

ン分布に従うためだと理解されている。原子核にはスピンを持つもの も持たないものもある。ただし,電子のスピンの磁気モーメントは原

5ローレンツ力:

磁場中(磁東密度 **B**)を運動する荷電粒 子(電荷量 q)に作用する力**F**。速度ベク トル**v**に垂直に作用するので,荷電粒子 の軌道を曲げる。

フレミングの左手の法則より, $\vec{F} = q(\vec{B} \times \vec{v})$ $= q(B_yv_z - B_zv_y, B_zv_x - B_xv_z, B_xv_y - B_yv_x)$ である。

磁場を物質に印加するとどうなるのか

子核のそれよりも著しく大きい。

物質に強力な磁石を近づけ磁場を印加した時,物質の応答には2通りあ

態に相転移する。固体の磁化が著しく増大する状態を強磁性とよぶ。

□ 外部磁場のない原子軌道のエネルギー準位を求めるには、運動エネル

ギー、ポテンシャルエネルギーに加え、角運動量に基づく磁気的な相

互作用(スピンー軌道相互作用とよぶ)をハミルトニアンに含める必

要がある。パウリの排他律とフントの規則はいずれも、電子のスピン 角運動量と軌道角運動量が原子の安定性を支配することに起因する。 □ 不対電子をもつ原子やイオンの固体では、2 つの不対電子がスピンの 向きを揃える状態(三重項状態とよぶ)がエンタルピーとして安定化 に寄与する。すると、高温では常磁性(電子スピンの向きには分布が ある)であるが、低温にすると、電子スピンの向きが一斉にそろう状 る(図 11-1)。一つの応答は、物質が磁石に引き寄せられることであり、 もう一つは、物質が磁石から反発することである(一見して物質は動いて いなくとも、微弱な反発力が生じている)6。前者を常磁性、後者を反磁性 とよぶ。これらはいずれも、外部の磁場Hによって物質内部にも磁場(磁 化とよぶ) Mが発生して、磁化の大きさは外部磁場の大きさに比例し、そ れにより物質が引き寄せられる、もしくは反発する、という機構があると 考えられている。その比例係数を磁化率(または帯磁率)χとよび、μ0を

$$M \equiv \frac{\chi H}{\mu_0} \tag{11.1}$$

と表す。常磁性磁化率は χ_p (> 0),反磁性磁化率は χ_d (< 0)とそれぞれ表され、測定値として $|\chi_p| \gg |\chi_d|$ であることが知られている。

図 11-1 常磁性物質と反磁性物質の模式図。

さらに常磁性の物質では、磁化率の大きさが温度 T に反比例することが 実験結果として知られている(キュリーの法則とよぶ)。これは、比例定 数を Cとして

$$\chi_p = \frac{C}{T} \quad (C > 0) \tag{11.2}$$

と表される 7。

真空の诱磁率として

この現象は、磁場を通じて物質(系)は周囲とエネルギーをやりとりしていることを意味することから、第1回のように物質のエントロピーの観点から理解しよう。この物質を磁場0から磁場 Hまでにもってくるためにしなければならない仕事 Wは、

$$W = -\int_{0}^{H} M \mathrm{d}H \qquad (11.3)$$

とかける(符号に注意する)8。すると、化学反応も光も電気も表面積変化 も関係なく、可逆的な過程(磁石を近づけたり遠ざけたりする過程)にお いては、物質の内部エネルギー変化量 dUは第1回 P.9 で説明した通り、 圧力 p, 温度 T, エントロピーSを用いて式(11.4)のようになる。

dU = -pdV + TdS - MdH(11.4)

ここで、定積での過程 (d*V*=0)をあつかうことにすれば、ヘルムホルツ自由エネルギー $F \equiv U - TS$ を用いて、その変化量 dFを

 $dF = dU - d(TS) = dU - (SdT + TdS) = -MdH - SdT \quad (11.5)$

⁶ 強力な鉛直型電磁石で磁場を印加して, 重力に拮抗する大きさの反発力を生じさ せ,カエルを浮上させた実験は,2000年 イグノーベル物理学賞の対象となった。 その受賞者であるGeimは 2010年に,新し い炭素同素体グラフェンの研究成果によ り,ノーベル物理学賞も受賞した(世界で 唯一のノーベル賞・イグノーベル賞のダ ブル受賞者)。反磁性は,常磁性(酸化鉄 や酸素分子など後述)でない物質で観測 される。高純度グラファイト薄片を強力 な永久磁石の上において,この薄片を浮 上させる実験をYouTubeで閲覧できる。

https://www.youtube.com/watch? v=G32rqnC7TDk

水の「モーゼ効果」とよばれる,強力な電 磁石コイルの中で,水槽の中の水を重力 にさからって二分する実験も,反磁性に もとづくものと理解されている。 廣田,北沢,電気学会論文誌A,116,769-776 (1996)

⁷反磁性磁化率が大きな物質(例えば,芳 香族性のある多環構造体)が液体である 場合には、反磁性磁化率の大きさも温度 に反比例することが知られている。それ 以外のケースでは、反磁性磁化率は温度 には依存しない。

山下,小島,『金属錯体の現代物性化学』,三共出版, p.60, 2008.

