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Outline of my lectures

 Day 1 (June 19)

• Introduction to frustration-free systems

• Systematic construction of models

 Day 2 (June 20)

• Non-interacting Kitaev chain

• Interacting Kitaev chain

 Day 3 (June 21)

• Divergence-free conditions

• Application to quantum many-body scars 

Ground-state 

Physics

Dynamics
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Outline of today’s lecture

1. Introduction & Motivation

• Symmetries in Physics

• Preliminaries 

 Inequalities

 Spin operators

 Anderson bound

• Definition of frustration-free systems

2. Examples

3. Systematic construction of models

4. Summary
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Symmetries in Physics

 Lead to conservation laws

• Rotational sym.  Conservation of angular momentum

 Allows for analytical treatments

e.g. Kepler problem, 

Schrodinger eq. of Hydrogen atom, ...

Can be broken spontaneously

• Result in various phases of matter

 SO(3) sym. breaking  (Ferro)magnetism

 U(1) sym. breaking  Superconductivity

Can enrich symmetry unbroken phases

• Time-reversal sym.  Topological insulators

• Symmetry-protected topological phases

beyond the Landau paradigm

Spherical cow 

from Wikipedia
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Symmetries in Quantum Physics

Conserved quantities/charges

• H: Hamiltonian, A: Hermitian operator 

• [H, A] = 0 ⇒ They can be diagonalized simultaneously

 H is block-diagonal w.r.t. the eigenvalues of A

 Can reduce the problem

• (Example) H: Hydrogen atom Hamiltonian

A: one of angular momentum ops.                             

 Infinitely many conserved charges

• Integrable models e.g. S=1/2 Heisenberg chain

• Strong constraints on their dynamics
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Quiz

• A, B: Hermitian operator 

• [A, B] = 0 ⇒ A and B have a simultaneous eigenstate

• Q1: Does the converse hold?

• A1: No!

• Q2: Can you provide a counterexample?

• A2: ns wavefunction of hydrogen atom

 Angular momentum ops.:

 s wavefunction

 We have 

A baby example of a frustration-free system!
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Positive semidefinite operators 

: finite-dimensional Hilbert space

A, B: Hermitian operators on 

Appendix of Tasaki, Prog. Theor. Phys. 99 (1998) or his book

 Important lemmas 

• Lemma 1. iff all the eigenvalues of A are nonnegative.

• Lemma 2. Let be an arbitrary matrix on    . Then 

Cor. A projection operator              is p.s.d.

• Lemma 3. If             and           , we have 

• Definition 1. We write            and say A is 

positive semidefinite (p.s.d.)  if 

• Definition 2. We write              if  

Ex.) Prove them.
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Spin-1/2 operators and states (1)

Single spin

 Tensor product of vectors

• Often write it as             .   

• Pauli matrices on

• States

• Dual (bra) states
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Spin-1/2 operators and states (2)

 Tensor product of matrices

• Matrix-vector multiplication

Many spins

• Spin operators acting on

 ex.)

• States 

1        2 N

Spin chain
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Spin-S operators and states

Single spin

• Commutation relations

• Raising & lowering ops., total spin

• Hilbert space

 (Normalized) states

Many spins

• Hilbert space

• Spin ops.

• States 
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Addition of spins

 Total spin operators

 Two spin 1/2’s

• Singlet (Stot=0): 

• Triplet (Stot=1)

 Two spin 1’s

• Stot=0

• Stot= 1 • Stot= 2
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Anderson’s paper in ‘50s

• Literally a half-page paper

• Upper and lower bounds on the ground-state 

energy of Heisenberg antiferromagnet

P. W. Anderson, Phys. Rev. 83 1260 (1951)

z: coordination number; N: # of spins

Neel state for large zS
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Anderson’s bound

Setup

• Total Hamiltonian 

• Sub-Hamiltonian      satisfies

: the lowest eigenvalue of

 Lower bound

• Proof) Let         be a g.s. of H. Since         is not 

necessarily a g.s. of     , we have                            .

Application to Heisenberg AFM

•

• Proves the lower bound  

E.g.

(The g.s. energy of H) =: 

Minimum at 

Stot = (z-1)S

Maximum at 

(…)= zS
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Frustration-free systems

Setup

• Total Hamiltonian 

• Sub-Hamiltonian      satisfies

 Frustration-free Hamiltonian

• Definition

• ψ saturates Anderson’s bound

• NOTE) Depends on how you decompose H

• Many solvable models fall into this category

 Majumdar-Ghosh model

 Affleck-Kennedy-Lieb-Tasaki (AKLT) model

 Kitaev’s toric code

is said to be frustration-free if there exists 

a state        such that                           for all j.
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Outline of today’s lecture

1. Introduction & Motivation

2. Examples

• Ferromagnetic Heisenberg model

• Majumdar-Ghosh model

• AKLT model

• Kitaev’s toric code

3. Systematic construction of models

4. Summary
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Ferromagnetic Heisenberg model

Hamiltonian (S=1/2, J > 0)

• PBC imposed:

• SU(2) symmetry

•

H is frustration-free!

