[English]   [過去のプログラム]

17:00 -- 18:30 数理科学研究科棟(東京大学駒場キャンパス) での対面開催と Zoom でのオンライン配信,
もしくは
17:00 -- 18:00 Zoom でのオンライン開催


Last updated October 15, 2025
世話係 
河澄 響矢
北山 貴裕
逆井 卓也
葉廣 和夫


都合により 10/23 に予定されていたセミナーは延期といたします.
2025 年度の冬学期も
「対面開催 & オンライン中継形式」(90 分 or 60 分) 「完全オンライン形式」(60 分)
を併用してセミナーを行います. 各回の開催の形式については本ページにてご案内いたします.

参加にあたっては, 事前登録が必要です.
こちら のページにおいて必要事項をすべてご記入の上, 登録を行って下さい.
参加者の把握のため, 対面参加の場合であっても 事前登録が無い方の参加はお断りさせていただきます.

Zoom ミーティングの開始はセミナー開始時刻 15 分ほど前の予定です. それまでは「待機室」にてお待ち下さい.

講演の録画・録音は禁止といたします.
セミナー中にアクセスが遮断された場合など, 緊急時はこのページに代替の接続アドレスを掲示します.


10月7日 -- オンライン開催, 17:00 -- 18:00

菅原 朔見 (北海道大学)

Topology of hyperplane arrangements and related 3-manifolds

Abstract: One of the central questions in the topology of hyperplane arrangements is whether several topological invariants are combinatorially determined. While the cohomology ring of the complement has a combinatorial description, it remains open whether even the first Betti number of the Milnor fiber is. In contrast, the homeomorphism types of 3-manifolds appearing as the boundary manifold of projective line arrangements and the Milnor fiber boundary of arrangements in a 3-dimensional space are combinatorially determined. In this talk, we focus on these 3-manifolds. In particular, we will present the cohomology ring structure for the boundary manifold, originally due to Cohen-Suciu, and an explicit formula for the homology group of the Milnor fiber boundary of generic arrangements.


10月14日 -- 現地開催 (056号室) & オンライン中継, 17:00 -- 18:30

小木曾 啓示 (東京大学大学院数理科学研究科)

On K3 surfaces with non-elementary hyperbolic automorphism group

Abstract: This talk is based on my joint work with Professor Koji Fujiwara (Kyoto University) and Professor Xun Yu (Tianjin University).
Main result of this talk is the finiteness of the Néron-Severi lattices of complex projective K3 surfaces whose automorphism groups are non-elementary hyperbolic, under the assumption that the Picard number greater than or equal to 6 (which is optimal to ensure the finiteness). In this talk, after recalling basic facts and some special nice properties of K3 surfaces, the notion of hyperbolicity of group due to Gromov, and their importance and interest (in our view), I would like to explain first why the non-elementary hyperbolicity of K3 surface automorphism group is the problem of the Néron-Severi lattices and then how one can deduce the above-mentioned finiteness, via a recent important observation by Professors Kikuta and Takatsu (independently) on geometrically finiteness, with a new algebro-geometric study of genus one fibrations on K3 surfaces by us.


10月28日 -- 現地開催 (056号室) & オンライン中継, 17:00 -- 18:30

井上 歩 (津田塾大学)

On a relationship between quandle homology and relative group homology, from the view point of Seifert surfaces

Abstract: Quandles and their homology are known to have good chemistry with knot theory. Associated with a triple of a group G, its automorphism, and its subgroup H satisfying a certain condition, we have a quandle. In this talk, we see that we have a chain map from the quandle chain complex of the quandle to the (Adamson/Hochschild) relative group chain complex of (G, H). We also see that this chain map has good chemistry with a triangulation of Seifert surface of a knot.