⁸このような仕事の定め方について,以下の出典に詳細な議論がある。

山下,福地,『キッテル熱物理学』,丸善,P.313(1971) また,第1回で扱ったような定圧過程で あればギブス自由エネルギー変化を用い るが,系が力を発生するので,ここでは定 積過程を扱うことにする。よって,ヘルム ホルツ自由エネルギーを用いることに注 意する。 と表すことができる。また Fは、 Hと Tという 2 つの互いに独立な変数 の関数とみなせるから、全微分の形式 9として、

$$\mathrm{d}F = \left(\frac{\partial F}{\partial H}\right)_T \mathrm{d}H + \left(\frac{\partial F}{\partial T}\right)_H \mathrm{d}T \qquad (11.6)$$

とかくことができる。式(11.5)と(11.6)を比較することで、

$$\left(\frac{\partial F}{\partial H}\right)_{T} = -M \qquad (11.7)$$
$$\left(\frac{\partial F}{\partial T}\right)_{H} = -S \qquad (11.8)$$

が成り立つ。すると、この物質のエントロピーSの磁場 H依存性は、温度 一定のもとで、式(11.7),(11.8)を組み合わせ、(11.1)と(11.2)を代入して

$$\left(\frac{\partial S}{\partial H}\right)_T = -\left(\frac{\partial}{\partial H}\left(\frac{\partial F}{\partial T}\right)_H\right)_T = \left(\frac{\partial M}{\partial T}\right)_H = -\frac{C}{\mu_0 T^2}H \quad (11.9)$$

と導かれる。これより、等温条件で外部から磁場 Hをかけてゆくほど、キュリーの法則を満たすような常磁性物質はそのエントロピーを減少させる、つまり常磁性物質の中の"何か"が秩序立ってくることがわかる。

そこで、電子 1 個さえも磁場に応答することを指摘したのが、Stern-ダルラックの実験である。銀原子 (電子配置は[Kr](4d)¹⁰(5s)¹)のガスを一方 向に打ち出して不均一な磁場の空間に通じたところ、スクリーンには 2 つ の飛跡の集団のみが観測された (図 11-2)。銀原子は中性なので、この結 果はローレンツ力では説明できないものだった。外部磁場が z 軸方向に対 して徐々に弱まる不均一な状態であるため、古典論における粒子の磁気モ ーメントによって重力に拮抗する力 ¹⁰ は連続量であるはず (スクリーン には一様な飛跡の集団が予測された (図 11-2(a)))が、2 つに完全に分離 した飛跡の集団が観測されたこと (図 11-2(b))は、銀原子がもつ電子 (特 に開殻となっている 5s 電子)に由来する特異な磁場応答によるものと結 論付けられた (電子のスピンとよぶ)。したがって、常磁性体が外部磁場 によって引き寄せられるのは、常磁性体中の電子のスピンが、外部磁場に よって秩序立ってくるためだと理解できる。

図 11-2 (a)シュテルンーゲルラッハの実験の模式図¹¹。(b) Ag 原子が古 典論に従うと予測された場合の一様な飛跡の集団の模式図。(c)量子論の 立場で説明可能であるとされた 2 つの飛跡の集団の模式図。

パウリの排他律を、スピンの定義からもう一度

電子1個のスピンについて,外部からの磁場のない環境であっても原子 内で特殊な"波としてふるまう状態"とみなして,スピンの波動関数をあら ためて定義する¹²。この波動関数は2種類のみであり,それぞれα,βと表

⁹ 第1回 Appendix 1.1 を参照。

¹⁰ 磁気モーメントに由来する力: 磁気モーメント(磁気双極子モーメント ともよばれる) $\vec{\mu}$ は,距離 d だけ離れた 位置に磁荷 $q_m \ge -q_m$ をもつ物体に対 して, $-q_m$ から q_m の向きを正として $\vec{\mu} =$ $q_m d/\mu_0 \ge c$ 定義される(μ_0 は真空の透磁 率)。単位は[$J T^{-1}$]。磁場中(磁束密度 \vec{B}) でこの物体は, $-\vec{\mu} \cdot \vec{B}$ のポテンシャルエ ネルギーをうける($|\vec{\mu}|$ にも) $|\vec{B}|$ にも比例す る。詳しくは Appendix 11. A を参照)。鉛 直方向(z軸方向)に磁場の強さが変化す るとき,位置が $z \ge z+dz$ での物体の位 置エネルギーの差 dVは

$$\mathrm{d}V = -\mu_z \frac{\mathrm{d}B_z}{\mathrm{d}z} \mathrm{d}z$$

とかけるので、この磁場中で磁気モーメ ントをもつ物体の運動は

 $F = \frac{\mathrm{d}V}{\mathrm{d}z} = \mu_z \frac{\mathrm{d}B_z}{\mathrm{d}z}$

という(重力と拮抗するように)鉛直方向の力Fを受けて軌道がまがる。

11 図の出典:

教養学部化学部会『化学の基礎 77 講』東京大学出版 会, p.18 (2003)

¹²本テキストではこれまで,シュレーデ ィンガー方程式を解くことで波動関数と エネルギーを導出してきたが,電子と 京子核のスピンに関しては,波動関数は 定義される。この立場は量子論の体系に 依拠する。 す。このスピン波動関数 α , β は、スピンのみに適用する2種類の角運動量の演算子 \hat{s}^2 , \hat{s}_z (それぞれは角運動量の大きさの絶対値の2乗、z方向の角運動量を表す)の以下のシュレーディンガー方程式¹³を満たすものと定義される。

$$\hat{s}^2 \alpha = s(s+1) \frac{h^2}{4\pi^2} \alpha, \quad \hat{s}_z \alpha = \frac{h}{2\pi} m_s \alpha$$
 (11.10)
 $\hat{s}^2 \beta = s(s+1) \frac{h^2}{4\pi^2} \beta, \quad \hat{s}_z \beta = \frac{h}{2\pi} m_s \beta$ (11.11)

このとき, sは 1/2 で(量子数 n, l, m のような整数ではない)スピン量子 数とよばれ, m_s は 1/2, -1/2 でありスピン磁気量子数とよばれる ($m_s=1/2$ の方を α スピン, $m_s=-1/2$ の方を β スピンとよぶ)。この波動関数 α , β は, 規格化条件も直交条件も満たしていると定義されている¹⁴。したがって, 1 個の電子のスピン角運動量の大きさは,式(11.10)(11.11)いずれによって

も、
$$\frac{h}{2\pi}\sqrt{s(s+1)} = \frac{\sqrt{3}h}{4\pi}$$
である。

電子が2個存在する最も単純な原子として、ヘリウム原子を考えよう。 2個の電子が電子1と電子2として区別できるとする場合、ヘリウム原子 の電子状態の波動関数 Ψ には、これまでの原子軌道 ϕ_{1s} (あらためて軌道波 動関数とよびなおす)とスピン波動関数を含めると、3次元座標系変数 x,y,z とスピン変数 σ は独立であるため、軌道波動関数とスピン波動関数の 積(Hartree積とよぶ)で2通りの Ψ (1,2)、 Ψ (2,1)が考えられる(第4回 P.19 で説明した)。

$$\Psi(1,2) = \phi_{1s}(1)\alpha(1)\phi_{1s}(2)\beta(2)$$
(11.12)
$$\Psi(2,1) = \phi_{1s}(1)\beta(1)\phi_{1s}(2)\alpha(2)$$
(11.13)

これらは図 11-3 の電子配置を表している。

 $\Phi_{1s}(1)a(1) \Phi_{1s}(2)\beta(2) \qquad \Phi_{1s}(1)\beta(1) \Phi_{1s}(2)a(2)$

図 11-3 基底状態にあるヘリウム原子で電子が区別されるときの電子配 置とハートリー積

実際には2個の電子はヘリウム原子内で区別できないので、ヘリウム原子の電子状態の波動関数Ψは、Ψ(1,2)とΨ(2,1)の線形結合で表すこととする。 このとき、実験結果¹⁵をよく説明できるものは、

$$\Psi = \frac{1}{\sqrt{2}} \{\Psi(1,2) - \Psi(2,1)\}$$
$$= \frac{1}{\sqrt{2}} \{\phi_{1s}(1)\alpha(1)\phi_{1s}(2)\beta(2) - \phi_{1s}(1)\beta(1)\phi_{1s}(2)\alpha(2)\}$$
(11.14)

であることが知られている $(1/\sqrt{2}$ は規格化の定数)。例えば,基底状態に あるヘリウム原子内の 2 個の電子がともに 1s 軌道で α スピンとなる状態 (図 11-4) は観測されない。これは,

$$\Psi = \frac{1}{\sqrt{2}} \{ \phi_{1s}(1)\alpha(1)\phi_{1s}(2)\alpha(2) - \phi_{1s}(1)\alpha(1)\phi_{1s}(2)\alpha(2) \} = 0 \quad (11.15)$$

豊田太郎 物性化学ノート 2025 第 11 回

¹³ スピンは、電荷をもった粒子が自転している運動に由来することをイメージしているから、その演算子は運動エネルギーではなく、角運動量とされる。詳細はAppendix 11. B。

14 規格化条件としては

$$\int \alpha^* \alpha d\sigma = 1, \qquad \int \beta^* \beta d\sigma = 1$$

であり, 直交条件は

$$\int \beta^* \alpha \mathrm{d}\sigma = \int \alpha^* \beta \mathrm{d}\sigma = 0$$

として<u>定義されている</u>。ポイントは体積 素片ではなく $d\sigma$ で積分することであり、 σ はスピン変数とよばれ、実在しない変数 である(積分区間も実在しない)。