• All-up state

is a zero-energy state of each

• Other ground states:

• Unique in each total Sz sector 

Total spin

ex.) Extension to higher-spin & dim.
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Majumdar-Ghosh model (1)

Hamiltonian (S=1/2, J > 0)

• N: even

• PBC imposed: 

• SU(2) symmetric

• Rewriting of

• Proportional to a projection operator

 Addition of 3 spin 1/2’s: 

Total spin

J. Math. Phys. 10, 1388; 1399 (1969)

project out 
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Majumdar-Ghosh model (2)

H is frustration-free!

• Dimer 

• Dimer states

• They are annihilated by

 Addition of a spin singlet and a spin 1/2 

• No other ground states

 Proved by Caspers, Emmett, Magnus, J. Phys. A 17, 2687 (1984)

Generalizations

• 2D model: Shastry, Sutherland, Physica B+C 108, 1069 (1981)

• Higher-spin model: Michaud et al., PRL 108, 127202 (2012)
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Outline of today’s lecture

1. Introduction & Motivation

2. Examples

• Ferromagnetic Heisenberg model

• Majumdar-Ghosh model

• AKLT model

• Kitaev’s toric code

3. Systematic construction of models

4. Summary
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Spin-S Heisenberg antiferromagnetic chain

• Hamiltonian (J > 0) 

𝑗 𝑗 + 1

Nobel Prize (2016)

• S=1/2, 3/2, 5/2, …

Gapless, power-law decay of spin correlations

NOTE) S=1/2 case is solvable (Bethe 1931)

• S=1, 2, 3, … 

a. Unique ground state

b. Non-zero gap Δ (Haldane gap)

c. Exponential decay of spin correlation

Established in many different ways!

AgVP2S6, NENP, …; ED, QMC, … 
Todo & Kato, PRL 87 (2001) 
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AKLT model (1)

Hamiltonian (S=1)

• PBC imposed:

• SU(2) symmetric

• Rewriting of

• Addition of 2 spin 1’s: 

Bilinear Biquadratic

Total spin

𝑗 𝑗 + 1

project out                       states 

Affleck, Kennedy, Lieb & Tasaki, 

PRL 59 (1987), CMP 115 (1987)
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AKLT model (2)

H is frustration-free!

• Dimer = spin singlet:

• Projection to spin-1 space:

• Valence-bond-solid (VBS)/AKLT state

• Each projector           annihilates this state

 Addition of a spin singlet and 2 spin 1/2’s: 

• AKLT proved 

 Uniqueness of the ground state

 Nonzero gap above the ground state

 Exponential decay of correlators

Partial support of 

Haldane’s conjecture
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VBS as a matrix product state

• Spin singlet

• Singlet product

• Projection to spin-1

• Repeat this procedure

• Finitely correlated states Fannes, Nachtergaele & Werner,

CMP 144, 443 (1992)
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Bilinear-biquadratic (BLBQ) model

• Spin-quadrupolar (SQ): gapless, dominant nematic corr.

• Ferromagnetic (FM)

• Dimer: gapped, 2-fold degenerate g.s.

• Haldane phase

Phase diagram Lauchli, Schmid & Trebst, PRB 74, 144426 (2006)

 Gapped unique g.s.

 Edge states

 Hidden AFM order (string order)

Prototype of Symmetry-protected topological (SPT) phase!
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What is SPT? 

Without 

symmetry
QCP With symmetry

SPT Trivial

Two distinct 

phases!

Gu & Wen, PRB 80 (2009). Pollmann, Berg, Turner & Oshikawa, 

PRB 81 (2010); 85 (2012)

BLBQ has symmetries (i), (ii) & (iii)

Single phase

Symmetry protection

S=1 Haldane phase is protected by ANY one of three symmetries:

(i) , (ii) time-reversal, (iii) bond centered inversion
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Outline of today’s lecture

1. Introduction & Motivation

2. Examples

• Ferromagnetic Heisenberg model

• Majumdar-Ghosh model

• AKLT model

• Kitaev’s toric code

3. Systematic construction of models

4. Summary
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Kitaev’s toric code

Setup

• 2D square lattice

• PBC in x & y directions

• Spin 1/2’s on edges

• N: number of vertices

Hamiltonian

• Vertex ops.

• Plaquette ops.

• They all commute

Av and Bp share 0 or 2 spins. 

v
p

Kitaev, Ann. Phys. 303, 2 (2003)
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Toric code is frustration-free

Properties of local Hamiltonians

• Av and Bp square to 1

• Their eigenvalues are ±1

 Anderson bound: 

Ground state

• All-up state

 is a ground state of -Av for all v

 But is not even an eigenstate of -Bp

• is a nonzero state  

• Since                     ,                   

• Since                                       &                     ,  

• saturates the lower bound 
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• Spin  line segment

• Action of Bp

• Ground state 

 0, 2, or 4 lines emanating from each vertex in each config.

