Ljubljana PhD School on Quantum Physics 2024 June 19

Frustration-free Models and beyond

Hosho Katsura (University of Tokyo)

Institute for Physics of Intelligence

Trans-Scale Quantum Science Institute

Outline of my lectures

- Day 1 (June 19)
 - Introduction to frustration-free systems
 - Systematic construction of models
- Day 2 (June 20)
 - Non-interacting Kitaev chain
 - Interacting Kitaev chain
- Day 3 (June 21)
 - Divergence-free conditions
 - Application to quantum many-body scars

Ground-state

Physics

Dynamics

Outline of today's lecture

- 1. Introduction & Motivation
 - Symmetries in Physics
 - Preliminaries
 - Inequalities
 - Spin operators
 - Anderson bound
 - Definition of frustration-free systems
- 2. Examples
- 3. Systematic construction of models
- 4. Summary

Symmetries in Physics

- Lead to conservation laws
 - Rotational sym. \rightarrow Conservation of angular momentum
 - Allows for analytical treatments
 e.g. Kepler problem,
 Schrodinger eq. of Hydrogen atom, ...
- Can be broken spontaneously
 - Result in various phases of matter
 - > SO(3) sym. breaking \rightarrow (Ferro)magnetism
 - > U(1) sym. breaking \rightarrow Superconductivity
- Can enrich symmetry unbroken phases
 - Time-reversal sym. \rightarrow Topological insulators
 - Symmetry-protected topological phases beyond the Landau paradigm

Spherical cow from *Wikipedia*

Symmetries in Quantum Physics

- Conserved quantities/charges
 - H: Hamiltonian, A: Hermitian operator
 - [*H*, *A*] = 0 \Rightarrow They can be diagonalized simultaneously
 - > H is block-diagonal w.r.t. the eigenvalues of A

- Can reduce the problem
- (Example) *H*: Hydrogen atom Hamiltonian *A*: one of angular momentum ops. $L = (L_x, L_y, L_z)$
- Infinitely many conserved charges
 - Integrable models e.g. S=1/2 Heisenberg chain
 - Strong constraints on their dynamics

Quiz

- A, B: Hermitian operator
- $[A, B] = 0 \Rightarrow A$ and B have a simultaneous eigenstate
- Q1: Does the converse hold?
- A1: No!
- Q2: Can you provide a counterexample?
- A2: ns wavefunction of hydrogen atom
 - > Angular momentum ops.: $[L_a, L_b] = i\hbar \sum \epsilon_{abc}L_c$
 - > s wavefunction $\psi_{0,0}$

> We have

$$L_x\psi_{0,0} = L_y\psi_{0,0} = L_z\psi_{0,0} = 0, \quad \boldsymbol{L}^2\psi_{0,0} = 0$$

A baby example of a frustration-free system!

c=x,y,z

A crash course in inequalities

- Positive semidefinite operators
 - Appendix of Tasaki, Prog. Theor. Phys. 99 (1998) or his book
 - $\ensuremath{\mathcal{H}}$: finite-dimensional Hilbert space
 - A, B: Hermitian operators on ${\cal H}$
 - Definition 1. We write $A \ge 0$ and say A is positive semidefinite (p.s.d.) if $\langle \psi | A | \psi \rangle \ge 0$, $\forall | \psi \rangle \in \mathcal{H}$.
 - **Definition 2.** We write $A \ge B$ if $A B \ge 0$.

Important lemmas

- Lemma 1. $A \ge 0$ iff all the eigenvalues of A are nonnegative.
- Lemma 2. Let C be an arbitrary matrix on \mathcal{H} . Then $C^{\dagger}C \geq 0$. Cor. A projection operator $P = P^{\dagger}$ is p.s.d.
- Lemma 3. If $A \ge 0$ and $B \ge 0$, we have $A + B \ge 0$. Ex.) Prove them.

