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Outline of my lectures

 Day 1 (June 19)

• Introduction to frustration-free systems

• Systematic construction of models

 Day 2 (June 20)

• Non-interacting Kitaev chain

• Interacting Kitaev chain

 Day 3 (June 21)

• Divergence-free conditions

• Application to quantum many-body scars 

Ground-state 

Physics

Dynamics



3/34
Frustration-free systems (recap)

Setup

• Total Hamiltonian 

• Sub-Hamiltonian      satisfies

 Frustration-free Hamiltonian

• Definition

• ψ saturates Anderson’s bound

• Universal form

• Zero-energy manifold

, where                     for all j

is said to be frustration-free if there exists 

a state        such that                           for all j.

Positive semidefinite
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Recipe for new models (recap)

Conjugation

• Deformed L operators 

• Deformed Hamiltonian

• Ground-state manifold

Sandwiching

• Positive definite operators

• Further deformation of H

• Ground-state manifold

• and      have the same number of g.s.
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Outline of today’s lecture

1. Duality in Ising model

• Classical Ising model

• Quantum Ising model

2. Non-interacting Kitaev chain

3. Frustration-free Kitaev chain

4. Frustration-free quantum Potts chain

5. Summary
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Model

• Spin configuration 

• Hamiltonian

• Partition function

Square lattice

Phases

• Zero temperature (   )

All-up and all-down states are realized

• Infinite temperature (           )

All states occur with equal probability

Solved by Onsager, Phys. Rev. 65, 117 (1944)

Majorana-fermion trick by Kauffmann (1949)  

FerromagneticParamagnetic

Where is the transition (critical) point?



7/34Kramers-Wannier duality (1)
 “High-temperature” expansion

• Useful identity:

Phys. Rev. 60, 252 (1941)

Sum over loop configurations
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 Z in terms of dual variables

• Label dual lattice sites by  

• Dual spin config. 

μ=-1 (+1) inside (outside) a loop

• Dual coupling

Critical temperature

• Assumption: a single critical temperature  

• Then                           must hold 

Solving                             leads to 
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Phase diagram (J =1) 

Ordered (SSB) Disordered (no SSB)

Quantum Ising chain
Spin operators

• Pauli matrices

• Spin op. at site j : 

Hamiltonian (J, h >0)

or

Local basis  

h =1 is a critical 

point described by 

Ising CFT (c=1/2)



10/34Kramers-Wannier Duality
Unitary transformation Huang & Chen, PRB 91, 195143 (2015)

Dual Hamiltonian

• The roles of J and h are interchanged 

• Must have the same spectrum

NOTE) Ignore the boundary terms. cf) Non-invertible sym.

• If there exists a single gapless point, it should be at h = J

Anything to do with topology?
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Outline of today’s lecture

1. Duality in Ising model

2. Non-interacting Kitaev chain

• Majorana fermions

• Trivial and topological phases

• Topological invariant

• Edge zero modes

3. Frustration-free Kitaev chain

4. Frustration-free quantum Potts chain

5. Summary
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(Lattice) Majorana fermions

Majorana ops. 

• Their own Hermitian conjugates

• Anticommute with each other

• Fermionic parity

Connection to spins

• Jordan-Wigner transformation

• Fermionic parity 

Spinless (complex) fermions

• They obey 

・・・
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 1+1 D quantum wire setup

Lutchyn et al.,; Oreg et al., PRL (2010)

Mourik et al., Science 336, 1003 (2012)

Review: Elliott & Franz, 

Rev. Mod. Phys. 87, 139 (2015).

• Hamiltonian in k-space

k k

Spin-orbit

Kramers deg.

Zeeman

B

Spin-orbit

xy

z

Doubly 

degenerate

k

E

Low-energy physics is effectively described by spinless fermions!
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Quantum Ising chain  Kitaev chain

Majorana rep.

• Hamiltonian

• Duality = Translation by 1 Majorana site

• Self-duality = Emergent translation symmetry at J=h

Spinless fermion rep.

• Hamiltonian

 HIsing and H0 are identical when J=w and h =μ/2

Kitaev, Phys. Usp. (2001)

cond-mat/0010440

Chemical potential

site          j-1               j               j+1             j+2             j+3

hopping pairing
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Hamiltonian (with OBC; w, μ>0)

 Trivial phase 

The fully filled state is 

the unique g.s. (μ>0)

 Topological phase 

presence/absence of f⇔ two-fold degenerate g.s.

Edge zero modes exist as long as w>μ. 

Unpaired
Unpaired

New, non-local fermion 
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Bulk topological invariant

BdG Hamiltonian in k-space

• Symmetry

• n-vector

 Topological number

• k= 0 and π are special!

• There must be a critical point

between (b) and (c)

Nonzero gap 

⇔ J. Alicea, Rep. Prog. Phys. 

75, 076501 (2012)
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Majorana edge zero modes

 Implication of topo. Invariant

Majorana edge zero modes are s.t.

Robust against disorder

topologicalTrivial ~ vacuum

Gap should close at the boundary!