¹⁵ フェルミ粒子 (フェルミオン)の性質 である。電子 1,2 の座標を入れ換えてみ たときにヘリウム原子そのものは変わら ないので, *c*を定数として

Ψ(2,1) = cΨ(1,2) と表せることができ, 再度, 電子の座標を 入れ換えた場合に, もとに戻るから

$$\Psi(1,2) = c^2 \Psi(1,2)$$

である。この試行の結果,

c=1 または-1

となる。このような位置の入れ替えで波 動関数の符号が変わる("波動関数は反対 称である"という),つまり *c*=-1となる 粒子がフェルミオンとよばれる。実験結 果として,電子や陽子,中性子があてはま る。一方,位置の入れ替えで波動関数の符 号が変わらない("波動関数は対称であ る"という)つまり *c*=1 のものがボーズ 粒子(ボゾン)とよばれ,光子があてはま る。

図 11-4 観測されないヘリウム原子の基底状態。

Pauliは、「このようなハートリー積の線形結合による全波動関数は、2つの電子の間で量子数(軌道波動関数とスピン波動関数のいずれでも)の交換操作を行うと、符号が変わる("反対称である"という)」ことを理論的に 導いた(符号が変わらない場合は"対称"という)。これをパウリの原理とよ ぶ。パウリの原理から、2個以上の電子は同一の量子数の組(*n*, *l*, *m*, *m*)で 表される状態にはなれないため、パウリの排他律(第3回 P.9 で説明)が 導かれる。

例えば、1s 軌道を電子1個、2s 軌道を電子1個がそれぞれ占める準安 定へリウム原子(基底状態のヘリウムガスに放電すると一定の割合で生成 される)では、図 11-5 の通り、互いに異なるスピンの電子状態も、2 個と もに α スピン(もしくは β スピン)となる電子状態も観測されている。この 観測結果は、パウリの原理により、次のように理解される。まず、軌道波 動関数 ϕ_{1s}, ϕ_{2s} とスピン軌道関数 α, β が関わる8通りのハートリー積が考 えられる。

 $\begin{aligned} \phi_{1s}(1)\alpha(1)\phi_{2s}(2)\alpha(2), & \phi_{1s}(2)\alpha(2)\phi_{2s}(1)\alpha(1), \\ \phi_{1s}(1)\alpha(1)\phi_{2s}(2)\beta(2), & \phi_{1s}(2)\alpha(2)\phi_{2s}(1)\beta(1), \\ \phi_{1s}(1)\beta(1)\phi_{2s}(2)\alpha(2), & \phi_{1s}(2)\beta(2)\phi_{2s}(1)\alpha(1), \\ \phi_{1s}(1)\beta(1)\phi_{2s}(2)\beta(2), & \phi_{1s}(2)\beta(2)\phi_{2s}(1)\beta(1) \end{aligned}$

$$\begin{bmatrix} l = 0 \\ m_{(l)} = 0 \end{bmatrix} \xrightarrow{2s} \xrightarrow{4} 2s \xrightarrow{2s} 2s \xrightarrow{4} 2s \xrightarrow{4} 2s \xrightarrow{4} m_s = 1/2$$

$$m_s = 1/2 \qquad m_s = -1/2 \qquad m_s = -1/2 \qquad m_s = 1/2 \qquad m_s = 1/2 \qquad m_s = -1/2 \qquad m_s$$

図 11-5 準安定ヘリウム原子 (1s)¹(2s)¹のスピンを含めた電子配置。

次に、パウリの原理に従うように線形結合を導こう。図 11-5(a)の場合、 全波動関数は、

$$\Psi = \frac{1}{\sqrt{2}} \{ \phi_{1s}(1)\alpha(1)\phi_{2s}(2)\alpha(2) - \phi_{1s}(2)\alpha(2)\phi_{2s}(1)\alpha(1) \}$$
$$= \frac{1}{\sqrt{2}} \{ \phi_{1s}(1)\phi_{2s}(2) - \phi_{1s}(2)\phi_{2s}(1) \}\alpha(1)\alpha(2) \equiv \Psi_a \qquad (11.14)$$

である。電子1と電子2を入れ換えた全波動関数 Ψ_a' は、

$$\Psi_{a}' = \frac{1}{\sqrt{2}} \{ \phi_{1s}(2)\phi_{2s}(1) - \phi_{1s}(1)\phi_{2s}(2) \} \alpha(2)\alpha(1) = -\Psi_{a}$$
(11.15)

となり,確かに反対称となる。図 11-5(b)の場合も同様にして,全波動関数は,

🎐 豊田太郎 物性化学ノート 2025 第 11 回

16 式(11.15)を行列式で表すと,

 $\frac{1}{\sqrt{2}} \begin{vmatrix} \phi_{1s}(1)\alpha(1) & \phi_{1s}(1)\alpha(1) \\ \phi_{1s}(2)\alpha(2) & \phi_{1s}(2)\alpha(2) \end{vmatrix} = 0$