Spin-1/2 operators and states (1)

■ Single spin

• Pauli matrices on \mathbb{C}^2

$$\mathbb{1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \sigma^x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma^y = \begin{pmatrix} 0 & -\mathbf{i} \\ \mathbf{i} & 0 \end{pmatrix}, \quad \sigma^z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

• States

$$\begin{split} |\uparrow\rangle &= \begin{pmatrix} 1\\0 \end{pmatrix}, \quad |\downarrow\rangle = \begin{pmatrix} 0\\1 \end{pmatrix} \qquad \sigma^{z} |\uparrow\rangle = |\uparrow\rangle, \quad \sigma^{z} |\downarrow\rangle = -|\downarrow\rangle \\ \alpha |\uparrow\rangle + \beta |\downarrow\rangle = \begin{pmatrix} \alpha\\\beta \end{pmatrix} \in \mathbb{C}^{2} \quad (\alpha, \beta \in \mathbb{C}) \end{split}$$

• Dual (bra) states $\langle \uparrow | = (1,0), \langle \downarrow | = (0,1)$

Tensor product of vectors

$$|v_{1}\rangle = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}, \quad |v_{2}\rangle = \begin{pmatrix} \gamma \\ \delta \end{pmatrix} \implies |v_{1}\rangle \otimes |v_{2}\rangle = \begin{pmatrix} \alpha \begin{pmatrix} \gamma \\ \delta \\ \beta \end{pmatrix} = \begin{pmatrix} \alpha \gamma \\ \alpha \delta \\ \beta \gamma \\ \beta \delta \end{pmatrix}$$

• Often write it as $|v_1\rangle|v_2\rangle$.

8/40

Spin-1/2 operators and states (2)

Tensor product of matrices

Matrix-vector multiplication

 $(A \otimes B)(|v_1\rangle \otimes |v_2\rangle) = (A|v_1\rangle) \otimes (B|v_2\rangle)$

Many spins

• Spin operators acting on
$$(\mathbb{C}^2)^{\otimes N}$$

$$S_j^a = \overbrace{\mathbb{1} \otimes \cdots \otimes \mathbb{1}}^{j-1} \otimes \overbrace{\mathbb{1}}^{\sigma^a} \otimes \overbrace{\mathbb{1} \otimes \cdots \otimes \mathbb{1}}^{N-j}, \quad a = x, y, z$$

> ex.)
$$4S_1^x S_2^x + 2S_1^z =?$$

• States
$$\sigma_j = \uparrow, \downarrow$$
 $(j = 1, 2, ..., N)$
 $|\sigma_1, \sigma_2, ..., \sigma_N \rangle = |\sigma_1 \rangle_1 |\sigma_2 \rangle_2 \cdots |\sigma_N \rangle_N = |\sigma_1 \rangle \otimes |\sigma_2 \rangle \otimes \cdots \otimes |\sigma_N \rangle$

Spin chain

Ν

2

Spin-S operators and states

Single spin $S = (S^x, S^y, S^z)$

- Commutation relations $[S^a, S^b] = i \sum \epsilon_{abc} S^c$
- Raising & lowering ops., total spin c=x,y,z

$$S^{\pm} := S^x \pm iS^y, \qquad S^2 = (S^x)^2 + (S^y)^2 + (S^z)^2 = S(S+1)\mathbb{1}$$

- Hilbert space \mathbb{C}^{2S+1} spanned by $\{|-S\rangle, \cdots |S\rangle\}$
 - > (Normalized) states $S^{z}|m\rangle = m|m\rangle, m = -S, ..., S$

$$S^{\pm}|m\rangle = \sqrt{S(S+1) - m(m\pm 1)}|m\pm 1\rangle$$

Many spins

• Hilbert space
$$\mathcal{H} = (\mathbb{C}^{2S+1})^{\otimes N}$$

• Spin ops.
$$S_j^a = \underbrace{\mathbb{1} \otimes \cdots \otimes \mathbb{1}}_{[S_i^a, S_j^b]} \otimes S^a \otimes \underbrace{\mathbb{1} \otimes \cdots \otimes \mathbb{1}}_{[S_i^a, S_j^b]}, \quad a = x, y, z$$

• States $m_j = -S, ..., S$ $|m_1, m_2, ..., m_N \rangle = |m_1\rangle_1 |m_2\rangle_2 \cdots |m_N\rangle_N = |m_1\rangle \otimes |m_2\rangle \otimes \cdots \otimes |m_N\rangle$

Addition of spins

Total spin operators

$$S_{\text{tot}}^a := \sum_{j=1}^N S_j^a \quad a = x, y, z$$
 $(S_{\text{tot}})^2 = \sum_{a=x,y,z} (S_{\text{tot}}^a)^2$

- Two spin 1/2's
 - Singlet ($S_{tot}=0$): $|\psi_{0,0}\rangle = (|\uparrow\downarrow\rangle |\downarrow\uparrow\rangle)/\sqrt{2}$ $(S_{tot})^2 = 0 \cdot 1 = 0$