Robust zero mode in 

presence of open edges

•

•

•

• localized near the edge, and normalizable

as              even in the infinite-size limit 
Parity=＋ ー

P. Fendley, J. Stat. 

Mech. P11020 (2012)
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Outline of today’s lecture

1. Duality in Ising model

2. Non-interacting Kitaev chain

3. Frustration-free Kitaev chain

• Decoupling limit

• Witten’s conjugation

• Sandwiching method

• Spectral gap

4. Frustration-free quantum Potts chain

5. Summary  H.K., Schuricht, Takahashi, 

PRB 92, 115137 (2015)

 Wouters, H.K., Schuricht, 

PRB 98, 155119 (2018)
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Hamiltonian (+ const. shift)

Coherent states

They are annihilated by Aj for all j.  The g.s. of H0.

But they are NOT eigenstates of fermionic parity           .

L=3

L=2 〇: empty site

●: filled site

ex.) Prove this
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Obvious in the spin language

Hamiltonian in terms of spins

• L operators

• Diagonal in X-basis

Ground states

• Zero-energy states

• No other g.s.

• (Unnormalized) g.s.

 Equivalent to the fermionic g.s. via Jordan-Wigner

1        2 L
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 Invertible operator  (α: real, num. op.:                  )

Conjugations

New ground states

Using M |vac> = |vac>, we have

L=3

One-parameter deformation 

of the decoupling limit!
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Triv.

Topo.

Witten’s conjugation (2)
Hamiltonian

with 

Barouch-McCoy circle

• Phase diagram of Kitaev chain
|μ/t| > 2  Trivial,  |μ/t| < 2  Topo.

• Can be read off from that of XY spin chain

• Factorized ground states on the circle
Barouch-McCoy, PRA 3, 786 (1971).
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Sandwiching method

• New Hamiltonian

Center term can be anything as long as  

The g.s. of        remain unchanged

Explicit Hamiltonian

• Choice

4-Majorana int.

• Projectors

Even sector

Odd sector
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Phase diagram of interacting Kitaev chain

Previous studies

• Gangadharaiah et al., PRL (2011); Hassler & Schuricht, NJP (2012); 

Thomale et al., PRB (2013); Rahmani et al, PRL (2015); …

Phase diagram for t=Δ

• Equivalent to quantum ANNNI model

 Beccaria et al., PRB (2007); Sela & Pereira, PRB (2011); …

Solvable line 

Exact g.s. 

H.K., Schuricht, Takahashi, 
PRB 92, 115137 (2015)
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 Jordan-Wigner transformation

XYZ chain in a field

• Fermionic Hamiltonian

• Spin Hamiltonian

Fermionic parity  

What we found is a fermionic rephrasing of 
Peschel-Emery (1981), Mueller-Schrock (1985), …
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Min-max theorem (Courant-Fischer-Weyl)

Let A and B be two hermitian matrices. 

Let ai and bi be the i-th eigenvalues of A and B, respectively. 

(Assume the order,                                                 )

If            , then we have  

Spectral gap

Upper and lower bounds

: n-th eigen-energy of      .  Note  

Since      and       share the same g.s., the gap is bounded as 

 Uniform gap for Δ/t ≠0
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Single-particle spectrum

Frustration-free non-interacting model

Exact edge zero modes

SVD:

Singular values: 
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Hamiltonian

Staggered model

• Staggered potential

 Frustration-free case
• Non-interacting (U=0) model is so for

(parametrization)

• Interacting model was worked out (Wouters, H.K., Schuricht, PRB (2018))

(XYZ spin chain in staggered magnetic field)

• Upper and lower bound on gap, topo. order …
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Outline of today’s lecture

1. Duality in Ising model

2. Non-interacting Kitaev chain

3. Frustration-free Kitaev chain

4. Frustration-free quantum Potts chain

• Shift and clock matrices

• Duality, parafermions, …

• Deformed models

5. Summary

 Wouters, Katsura, Schuricht, 

SciPost Phys. Core 4 (2021)
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Shift & clock matrices

Hamiltonian (J, h >0)

• Parafermions Fradkin & Kadanoff, NPB 170 (1980)

• Translation invariant at the self-dual point h = J

• Gap closing (2nd order for N=2, 3, 4, 1st order for N>4)

• Duality: 
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Classical 3-state Potts chain

Hamiltonian

• L operators

• Diagonal in σ-basis

Ground states

• Zero-energy states

• 3-fold degenerate

• No other ground states

1        2 L
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Deformed Potts chain (1)

Conjugation

• M operator

• C operator

• Deformed model

• Explicit form of

 Ground states

• Special case θ=0 previously obtained (Iemini et al., PRL 2017) 

τ-diagonal basis
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Deformed Potts chain (2) 

Conjugation

• M operator

• C operator

• Deformed model

Ground states

• Reproduces the previous result (Mahyaeh & Ardonne, PRB 2018)

• Can prove the existence of a gap for certain r (Knabe’s method) 
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Summary

 Frustration-free Kitaev chain

• Applied Witten’s conjugation & sandwiching

• Explicit ground states

• Proof of a spectral gap

 Frustration-free quantum Potts chain

• Conjugation & sandwiching work

• Reproduce known examples

• Can produce tons of new examples

 H.K., Schuricht, Takahashi, PRB 92, 115137 (2015)

 Wouters, H.K., Schuricht, PRB 98, 155119 (2018)

 Wouters, Katsura, Schuricht, SciPost Phys. Core 4 (2021)