となる。式(11.14)も,

$$\Psi = \frac{1}{\sqrt{2}} \begin{vmatrix} \phi_{1s}(1)\alpha(1) & \phi_{1s}(1)\beta(1) \\ \phi_{1s}(2)\alpha(2) & \phi_{1s}(2)\beta(2) \end{vmatrix}$$

と表される。この考え方を N個の電子を もつ原子の全波動関数に拡張すると,規 格化条件を満たすものは Ψ =

$$\psi_i(\tau_i) = \phi(i) \times \begin{cases} \alpha(i) \\ \beta(i) \end{cases}$$

とおいた。この行列式をスレーター行列 式とよぶ(量子力学のテキストによって は行と列が入れ替わったものがあるが, 行列式としては同等である)。

$$\begin{array}{c} & = \\ & = \frac{1}{\sqrt{2}} \left\{ \phi_{1s}(1)\beta(1)\phi_{2s}(2)\beta(2) - \phi_{1s}(2)\beta(2)\phi_{2s}(1)\beta(1) \right\} \\ & = \frac{1}{\sqrt{2}} \left\{ \phi_{1s}(1)\phi_{2s}(2) - \phi_{1s}(2)\phi_{2s}(1)\beta(1)\beta(1) \right\} \\ & = \frac{1}{\sqrt{2}} \left\{ \phi_{1s}(1)\phi_{2s}(2) - \phi_{1s}(2)\phi_{2s}(1)\beta(1) \right\} \\ & = \frac{1}{\sqrt{2}} \left\{ \phi_{1s}(1)\alpha(1)\phi_{2s}(2)\alpha(2) - \phi_{1s}(2)\alpha(2)\phi_{2s}(1)\beta(1) \right\} \\ & = \frac{1}{\sqrt{2}} \left\{ \phi_{1s}(1)\beta(1)\phi_{2s}(2)\alpha(2) - \phi_{1s}(2)\beta(2)\phi_{2s}(1)\alpha(1) \right\} \\ & = \frac{1}{\sqrt{2}} \left\{ \phi_{1s}(1)\beta(1)\phi_{2s}(2)\alpha(2) - \phi_{1s}(2)\beta(2)\phi_{2s}(1)\alpha(1) \right\} \\ & = \frac{1}{\sqrt{2}} \left\{ \phi_{1s}(1)\beta(1)\phi_{2s}(2)\alpha(2) - \phi_{1s}(2)\beta(2)\phi_{2s}(1)\beta(1) \right\} \\ & -\frac{1}{\sqrt{2}} \left(\phi_{1s}(1)\alpha(1)\phi_{2s}(2)\beta(2) - \phi_{1s}(2)\alpha(2)\phi_{2s}(1)\beta(1) \right\} \\ & -\frac{1}{\sqrt{2}} \left\{ \phi_{1s}(1)\alpha(1)\phi_{2s}(2)\beta(2) - \phi_{1s}(2)\alpha(2)\phi_{2s}(1)\beta(1) \right\} \\ & -\frac{1}{\sqrt{2}} \left\{ \phi_{1s}(1)\alpha(1)\phi_{2s}(2)\beta(2) - \phi_{1s}(2)\alpha(2)\phi_{2s}(1)\beta(1) \right\} \\ & -\frac{1}{\sqrt{2}} \left\{ \phi_{1s}(1)\alpha(1)\phi_{2s}(2)\beta(2) - \phi_{1s}(2)\alpha(2)\phi_{2s}(1)\beta(1) \right\} \\ & +\frac{1}{\sqrt{2}} \left\{ \phi_{1s}(1)\beta(1)\phi_{2s}(2)\alpha(2) - \phi_{1s}(2)\beta(2)\phi_{2s}(1)\alpha(1) \right\} \\ & = \frac{1}{2} \left\{ \phi_{1s}(1)\phi_{1s}(1)\alpha(1)\phi_{2s}(2)\beta(2) - \phi_{1s}(2)\beta(2)\phi_{2s}(1)\alpha(1) \right\} \\ & +\frac{1}{\sqrt{2}} \left\{ \phi_{1s}(1)\beta(1)\phi_{2s}(2)\alpha(2) - \phi_{1s}(2)\beta(2)\phi_{2s}(1)\alpha(1) \right\} \\ & = \frac{1}{2} \left\{ \phi_{1s}(1)\phi_{2s}(2) - \phi_{1s}(2)\phi_{2s}(1)\beta(1) \right\} \\ & +\frac{1}{\sqrt{2}} \left\{ \phi_{1s}(1)\beta(1)\phi_{2s}(2)\beta(2) - \phi_{1s}(2)\beta(2)\phi_{2s}(1)\alpha(1) \right\} \\ & = \frac{1}{2} \left\{ \phi_{1s}(1)\phi_{2s}(2)-\phi_{1s}(2)\beta(2)\phi_{2s}(1)\beta(1) \right\} \\ & +\frac{1}{\sqrt{2}} \left\{ \phi_{1s}(1)\beta(1)\phi_{2s}(2)\beta(2) - \phi_{1s}(2)\beta(2)\phi_{2s}(1)\alpha(1) \right\} \\ & = \frac{1}{2} \left\{ \phi_{1s}(1)\phi_{2s}(2)-\phi_{1s}(2)\phi_{2s}(1)\beta(1) \right\} \\ & +\frac{1}{\sqrt{2}} \left\{ \phi_{1s}(1)\beta(1)\phi_{2s}(2)\beta(2) - \phi_{1s}(2)\beta(2)\phi_{2s}(1)\alpha(1) \right\} \\ & = \frac{1}{2} \left\{ \phi_{1s}(1)\phi_{2s}(2)-\phi_{1s}(2)\phi_{2s}(1)\beta(1) \right\} \\ & +\frac{1}{\sqrt{2}} \left\{ \phi_{1s}(1)\beta(1)\phi_{2s}(2)\beta(2) - \phi_{1s}(2)\beta(2)\phi_{2s}(1)\beta(1) \right\} \\ & +\frac{1}{\sqrt{2}} \left\{ \phi_{1s}(1)\beta(1)\phi_{2s}(2)\beta(2) - \phi_{1s}(2)\beta(2)\phi_{2s}(1)\beta(1) \right\} \\ & = \frac{1}{2} \left\{ \phi_{1s}(1)\phi_{2s}(2)-\phi_{2s}(1) \right\} \\ & +\frac{1}{\sqrt{2}} \left\{ \phi_{1s}(1)\phi_{2s}(2)-\phi_{2s}(1) \right\}$$