• Triplet (
$$S_{tot}$$
=1)

$$\begin{cases} |\psi_{1,1}\rangle = |\uparrow\uparrow\rangle \\ |\psi_{1,0}\rangle = (|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle)/\sqrt{2} \quad (S_{tot})^2 = 1 \cdot 2 = 2 \\ |\psi_{1,-1}\rangle = |\downarrow\downarrow\rangle \end{cases}$$

■ Two spin 1's

• $S_{tot}=0 |\psi_{0,0}\rangle = |+-\rangle - |00\rangle + |-+\rangle$

Anderson's paper in '50s

P. W. Anderson, Phys. Rev. 83 1260 (1951)

Limits on the Energy of the Antiferromagnetic Ground State

P. W. ANDERSON Bell Telephone Laboratories, Murray Hill, New Jersey (Received July 16, 1951)

THE energy of the ground state of a simple antiferromagnetic lattice remains one of the unsolved problems of quantum mechanics, except in the simplest case of atoms of angular momentum quantum number $S = \frac{1}{2}$ on a linear chain.¹ For such a lattice, the hamiltonian is effectively

$$H = J \Sigma_i \Sigma_j \mathbf{S}_i \cdot \mathbf{S}_j.$$

- Literally a half-page paper
- Upper and lower bounds on the ground-state energy of Heisenberg antiferromagnet

$$-\frac{1}{2}NzJS^2\left(1+\frac{1}{zS}\right) \le E_0 \le -\frac{1}{2}NzJS^2$$

z: coordination number; N: # of spins

(1

Anderson's bound

- Setup
 - Total Hamiltonian $H = \sum_j h_j$
 - Sub-Hamiltonian h_j satisfies $h_j \ge E_j^{(0)} \mathbb{1}$ $E_j^{(0)}$: the lowest eigenvalue of h_j

i

Lower bound (The g.s. ene

ie g.s. energy of H) =:
$$E_0 \geq \sum E_j^{(0)}$$

- Proof) Let $|\Phi_0\rangle$ be a g.s. of *H*. Since $|\Phi_0\rangle$ is not necessarily a g.s. of h_j , we have $\langle \Phi_0 | h_j | \Phi_0 \rangle \ge E_j^{(0)}$.
- Application to Heisenberg AFM

•
$$h_j = \frac{J}{2} \sum_{i \text{ n.n. } j} S_j \cdot S_i = \frac{J}{4} \left\{ (S_{\text{tot}})^2 - \left(\sum_{i \text{ n.n. } j} S_i \right)^2 - S(S+1) \right\}$$

 $\geq -\frac{J}{2} z S^2 \left(1 + \frac{1}{zS} \right) \mathbb{1}$ Minimum at $S_{\text{tot}} = (z-1)S$ (...) = zS

Frustration-free systems

■ Setup

- Total Hamiltonian $H = \sum_j h_j$
- Sub-Hamiltonian h_j satisfies $h_j \ge E_j^{(0)} \mathbf{1}$
- Frustration-free Hamiltonian
 - Definition

 $H = \sum_{j} h_{j}$ is said to be *frustration-free* if there exists a state $|\psi\rangle$ such that $h_{j}|\psi\rangle = E_{j}^{(0)}|\psi\rangle$ for all *j*.

- ψ saturates Anderson's bound
- NOTE) Depends on how you decompose H
- Many solvable models fall into this category
 - Majumdar-Ghosh model
 - > Affleck-Kennedy-Lieb-Tasaki (AKLT) model
 - Kitaev's toric code

Outline of today's lecture

1. Introduction & Motivation

- 2. Examples
 - Ferromagnetic Heisenberg model
 - Majumdar-Ghosh model
 - AKLT model
 - Kitaev's toric code
- 3. Systematic construction of models
- 4. Summary

Ferromagnetic Heisenberg model

- $\blacksquare \text{Hamiltonian } (S=1/2, J>0)$ $H = \sum_{j=1}^{N} h_j, \quad h_j = J\left(\frac{1}{4} S_j \cdot S_{j+1}\right) = J\left\{1 \frac{1}{2}(S_j + S_{j+1})^2\right\}$ Total spin
 - PBC imposed: $S_{N+1} = S_1$
 - SU(2) symmetry $[H, S^{\alpha}_{\text{total}}] = 0, \quad S^{\alpha}_{\text{tot}} = \sum_{j=1}^{N} S^{\alpha}_{j}, \quad (\alpha = z, +, -)$

