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1 このノートについて
本ノートでは、有限温度の Green 関数においてなぜ解析接続（複素時間）が自然に現れるのか
について考察する。特に、Kubo–Martin–Schwinger (KMS) 関係の導出を出発点とし、熱力学的
純粋状態 (Thermal Pure Quantum state, TPQ) の考え方を用いることで、虚時間の物理的意味
について直観的な理解を与えることを目的とする。

2 Green関数の定義
Heisenberg 表示の演算子 A(t), B(t′) に対し、時間順序 Green 関数を

GAB(t, t
′) = −i〈T[A(t)B(t′)]〉 (1)

で定義する。ここで T は時間順序積であり、演算子を時間の大きいものから左に並べる。フェル
ミ演算子の場合、時間順序の入れ替えに伴い反交換関係に由来する符号が現れる。

Heisenberg 表示の演算子は

A(t) = eiHt/h̄Ae−iHt/h̄ (2)

で定義される。
期待値 〈C〉 は、絶対零度では基底状態 |0〉 による期待値

〈C〉 = 〈0|C|0〉 (3)

であり、有限温度の熱平衡状態では

〈C〉 = Tr[e−βHC]

Tr[e−βH ]
(4)

で定義される。
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3 熱平衡状態での相関関数と KMS 関係
以下では簡単のため t′ = 0 とし、t > 0 を仮定する。この場合、時間順序積は自明となり、

GAB(t, 0) = −i〈A(t)B(0)〉 (5)

となる。
有限温度期待値をトレースで書くと、

〈A(t)B(0)〉 = Tr[e−βHA(t)B(0)]

Tr[e−βH ]
(6)

=
Tr[e−βHeiHt/h̄Ae−iHt/h̄B]

Tr[e−βH ]
. (7)

ここでトレースの巡回性を用いると、

〈A(t)B(0)〉 = Tr[Be−βHeiHt/h̄Ae−iHt/h̄]

Tr[e−βH ]
. (8)

さらに

e−βHeiHt/h̄ = eiH(t+ih̄β)/h̄ (9)

を用いることで、

〈A(t)B(0)〉 = Tr[e−βHBA(t+ ih̄β)]

Tr[e−βH ]
= 〈BA(t+ ih̄β)〉 (10)

を得る。
この関係式は Kubo–Martin–Schwinger (KMS) 関係と呼ばれる。
なお、ここでの導出はトレースの巡回性に基づくものであり、演算子の統計性（ボソン・フェ
ルミ）を明示的には用いていない。

4 TPQ 状態と虚時間の解釈
さて、トレースというのは、

Tr(A) =∼ 1

Nr

Nr∑
k

〈rk|A|rk〉 (11)

で計算できることが知られている。ここで、|rk〉は成分が独立な複素ガウス変数とする。この時、
十分に行列のサイズが大きい時、

Tr(A) = 〈rk|A|rk〉 (12)
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一本のランダムベクトルでトレースが計算することができる。
これを用いると、

Tr[e−βHC] = 〈r|e−βH/2Ce−βH/2|r〉 (13)
= 〈ψ|C|ψ〉, (14)

ただし

|ψ〉 = e−βH/2|r〉 (15)

である。この状態 |ψ〉 は熱力学的純粋状態 (Thermal Pure Quantum state) と呼ばれる（S.
Sugiura and A. Shimizu, Phys. Rev. Lett 108, 240401 (2012)）。
この表現から分かるように、虚時間発展

e−τH (16)

は実時間の力学的時間発展ではなく、エネルギーに応じた重み付けを行い、熱状態を準備するた
めの非ユニタリな操作である。
この観点から、

A(−ih̄τ) = eτHAe−τH (17)

と定義される虚時間 Heisenberg 表示は、熱重みを伴った観測量の変換を表していると解釈で
きる。

5 解析接続と熱平衡
KMS 関係に現れる複素時間 t+ ih̄β は、実時間を物理的に複素化したものではなく、有限温度
における期待値が熱密度行列 e−βH によって定義されていることに由来する構造である。すなわ
ち、複素時間は新たな力学的自由度を導入するものではなく、熱平衡状態を記述するための数学
的表現として自然に現れる。
実際、KMS 関係の導出においては、実時間発展演算子 e±iHt/h̄ と熱因子 e−βH を組み合わせ
ることで

e−βHeiHt/h̄ = eiH(t+ih̄β)/h̄ (18)

という形が現れ、これが Heisenberg 表示における複素時間シフトとして解釈される。このこと
は、解析接続が仮定として導入されるのではなく、熱平衡状態の定義そのものから必然的に導か
れることを示している。

TPQ 状態の観点から見ると、この構造の物理的意味はさらに明確になる。TPQ 状態は、虚時
間発展

e−βH/2 (19)
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によってエネルギーに応じた重み付けを施すことで、熱平衡状態を純粋状態として表現したもの
である。この虚時間方向の操作は、実時間における力学的時間発展とは異なり、熱密度行列を生
成するための非ユニタリな変換として理解される。
このように考えると、虚時間 Heisenberg 表示

A(−ih̄τ) = eτHAe−τH (20)

は、観測量そのものを熱重み付きで変換する操作を表しており、時間相関関数の中に熱平衡の情
報を組み込む役割を果たしている。解析接続とは、この虚時間方向の構造を実時間相関関数と統
一的に記述するための表現とみなすことができる。
この観点から、KMS 関係は単なる計算上の恒等式ではなく、有限温度における時間相関関数が
満たすべき整合性条件を与えている。すなわち、KMS 関係は、熱平衡状態において実時間方向と
虚時間方向が一体となって構成されていることを反映した関係式であり、熱平衡状態の本質的特
徴を表現していると理解できる。
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