これら 4 つの全波動関数のうち、 Ψ_a , Ψ_b , Ψ_t はスピン波動関数だけで みれば対称となっており(定性的にはスピンの向きが揃っているといえ る)、これらの準安定ヘリウム原子は三重項ヘリウム原子とよばれる。そ の一方で、 Ψ_s の準安定ヘリウム原子は、スピン波動関数においては反対称 であり、一重項ヘリウム原子とよばれる。三重項ヘリウム原子の寿命 (4.2×10³ s)は、一重項ヘリウム原子のそれ(3.8×10⁻² s)よりも著しく 長い¹⁹。これは、励起された準安定の状態から基底状態に戻る確率的な過 程で、2s 軌道の電子がスピンを反転しないと 1s 軌道を占めることができ ないため、遷移確率が著しく小さいからだと理解される。

Harada, Masuda, Ozaki, *Chem. Rev.*, **97**, 1897 (1997).

体表面が重要な電子素子の機能評価に威

力を発揮する。

フントの規則を、電子の角運動量の観点からもう一度

上記のような実験結果から、電子は α スピンもしくは β スピンをもつと 定義した。実は、原子核(陽子と中性子もフェルミオン)もスピンをもつ ことが実験結果からわかっている。ここでは最も単純なケースとして、水 素原子核(陽子)を説明する。原子核のスピンの波動関数も、電子のスピ ン波動関数と同様に、式(11.21),(11.22)で定義される。この波動関数も電 子と同じように2種類のみであり、それぞれ α_I , β_I と表す。

$$\hat{I}^2 \alpha_I = I(I+1) \frac{h^2}{4\pi^2} \alpha_I, \qquad \hat{I}_z \alpha_I = \frac{h}{2\pi} m_I \alpha_I$$
(11.21)

$$\hat{I}^2 \beta_I = I(I+1) \frac{h^2}{4\pi^2} \beta_I, \qquad \hat{I}_z \beta_I = \frac{h}{2\pi} m_I \beta_I$$
(11.22)

 \hat{l}^2, \hat{l}_z は原子核のスピンのみに適用する 2 種類の角運動量のハミルトニア ンであり、 \hat{l}^2 は角運動量の大きさの絶対値の2乗、 \hat{l}_z はz方向の角運動量 に対応する。水素原子核の *I*は 1/2 であり核スピン量子数 ²⁰ とよばれ、 m_I は 1/2、-1/2 であり核スピン磁気量子数とよばれる (m_I =1/2 の方を α スピ ン、 m_I =-1/2 の方を β スピンとよぶ)。この波動関数 α_I, β_I も、規格化条件 と直交条件を満たしているものと定義されている。よって、水素原子核の