•
$$h_j = \underbrace{\mathbb{1} \otimes \cdots \otimes \mathbb{1}}_{P^{S=0} \otimes \mathbb{1} \otimes \cdots \otimes \mathbb{1}}^{N-2} \qquad h_j \ge 0 \text{ and } H \ge 0$$

 $P^{S=0} = |\psi_0\rangle\langle\psi_0|, \quad |\psi_0\rangle = \frac{1}{\sqrt{2}}(|\uparrow\rangle|\downarrow\rangle - |\downarrow\rangle|\uparrow\rangle)$

- *H* is frustration-free!
 - All-up state $|\uparrow\rangle := |\uparrow\rangle_1 |\uparrow\rangle_2 \cdots |\uparrow\rangle_N$ is a zero-energy state of each h_j
 - Other ground states: $(S_{tot}^-)^k | \uparrow \rangle$ (k = 0, 1, ..., N)
 - Unique in each total S^z sector

ex.) Extension to higher-spin & dim.

16/40

Majumdar-Ghosh model (1)

■ Hamiltonian (S=1/2, J > 0) J. Math. Phys. 10, 1388; 1399 (1969)

$$H = \sum_{j=1}^{N} h_j, \quad h_j = \frac{J}{2} \left(S_{j-1} \cdot S_j + S_j \cdot S_{j+1} + S_{j-1} \cdot S_{j+1} + \frac{3}{4} \right)$$

- N: even
- PBC imposed: $S_{N+1} = S_1$
- SU(2) symmetric
- Rewriting of h_j

$$h_j = \frac{J}{4} \left\{ (\mathbf{S}_{j-1} + \mathbf{S}_j + \mathbf{S}_{j+1})^2 - \frac{3}{4} \right\}$$

Total spin

- Proportional to a projection operator
 - > Addition of 3 spin 1/2's: $S_{j-1,j,j+1} = 1/2$ or 3/2

$$h_j = \frac{3}{4} J P_{j-1,j,j+1}^{S=3/2}$$
 project out $S_{j-1,j,j+1} = 1/2$

Majumdar-Ghosh model (2)

- *H* is frustration-free!
 - Dimer $i \longrightarrow j = [i, j] := \frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle_{i,j} |\downarrow\uparrow\rangle_{i,j})$
 - Dimer states

 $|\psi_1\rangle = [1,2][3,4]\cdots[N-1,N]$

i+1

• They are annihilated by h_j

1

- > Addition of a spin singlet and a spin 1/2 \rightarrow $S_{j-1,j,j+1} = 1/2$
- No other ground states
 - Proved by Caspers, Emmett, Magnus, J. Phys. A 17, 2687 (1984)

18/40

 $|\psi_2\rangle = [2,3][4,5]\cdots[N,1]$

- Generalizations
 - 2D model: Shastry, Sutherland, *Physica B*+C 108, 1069 (1981)
 - Higher-spin model: Michaud et al., PRL 108, 127202 (2012)

Outline of today's lecture

1. Introduction & Motivation

2. Examples

- Ferromagnetic Heisenberg model
- Majumdar-Ghosh model
- AKLT model
- Kitaev's toric code
- 3. Systematic construction of models
- 4. Summary

Haldane "conjecture" (early 80s)

■ Spin-S Heisenberg antiferromagnetic chain

• Hamiltonian (J > 0)

$$H_{\text{Heis}} = J \sum_{j} S_{j} \cdot S_{j+1}$$

• S=1/2, 3/2, 5/2, ...

Gapless, power-law decay of spin correlations NOTE) *S*=1/2 case is solvable (Bethe 1931)

- S=1, 2, 3, ...
 - a. Unique ground state
 - b. Non-zero gap Δ (Haldane gap)
 - c. Exponential decay of spin correlation

Established in many different ways! AgVP₂S₆, NENP, ...; ED, QMC, ...

