eq.
- Miraculous property
- Spectrum of adjacency matrix

$$
\begin{array}{ll}
\lambda_{i}=2 \cos \left(\frac{\pi \ell_{i}}{h}\right) \quad \begin{array}{l}
h: \text { Coxeter number } \\
\ell_{i}: \text { exponents }
\end{array}
\end{array}
$$

$$
E_{7}
$$

- Eigenvectors can also be obtained analytically. They are written solely by trigonometric functions.

$$
h=30, \ell_{i}=1,7,11,17,19,23,29
$$

Example: $A_{5} \leftrightarrow D_{4}$

Adjacency matrix

$$
A\left(A_{5}\right)=\left(\begin{array}{ccccc}
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0
\end{array}\right) \quad \lambda=0, \pm 1, \pm \sqrt{3}
$$

They share eigenvalues

$$
A\left(D_{4}\right)=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right) \quad \lambda=0,0, \pm \sqrt{3}
$$

- Intertwining relation

$$
\begin{aligned}
& A\left(A_{5}\right) C=C A\left(D_{4}\right) \quad C=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right) \begin{array}{l}
2 \\
3 \\
4 \\
\text { C: graph intertwiner }
\end{array}
\end{aligned}
$$

Can construct C for any $\left(A_{n}, D_{\frac{n+3}{2}}\right)$
P. A. Pearce \& Y-K. Zhou, Int. J. Mod. Phys. B7, 3649 (1993)

Graph intertwiner

- Common eigenvalues
- Let A and \tilde{A} be adjacency matrices. If there exists $C \neq O$ such that $A C=C \tilde{A}$, then $\operatorname{spec}(A) \cap \operatorname{spec}(\tilde{A}) \neq \emptyset$.
- Proof) Suppose \boldsymbol{v} is an eigenvector of \tilde{A} with eigenvalue λ. Then $C \boldsymbol{v}$ is an eigenvector of A with eigenvalue λ, provided that $C \boldsymbol{v} \neq \mathbf{0}$.

$$
A(C \boldsymbol{v})=C \frac{\tilde{A} \boldsymbol{v}}{=\lambda \boldsymbol{v}}=\lambda(C \boldsymbol{v})
$$

Since $C \neq O$, there is at least one eigenvector of \tilde{A} which is not annihilated by C.

- Generalization: A and \tilde{A} may not necessarily be adjacency matrices.

Outline

1. Introduction \& Motivation

- What are flat bands
- My recent activity

2. Intertwining relation

- Graph theory in a nutshell
- ADE Dynkin diagrams
- Graph intertwiner

3. Application to flat bands

- Decorated honeycomb lattice
- Decorated Haldane model
- Decorated diamond lattice in 3D and 4D

4. Summary

Tight-binding model

- Lattice (Graph) $\quad G(V, E) \quad$ Can be infinite
- Single-particle Schrödinger equation

$$
\sum_{j \in V} t_{i, j} \varphi_{j}=\epsilon \varphi_{i}, \quad \forall i \in V
$$

- Hopping matrix
- Hermitian matrix

$$
T=\left(t_{i, j}\right)_{i, j \in V} \quad \bullet \quad t_{i, j} \neq 0 \quad \text { if }(i, j) \in E
$$

- Spectrum of T
- Generalization of adjacency matrix
- Assume translation invariance.
- (Discrete version of) Bloch theorem:

$$
\varphi_{\boldsymbol{k}}\left(\boldsymbol{r}_{\alpha}+\boldsymbol{R}\right)=e^{\mathrm{i} \boldsymbol{k} \cdot \boldsymbol{R}} \varphi_{\boldsymbol{k}}\left(\boldsymbol{r}_{\alpha}\right)
$$