核スピン角運動量は、 $\frac{h}{2\pi}\sqrt{I(I+1)} = \frac{\sqrt{3}h}{4\pi}$ である。

電子も原子核もスピンをもっているため、原子の中で、それぞれ自身が まるで磁石のようにふるまう。つまり、古典論で解釈すると、電荷をもっ た粒子が自転しているので、そこには磁場が発生するとみなせて、電子も 原子核も磁気双極子モーメント(または単に、磁気モーメントともよばれ る)をもつことになる。電子と陽子のスピンによる磁気モーメントの測定 結果はそれぞれ-9.28×10⁻²⁴ J T⁻¹、1.41×10⁻²⁶ J T⁻¹であった(電荷の 符号が異なるので磁気モーメントの符号も異なる)。電子スピンの磁気モ ーメントの絶対値が、同じスピン角運動量をもつ核スピンのそれよりも約 10³ 倍大きいため、核スピンを対象とした測定(磁気共鳴分光法²¹ という) をしない限りは、原子や分子において核スピンは無視される(シュテルン ーゲルラッハの実験でも、Ag 原子の原子核は核スピン(¹⁰⁷Ag,¹⁰⁹Ag とも に核スピンは 1/2)をもつが、原子核のスピンによる磁気モーメントは電 子のそれよりも著しく小さいので無視できる)。

そこで1個の電子スピン自身の磁気モーメント $\hat{\mu}_s$ について考えよう。古 典的な電磁気学が次のような理解を与えてくれる。ある電荷をもつ粒子 (質量 m)が円運動している(角運動量 $\vec{\Gamma}$)とする。そこには磁場が発生 する。この磁場の磁気モーメント $\hat{\mu}$ の大きさは、粒子のつくる電流の大き

さにも、円運動の面積の大きさにも比例する。たとえば、電子(位置 \vec{r} ,速 度 \vec{v} ,質量 m_e ,電荷-e)の円運動の場合(原子核は無い空間であることに 注意する)、図 11-6のように磁気モーメント $\vec{\mu}$ の大きさ $|\vec{\mu}|$ は

$$|\vec{\mu}| = \frac{-e|\vec{v}|}{2\pi |\vec{r}|} \times \pi |\vec{r}|^2 = \frac{-e|\vec{v}||\vec{r}|}{2} \qquad (11.23)$$

となる。

20 水素原子の原子核のみならず一般の 原子核では、スピン量子数は半整数か整 数となる。原子番号と質量数が共に偶数 の原子核の核スピンは0となる(陽子と 中性子それぞれのスピン量子数が1/2、-1/2)が、一方だけが奇数の原子核の核ス ピンは半整数、両方とも奇数の原子核の 核スピンは整数となる。

²¹ 磁気共鳴分光法は,有機分子の同定に 威力を発揮する。中でも,電子常磁性共鳴 (EPR)分光法は後述する。

図 11-6 円運動する電子の角運動量と磁気モーメント

すると、この円運動する電子の角運動量 $\vec{I} = \vec{r} \times (m_e \vec{v})$ を用いれば、磁気モーメント $\vec{\mu}$ の向きも考慮すると、

$$\vec{\mu} = \frac{-e \, \vec{r} \times (m_e \vec{v})}{2m_e} = -\frac{e}{2m_e} \vec{\Gamma}$$
(11.24)

が導かれる。

次に、式(11.10)、(11.11)で得られている電子 1 個のスピン角運動量 \vec{s} を式 (11.24)に適用しよう。 1 個の電子スピンの磁気モーメント $\vec{\mu}_s$ について、

$$\vec{\mu}_s \propto -\frac{e}{2m_e}\vec{s} \tag{11.25}$$

とかけるが、相対論的量子力学の議論²²から、演算子としてŝ, µ̂sを用いて

$$\hat{\mu}_s = -g \frac{e}{2m_e} \hat{s} = -\frac{2\pi g \mu_B}{h} \hat{s}$$
 (11.26)

と表される(gは定数であり、自由電子の場合はg = 2.0023であることが 導かれている)。 μ_B (= $\frac{eh}{4\pi m_e}$)はボーア磁子とよばれる定数である ²³。

あらためて水素原子を考えると、電子は原子核の周りで運動している (古典論では公転とみなす)ため、その運動状態(電流)に基づく磁場が 発生している。周回運動する電子を原点とする相対座標からみれば、電荷 をもつ原子核が電子を周回していることにあたる²⁴。すると、原子核の周 回運動(電流)で、電子の周囲に磁場が形成されると考えられる。電子は スピンをもっているので、原子核の周回運動の磁場から磁気的な相互作用 のエネルギーを得ることになる。この磁場はそもそも、電子の軌道角運動 量から生じているので、電子が受ける磁気的な相互作用エネルギーは電子 の軌道角運動量 *î* に比例する。また、この磁気的な相互作用エネルギーは 電子のスピン角運動量 *š* にも比例するとみなせる。したがって、電子は 水素原子中では、運動エネルギー、原子核からの引力の静電ポテンシャル (第3回 P.4)の他に、

(磁気的な相互作用) $\propto \vec{s} \cdot \vec{l}$ (11.27) をもって運動していることになる。これより,水素原子における電子の運動状態を表すシュレーディンガー方程式は,第3回で説明したものよりも さらに補正が必要になり,式(11.28)となる。

$$\begin{pmatrix}
(
電子の) \\
(
運動エネルギー) + (
電子-原子核の) \\
静電ポテンシャル
\end{pmatrix}
+ \begin{pmatrix}
(
電子のスピンと軌道がもたらす) \\
磁気的な相互作用 \\
(スピン - 軌道相互作用)
\end{pmatrix}
\end{pmatrix}
\Psi = E\Psi (11.28)$$