Nobel Prize (2016)

 $\Delta(S) = \begin{cases} 0.41048(6) & \text{for } S = 1\\ 0.08917(4) & \text{for } S = 2\\ 0.01002(3) & \text{for } S = 3 \end{cases}$

Todo & Kato, PRL 87 (2001)

AKLT model (1)

■ Hamiltonian (S=1)

Affleck, Kennedy, Lieb & Tasaki, *PRL* **59** (1987), *CMP* **115** (1987)

$$H = \sum_{j=1}^{N} h_j, \quad h_j = \mathbf{S}_j \cdot \mathbf{S}_{j+1} + \frac{1}{3} (\mathbf{S}_j \cdot \mathbf{S}_{j+1})^2 + \frac{2}{3}$$

Bilinear Biquadratic

- PBC imposed: $S_{N+1} = S_1$
- SU(2) symmetric
- Rewriting of h_j

$$h_{j} = 2P_{j,j+1}^{S=2}, \quad P_{j,j+1}^{S=2} = \frac{1}{24} (\underline{S_{j} + S_{j+1}})^{2} \{ (\underline{S_{j} + S_{j+1}})^{2} - 2 \}$$

Total spin

• Addition of 2 spin 1's:

$$S_{j,j+1} = 0, 1, \text{ or } 2$$

 $h_j = 2P_{j,j+1}^{S=2}$ project out $S_{j,j+1} = 0, 1$ states

AKLT model (2)

- H is frustration-free!
 - Dimer = spin singlet: $= \frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle |\downarrow\uparrow\rangle)$
 - Projection to spin-1 space:
 - Valence-bond-solid (VBS)/AKLT state

- Each projector $P_{j,j+1}^{S=2}$ annihilates this state
 - > Addition of a spin singlet and 2 spin 1/2's: $S_{j,j+1} = 0$ or 1
- AKLT proved
 - Uniqueness of the ground state
 - Nonzero gap above the ground state
 - Exponential decay of correlators

Partial support of Haldane's conjecture

VBS as a matrix product state

- Spin singlet $(|\uparrow\downarrow\rangle |\downarrow\uparrow\rangle = (|\uparrow\rangle, |\downarrow\rangle) \begin{pmatrix} |\downarrow\rangle \\ -|\uparrow\rangle \end{pmatrix}$
- Singlet product • $(|\uparrow\rangle, |\downarrow\rangle) \begin{pmatrix} |\downarrow\rangle \\ -|\uparrow\rangle \end{pmatrix} (|\uparrow\rangle, |\downarrow\rangle) \begin{pmatrix} |\downarrow\rangle \\ -|\uparrow\rangle \end{pmatrix}$ = $(|\uparrow\rangle, |\downarrow\rangle) \begin{pmatrix} |\downarrow\uparrow\rangle \\ -|\uparrow\downarrow\rangle \end{pmatrix} \begin{pmatrix} |\downarrow\downarrow\rangle \\ -|\uparrow\downarrow\rangle \end{pmatrix} \begin{pmatrix} |\downarrow\downarrow\rangle \\ -|\uparrow\downarrow\rangle \end{pmatrix}$
- Projection to spin-1 $P^{(1)}|\uparrow\uparrow\rangle = |+\rangle, \quad P^{(1)}|\uparrow\downarrow\rangle = P^{(1)}|\downarrow\uparrow\rangle = |0\rangle/\sqrt{2}, \quad P^{(1)}|\downarrow\downarrow\rangle = |-\rangle$

• • • • • • • • (
$$|\uparrow\rangle, |\downarrow\rangle$$
) $\begin{pmatrix} |0\rangle & \sqrt{2}|-\rangle \\ -\sqrt{2}|+\rangle & -|0\rangle \end{pmatrix} \begin{pmatrix} |\downarrow\rangle \\ -|\uparrow\rangle \end{pmatrix}$

23/40

Repeat this procedure

$$\propto \operatorname{Tr}[\mathcal{A}^{[1]}\cdots\mathcal{A}^{[j]}\cdots\mathcal{A}^{[L]}], \quad \mathcal{A}^{[j]} = \begin{pmatrix} |0\rangle_j & \sqrt{2}|-\rangle_j \\ -\sqrt{2}|+\rangle_j & -|0\rangle_j \end{pmatrix}$$

• Finitely correlated states Fannes, Nachtergaele & Werner, *CMP* **144**, 443 (1992)

Quantum spin-1 chain with SU(2)

Bilinear-biquadratic (BLBQ) model

$$H_{\rm BLBQ}(\theta) = \sum_{j=1} \left[\cos \theta (\mathbf{S}_j \cdot \mathbf{S}_{j+1}) + \sin \theta (\mathbf{S}_j \cdot \mathbf{S}_{j+1})^2 \right]$$

■ Phase diagram Lauchli, Schmid & Trebst, PRB 74, 144426 (2006)

- Spin-quadrupolar (SQ): gapless, dominant nematic corr.
- Ferromagnetic (FM)
- Dimer: gapped, 2-fold degenerate g.s.
- Haldane phase
 - ✓ Gapped unique g.s.
 - ✓ Edge states
 - ✓ Hidden AFM order (string order)

Prototype of Symmetry-protected topological (SPT) phase!