 = superposition of all such loop configurations

 Same diagrams appear in high-T expansion of Ising

• Another view: projection of cluster state

Graphical representation of Ψ
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Topological degeneracy

Electric path ops

• Model is on a torus

• Closed paths

•

 Commute with H

Degenerate ground states

•

• Graphical rep.

• Degeneracy is robust against local perturbations

• ex.) Prove that the four states are orthogonal

Loops cross this line an odd number of times
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Ψ as a tensor network 

Rokhsar-Kivelson (RK) states

• RK state is equal-weight superposition 

of classical configrations (with constraints)

• Originally discussed in the context 

of quantum dimer model

• Can be expressed as a tensor network

• Ψ is an example of an RK state!

Building blocks

• Local tensor

• The weight of each local config. is 1

• Can be made anisotropic  Quantum 8-vertex model

 Ardonne, Fendley & Fradkin, Ann. Phys. 310, 493 (2004)

PRL 61, 2376 (1988) 
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Outline of today’s lecture

1. Introduction & Motivation

2. Examples

3. Systematic construction of models

• Unitary transformation

• Witten’s conjugation

• Sandwiching method

4. Summary

 Wouters, Katsura, Schuricht, 
SciPost Phys. Core 4, 027 (2021)
arXiv:2005.12825
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Can we cook up new models?

 Trivial model

• Hamiltonian 

• Ground state

 No entanglement…

Cluster model

• Hamiltonian

 PBC imposed

• Unitarily equivalent to H

 Unitary tr. 

• Ground state

 Entangled! 

Local basis:  

Anything beyond unitary transformation?

Yes! Witten’s conjugation is a key!
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• Supercharges:  

• Fermionic parity: 

• Hamiltonian:  

• Symmetry:

N=2 supersymmetric (SUSY) QM 

Algebra

Spectrum of H
Energy

0

• E ≧ 0 for all states, as H is p.s.d

• E > 0 states come in pairs

• E = 0 iff a state is a SUSY singlet

Ground-state energy = 0  SUSY unbroken

Ground-state energy > 0  SUSY broken



Elementary example

 Lattice bosons and fermions

• Lattice sites: i, j = 1,2, …, N

• Creation, annihilation ops.

 bosons and fermions are mutually commuting.

• Fermion number

• Vacuum state 

Supercharges and Hamiltonian

Just the total particle number!

|vac> is a SUSY singlet.

6/30



36/40
Zero-energy states (ZES) 

Cohomology

• Zero-energy states (ZESs) are in 1-to-1 correspondence

with nontrivial cohomology classes of     . 

Proof) Any ZES        is annihilated by both      and      . 

But       cannot be written as                      for any       

since this would imply that                                      . 

# (ZES of    ) =    

• Invertible operator  

• New supercharge & Hamiltonian

Witten’s conjugation (Nucl. Phys. B 202, 253 (1982).) 

The deformation preserves the number of zero-energy states.

•
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Conjugation argument (non-SUSY ver.)

Universal form of frustration-free systems

• Set the ground state (g.s.) energy to zero 

• Hamiltonian (p.s.d.)

Recipe for the construction

• New L operators

• New Hamiltonian 

• is inequivalent to      unless M is unitary

• and      have the same number of g.s.

• Similar to the idea of “Doob transform”

• Zero-energy ground state

• Zero-energy ground state
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Sandwiching method

A slight generalization

• Positive definite operator 

• Sandwich it between        and      

 Does not change the g.s. manifold

• Newer Hamiltonian

 Theorem

• Proof) Just follows from                        and       

• Zero-energy g.s.

Let                                  be linearly independent zero-energy

g.s. of     . The ground-state manifold of       is given by

Thus, the g.s. degeneracies of       and      are identical. 
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Exercise

Deformed Majumdar-Ghosh model

• Hamiltonian (S=1/2, N: even, PBC imposed)

• are distinct

• SU(2) symmetry is broken

Q. Prove that H is frustration-free

• Hint:      is a sum of positive semidefinite ops.

 Further extensions

• 3-coloring condition: 

 Changlani et al., PRL 120, 117202 (2018)

 Palle & Benton, PRB 103, 214428 (2021)

Shastry, Sutherland, 

Physica B+C 108, 1069 (1981)
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Summary

 Frustration-free systems

• The Hamiltonian                   is said to be frustration-free 

if there exists a simultaneous eigenstate of       with their 

lowest eigenvalues for all j

• do not have to commute with each other

• Examples

 Ferro-Heisenberg, Majumdar-Ghosh, AKLT, Toric code, …

Construction of frustration-free models

• Witten’s conjugation

• Sandwiching method

• Allow for constructing new models
 Wouters, Katsura, Schuricht, SciPost Phys. Core 4, 027 (2021)