- Diagonalization boils down to

$$
\boldsymbol{k}: \text { crystal momentum }
$$

$$
\begin{aligned}
& \boldsymbol{r}_{\alpha}: \text { position within unit cell } \\
& \quad \alpha=1,2, \ldots, n
\end{aligned}
$$

$$
\boldsymbol{R}=n_{1} \boldsymbol{a}_{1}+n_{2} \boldsymbol{a}_{2}+n_{3} \boldsymbol{a}_{3}
$$

$$
H(\boldsymbol{k})=\left(\begin{array}{cc}
0 & t f(\boldsymbol{k}) \\
t f^{*}(\boldsymbol{k}) & 0
\end{array}\right) \quad f(\boldsymbol{k})=1+e^{-\mathrm{i} \boldsymbol{k} \cdot \boldsymbol{a}_{1}}+e^{-\mathrm{i} \boldsymbol{k} \cdot \boldsymbol{a}_{2}}
$$

Decorated honeycomb lattice (1)

- Motivation
- α-graphyne
- Each edge of graphene is replaced with -C $=\mathrm{C}$ Baughman, Eckhardt, Kertesz, J. Chem. Phys. 87, 6687 (1987)
- $1 T-\mathrm{TaS}_{2}$
- Transition metal dichalcogenide with CDW order
- Metallic network inside CDW domains Lee, Geng, Park, Oshikawa, Lee, Yeom, Cho, Phys. Rev. Lett. 124, 137002 (2020)
- (Our) Terminology \& convention
- Linker
- Linkage

- Primitive translation vectors

$$
\boldsymbol{a}_{1}=(1 / 2, \sqrt{3} / 2), \boldsymbol{a}_{2}=(-1 / 2, \sqrt{3} / 2)
$$

Assume uniform hopping (for the moment)

Decorated honeycomb lattice (2)

- Hamiltonian in momentum space
- $(3 q+2) \times(3 q+2)$ marix

$$
H(\boldsymbol{k})=\left(\begin{array}{ccccc}
0 & t \boldsymbol{x}_{q}^{T} & t \boldsymbol{x}_{q}^{T} & t \boldsymbol{x}_{q}^{T} & 0 \\
t \boldsymbol{x}_{q} & H_{\mathrm{mol}} & O_{q} & O_{q} & t e^{\mathrm{i} \cdot \boldsymbol{\boldsymbol { a } _ { 1 }}} \boldsymbol{y}_{q} \\
t \boldsymbol{x}_{q} & O_{q} & H_{\text {mol }} & O_{q} & t e^{\boldsymbol{k} \boldsymbol{k} \cdot \boldsymbol{a}_{2}} \boldsymbol{y}_{q} \\
t \boldsymbol{x}_{q} & O_{q} & O_{q} & H_{\text {mol }} & \boldsymbol{y}_{q} \\
0 & t e^{-\mathrm{i} \boldsymbol{k} \cdot \boldsymbol{a}_{1}} \boldsymbol{y}_{q}^{\mathrm{T}} & t e^{-\mathrm{i} \boldsymbol{k} \cdot \boldsymbol{a}_{2}} \boldsymbol{y}_{q}^{\mathrm{T}} & t \boldsymbol{y}^{\mathrm{T}} & 0
\end{array}\right) \quad \begin{gathered}
\boldsymbol{x}_{q}=(1, \overbrace{0, \ldots, 0}^{q-1})^{\mathrm{T}} \\
\\
\boldsymbol{y}_{q}=(\overbrace{0, \ldots, 0}^{q-1}, 1)^{\mathrm{T}} \\
O_{q}: q \times q \text { zero matrix }
\end{gathered}
$$

- Molecular Hamiltonian for linkage
- $q \times q$ matrix (independent of \boldsymbol{k})

$$
H_{\mathrm{mol}}=\left(\begin{array}{ccccc}
0 & t & & & \\
t & 0 & t & & \\
& t & 0 & \ddots & \\
& & \ddots & \ddots & t \\
& & & t & 0
\end{array}\right) \quad=t A\left(A_{q}\right)
$$