24/28

Haldane phase as SPT phase

■ What is SPT?

Gu & Wen, *PRB* **80** (2009). Pollmann, Berg, Turner & Oshikawa, *PRB* **81** (2010); **85** (2012)

Symmetry protection

S=1 Haldane phase is protected by ANY one of three symmetries: (i) $\mathbb{Z}_2 \times \mathbb{Z}_2$, (ii) time-reversal, (iii) bond centered inversion

& (iii)

Outline of today's lecture

1. Introduction & Motivation

2. Examples

- Ferromagnetic Heisenberg model
- Majumdar-Ghosh model
- AKLT model
- Kitaev's toric code
- 3. Systematic construction of models
- 4. Summary

Kitaev's toric code

Setup

- 2D square lattice
- PBC in x & y directions
- Spin 1/2's on edges
- N: number of vertices
- **Hamiltonian** $(J_{\rm e} > 0, J_{\rm m} > 0)$

$$H = -J_{\rm e} \sum_{v} A_v - J_{\rm m} \sum_{p} B_p$$

• Vertex ops.
$$A_v = \prod_{j \sim v} \sigma_j^z$$

- Plaquette ops. $B_p = \prod_{j \sim p} \sigma_j^x$
- They all commute A_v and B_p share 0 or 2 spins. $\{\sigma_j^z, \sigma_j^x\} = 0$

Kitaev, Ann. Phys. 303, 2 (2003)

27/40

Toric code is frustration-free

- Properties of local Hamiltonians
 - A_v and B_p square to 1
 - Their eigenvalues are ± 1

→ Anderson bound: $H \ge -N(J_e + J_m)$

Ground state

- All-up state $|\!\uparrow \rangle = |\!\uparrow \uparrow \cdots \uparrow \rangle$
 - > is a ground state of $-A_v$ for all v
 - > But is not even an eigenstate of $-B_p$

•
$$|\Psi\rangle = \left\{\prod_{p} (1+B_p)\right\} |\Uparrow\rangle$$
 is a nonzero state

- Since $[A_v,B_p]=0$, $-A_v|\Psi
 angle=-|\Psi
 angle$
- Since $B_p(1+B_p) = (1+B_p) \& [B_p, B_{p'}] = 0$, $-B_p |\Psi\rangle = -|\Psi\rangle$
- + $|\Psi\rangle$ saturates the lower bound $~E=-N(J_{\rm e}+J_{\rm m})$

Graphical representation of Ψ

- Spin $\leftarrow \rightarrow$ line segment
- Action of B_p

• Ground state

 \Leftrightarrow

- > 0, 2, or 4 lines emanating from each vertex in each config.
- > $|\Psi\rangle$ = superposition of all such loop configurations
- Same diagrams appear in high-T expansion of Ising
- Another view: projection of cluster state

Topological degeneracy

- Electric path ops
 - Model is on a torus
 - Closed paths $\ell_x \& \ell_y$

•
$$X_{\alpha} := \prod_{j \in \ell_{\alpha}} \sigma_j^x \quad (\alpha = x, y)$$

- Commute with H
- Degenerate ground states
 - $|\Psi\rangle, X_x|\Psi\rangle, X_y|\Psi\rangle, X_xX_y|\Psi\rangle$
 - • Graphical rep. $X_{y}|\Psi\rangle =$

ly

Loops cross this line an odd number of times

- Degeneracy is robust against local perturbations
- ex.) Prove that the four states are orthogonal

Ψ as a tensor network

- Rokhsar-Kivelson (RK) states
 - RK state is equal-weight superposition of classical configrations (with constraints)
 - Originally discussed in the context of quantum dimer model *PRL* **61**, 2376 (1988)
 - Can be expressed as a tensor network
 - Ψ is an example of an RK state!
- Building blocks

- The weight of each local config. is 1
- Can be made anisotropic \rightarrow Quantum 8-vertex model
 - > Ardonne, Fendley & Fradkin, Ann. Phys. **310**, 493 (2004)

Outline of today's lecture

- 1. Introduction & Motivation
- 2. Examples
- 3. Systematic construction of models
 - Unitary transformation
 - Witten's conjugation
 - Sandwiching method
 - Wouters, Katsura, Schuricht, SciPost Phys. Core 4, 027 (2021) arXiv:2005.12825

4. Summary

Can we cook up new models?

- Trivial model
 - Hamiltonian

• Hamiltonian
$$H = \sum_{j=1}^{N} (1 - \sigma_j^x) \ge 0$$
 (p.s.d)
• Ground state

 $|\Psi_{+}\rangle = |+\rangle_{1}|+\rangle_{2}\cdots|+\rangle_{N}$ Local basis: $\sigma^{x}|\pm\rangle = \pm |\pm\rangle$

- > No entanglement...
- Cluster model

• Hamiltonian
$$\widetilde{H} = \sum_{j=1}^{N} (1 - \sigma_{j-1}^{z} \sigma_{j}^{x} \sigma_{j+1}^{z}) = U H U^{\dagger}$$

> PBC imposed

NΤ

M

Unitarily equivalent to H

> Unitary tr.
$$U = (CZ)_{1,2}(CZ)_{2,3}\cdots(CZ)_{N,1}$$

 $(CZ)|a,b\rangle = (-1)^{ab}|a,b\rangle, \quad (a,b=0,1)$

- Ground state $|\widetilde{\Psi}_+\rangle = U|\Psi_+\rangle$
 - Entangled!

Anything beyond unitary transformation? Yes! Witten's conjugation is a key!

N=2 supersymmetric (SUSY) QM

- Algebra
 - Supercharges: $Q, Q^{\dagger}, Q^2 = 0, (Q^{\dagger})^2 = 0$
 - Fermionic parity: $(-1)^F$, $\{Q, (-1)^F\} = \{Q^{\dagger}, (-1)^F\} = 0$
 - Hamiltonian:

$$H = \{Q, Q^{\dagger}\} = QQ^{\dagger} + Q^{\dagger}Q$$

- Symmetry: $[H,Q] = [H,Q^{\dagger}] = [H,(-1)^{F}] = 0$
- Spectrum of *H*
 - $E \ge 0$ for all states, as H is p.s.d
 - *E* > 0 states come in pairs $\{|\psi\rangle, Q^{\dagger}|\psi\rangle\}$
 - E = 0 iff a state is a SUSY singlet

Ground-state energy = $0 \rightarrow$ SUSY *unbroken* Ground-state energy > $0 \rightarrow$ SUSY *broken*

Elementary example

Lattice bosons and fermions

- Lattice sites: *i*, *j* = 1,2, ..., *N*
- Creation, annihilation ops.

 $[b_i, b_j^{\dagger}] = \delta_{i,j}, \quad \{c_i, c_j^{\dagger}\} = \delta_{i,j}, \quad [b_i, b_j] = \{c_i, c_j\} = 0.$

bosons and fermions are mutually commuting.

• Fermion number $F = \sum c_j^{\dagger} c_j$

• Vacuum state
$$b_i |vac\rangle \stackrel{j}{=} c_i |vac\rangle = 0, \forall i$$

Supercharges and Hamiltonian

Just the total particle number! |vac> is a SUSY singlet.

6/30

Zero-energy states (ZES)

Cohomology

• Zero-energy states (ZESs) are in 1-to-1 correspondence with nontrivial cohomology classes of Q.

Proof) Any ZES $|\psi\rangle$ is annihilated by both Q and Q^{\dagger} . But $|\psi\rangle$ cannot be written as $|\psi\rangle = Q|\phi\rangle$ for any $|\phi\rangle$ since this would imply that $\langle \psi | \psi \rangle = \langle \phi | Q^{\dagger} | \psi \rangle = 0$.

(ZES of H) = dim (Ker Q/Im Q)

- Witten's conjugation (*Nucl. Phys.* B **202**, 253 (1982).)
 - Invertible operator M
 - New supercharge & Hamiltonian

$$\widetilde{Q} := MQM^{-1}, \quad \widetilde{H} := \{\widetilde{Q}, \widetilde{Q}^{\dagger}\}$$

• $\dim (\operatorname{Ker} \widetilde{Q} / \operatorname{Im} \widetilde{Q}) = \dim (\operatorname{Ker} Q / \operatorname{Im} Q)$

The deformation preserves the number of zero-energy states.