- Eigenvalues and eigenvectors are known explicitly

$$
\epsilon_{n}=2 t \cos \left(\frac{\pi n}{q+1}\right), \quad n=1,2, \ldots, q
$$

Flat-band energies $=$ Eigen-enegies of $\boldsymbol{H}_{\text {mol }}$

- Intertwining relation

$$
H(\boldsymbol{k}) C(\boldsymbol{k})=C(\boldsymbol{k}) H_{\mathrm{mol}}
$$

- Intertwiner
$(3 q+2) \times q$ matrix

$$
C(\boldsymbol{k})=\left(\begin{array}{ccc}
\begin{array}{cc}
0 & \cdots
\end{array} & 0 \\
{[\boldsymbol{\lambda}(\boldsymbol{k})]_{1} I_{q}} \\
{[\boldsymbol{\lambda}(\boldsymbol{k})]_{2} I_{q}} \\
{[\boldsymbol{\lambda}(\boldsymbol{k})]_{3} I_{q}} \\
0 \cdots & \cdots & 0
\end{array}\right)
$$

$I_{q}: q \times q$ identity matrix
$\boldsymbol{\lambda}(\boldsymbol{k})=\left(\begin{array}{c}1-e^{-\mathrm{i} \boldsymbol{k} \cdot \boldsymbol{a}_{2}} \\ -1+e^{-\mathrm{i} \boldsymbol{k} \cdot \boldsymbol{a}_{1}} \\ -e^{-\mathrm{i} \boldsymbol{k} \cdot \boldsymbol{a}_{1}}+e^{-\mathrm{i} \boldsymbol{k} \cdot \boldsymbol{a}_{2}}\end{array}\right)$
Orthogonal to
$(1,1,1)^{\mathrm{T}},\left(e^{-\mathrm{i} \boldsymbol{k} \cdot \boldsymbol{a}_{1}}, e^{-\mathrm{i} \boldsymbol{k} \cdot \boldsymbol{a}_{2}}, 1\right)^{\mathrm{T}}$

- Implications
- Multiple flat bands!

$$
\epsilon_{n}=2 t \cos \left(\frac{\pi n}{q+1}\right), \quad n=1,2, \ldots, q
$$

- Eigenvectors $\quad(\boldsymbol{k} \neq \mathbf{0})$

$$
\boldsymbol{\psi}_{n}(\boldsymbol{k})=\frac{1}{\mathcal{N}_{n}(\boldsymbol{k})} C(\boldsymbol{k}) \phi_{n}
$$

$\mathcal{N}(\boldsymbol{k})$: Normalization const.
$\phi_{n}: n$-th eigenvector of $H_{\text {mol }}$

- $q=0$

- Band touching occurs at $\boldsymbol{k}=0$ (at which $C(\boldsymbol{k})=0$)
- Combining the idea of line graph, one can also study decorated kagome lattice (related to COF, e.g., triptycene)
Mizoguchi et al., Phys. Rev. Mater. 3, 114201 (2019).

Other applications

- Decorated Haldane model
- Toy model for integer quantum Hall effect Haldane, Phys. Rev. Lett. 61, 2015 (1988).
- Parameters

$$
t_{1}=0.5, t_{2}=0.7, t_{3}=1.0, t_{4}=0.5, \lambda=0.1
$$

- Decorated diamond lattice ($q=3$)
-4D decorated diamond ($q=3$)

Summary

- Intertwining relation $A C=C \tilde{A}$
- Applicable to finite and infinite graphs
- Underlying mechanism behind flat bands
- Decorated honeycomb lattices
- Decorated diamond lattices in 3D, 4D, ...

Future directions

- Inhomogeneous generalizations?
- Possible in some cases, e.g., $q=1$ decorated honeycomb
- What abut the effect of interactions?
- Localized "exciton" states?
- Intertwining relation in many-body systems?