Conjugation argument (non-SUSY ver.)

- Universal form of frustration-free systems
 - Set the ground state (g.s.) energy to zero

$$H = \sum_{j} L_{j}^{\dagger} L_{j}$$

Hamiltonian (p.s.d.)
 Zero-energy ground state

$$|\psi\rangle$$
 s.t. $L_j|\psi\rangle = 0 \ \forall j$

- Recipe for the construction
 - New *L* operators $\tilde{L}_i := ML_i M^{-1}$ (*M*: invertible)
 - New Hamiltonian

$$\widetilde{H} = \sum_{j} \widetilde{L}_{j}^{\dagger} \widetilde{L}_{j}$$

- Zero-energy ground state $|\widetilde{\psi}\rangle = M |\psi\rangle, \quad \widetilde{L}_i |\widetilde{\psi}\rangle = 0 \; \forall j$
- *H* is inequivalent to *H* unless *M* is unitary
- \widetilde{H} and H have the same number of g.s.
- Similar to the idea of "Doob transform"

Sandwiching method

- A slight generalization
 - Positive definite operator C_j
 - Sandwich it between $\widetilde{L}_{j}^{\dagger}$ and \widetilde{L}_{j}
 - Does not change the g.s. manifold
 - Newer Hamiltonian

$$\widetilde{H} = \sum_{j} \widetilde{L}_{j}^{\dagger} C_{j} \widetilde{L}_{j} \qquad \widetilde{L}_{j} = M L_{j} M^{-1}$$

• Zero-energy g.s.
$$|\widetilde{\psi}\rangle = M |\psi\rangle,$$

Theorem

Let $|\Psi_k\rangle$ (k = 1, ..., n) be linearly independent zero-energy g.s. of H. The ground-state manifold of \widetilde{H} is given by $\widetilde{G} = \operatorname{span}\{M|\Psi_1\rangle, ..., M|\Psi_n\rangle\}.$ Thus, the g.s. degeneracies of H and \widetilde{H} are identical.

• Proof) Just follows from $\widetilde{G} \subseteq \bigcap_{i} \ker(\widetilde{L}_{j})$ and $\widetilde{G} \supseteq \bigcap_{i} \ker(\widetilde{L}_{j})$.

Exercise

39/40

- Shastry, Sutherland,
 Deformed Majumdar-Ghosh model Physica B+C 108, 1069 (1981)
 - Hamiltonian (S=1/2, N: even, PBC imposed)

$$H = \sum_{j=1}^{N} h_j, \quad h_j = \sum_{a=x,y,z} \frac{J_a}{2} \left(S_{j-1}^a S_j^a + S_j^a S_{j+1}^a + S_{j-1}^a S_{j+1}^a + \frac{1}{4} \right)$$

- $J_a > 0$ (a = x, y, z) are distinct
- SU(2) symmetry is broken

- Q. Prove that H is frustration-free
 - Hint: h_j is a sum of positive semidefinite ops.
- Further extensions
 - 3-coloring condition: $J_x J_y + J_y J_z + J_z J_x = 0$
 - > Changlani et al., PRL 120, 117202 (2018)
 - > Palle & Benton, PRB 103, 214428 (2021)

Summary

- Frustration-free systems
 - The Hamiltonian $H = \sum_j h_j$ is said to be frustration-free if there exists a simultaneous eigenstate of h_j with their lowest eigenvalues for all j
 - h_j do not have to commute with each other
 - Examples
 - > Ferro-Heisenberg, Majumdar-Ghosh, AKLT, Toric code, ...
- Construction of frustration-free models
 - Witten's conjugation
 - Sandwiching method

$$H = \sum_{j} L_{j}^{\dagger} L_{j} \qquad \longrightarrow \qquad \widetilde{H} = \sum_{j} \widetilde{L}_{j}^{\dagger} C_{j} \widetilde{L}_{j} \qquad C_{j} > 0, \quad \widetilde{L}_{j} = M L_{j} M^{-1}$$
(M: invertible)

- Allow for constructing new models
 - > Wouters, Katsura, Schuricht, SciPost Phys. Core 4, 027 (2021)