²² ディラック方程式とよばれる,シュレ ーディンガー方程式のハミルトニアンに 相対論的効果を含めた場合の波動方程式 から導かれる。詳細は以下の出典を参照 しよう。

日笠健一,『ディラック方程式』サイエンス社, p.14, 2014,.

$$\mu_B = \frac{eh}{4\pi m_e} = 9.274 \times 10^{-24} \text{ [J T}^{-1}\text{]}$$

の式で、 m_e を陽子の質量 m_p に置き換えた 磁気モーメントを核磁子 μ_N とよぶことが ある。陽子の質量は電子のそれの 1840 倍 なので、核磁子

$$\mu_N = \frac{en}{4\pi m_p}$$

の大きさはボーア磁子の 10^{-3} 倍ほど小さい。ただし、陽子 1 個の磁気モーメントの測定値は 2.79 μ_N であることに注意(電子 1 個の磁気モーメントは $-\mu_B$ とほぼ同じ)。

²⁴ 核スピンも電子の周回運動による磁場の影響をうけるが、核スピンの磁気モーメントは電子に比べて著しく小さいため、磁気共鳴法を除いて、核がうけるスピンー軌道相互作用を無視する。

'2'2 となる ³⁰。このエネルギー差 $\frac{3}{2}hc \tilde{A}$ こそが $17 \, \mathrm{cm}^{-1}$ (Na 原子中の電子が もつエネルギーの約0.1%)に相当する。分解能の高い分光器を用いれば、 原子中の電子の状態をより詳細に調べることができることの好例である。 また,原子中の電子の配置に関するフントの規則についても,基底状態(第 3回 P.10, 図 11-7) だけでなく励起状態にも適用することができ、スピン -軌道相互作用のエネルギーにより以下のように整理される。

とかける。h, c はそれぞれプランク定数と光の速度であり, Ãをスピン-軌道カップリング定数(一般的に波数[cm⁻¹]で表される)とよぶ。例えば、 第4回 P.3 での Na 原子の発光スペクトル(588.99 nm (16978 cm⁻¹)と 589.59 nm (16961 cm⁻¹)の可視光線領域の発光)を考えよう。Na 原子 中の最外殻の電子1個のみに注目すると28,基底状態のNa原子の電子配 置は[Ne](3s)¹なので s = 1/2, l = 0, j= s = 1/2 であり,スピンー軌道相互作

リングとよぶ)は、重元素の原子では、影響が大きくなる25。実際、電子

と表される。ここでの原子核は+Z*eの有効核電荷をもつとしており、Rは

原子核-電子の距離である。この電子のエネルギー Eを求める(つまり, そのようなエネルギーをもつ電子を観測する)には、ハミルトニアンが、

 $\hat{s} \cdot \hat{l}$ ではなく $\hat{l}^2 \otimes \hat{s}^2$ で表される必要がある (Appendix 11. B)。そこで、電 子の軌道角運動量とスピン角運動量の和をあらためて合成角運動量 7 と

(11.30)

(11.29)

(11.31)

(11.32)

(11.33)

(11.34)

の軌道角運動量とスピン角運動量のそれぞれの演算子**î**. ŝを用いると ²⁶.

 $(スピンー軌道相互作用) \propto \frac{Z^{\#}}{D^{3}} \hat{s} \cdot \hat{l}$

 $\vec{j} \equiv \vec{s} + \vec{l}$

 $\hat{j}^2 = (\hat{s} + \hat{l})^2 = \hat{s}^2 + 2\hat{s} \cdot \hat{l} + \hat{l}^2$

 $\therefore \hat{s} \cdot \hat{l} = \frac{1}{2}(\hat{j}^2 - \hat{s}^2 - \hat{l}^2)$

 $E_{l,s,j} \propto \frac{1}{2} \{ j(j+1) - s(s+1) - l(l+1) \}$

 $E_{l,s,j} = \frac{1}{2}hc\tilde{A}\{j(j+1) - s(s+1) - l(l+1)\}$

合成角運動量の大きさの絶対値の2乗に対応する演算子j²を用いれば

と表せる。したがって、スピンー軌道相互作用のエネルギーEls,jは、スピ ン量子数 s, 軌道量子数 l, 合成角運動量の量子数 j で (摂動論を適用して)

定義し.

観測できることになり 27,

用のエネルギー $E_{0,\frac{11}{24}} = 0$ となる。一方で、励起状態の Na 原子の電子配置

は[Ne](3p)¹であり、スピン角運動量と軌道角運動量が同じ向きのときは s=1/2, l=1, j=(1/2)+1=3/2 となり、スピン角運動量と軌道角運動量が

$$E_{1,\frac{1}{2},\frac{3}{2}} = \frac{1}{2}hc\tilde{A}\left\{\frac{3}{2}\left(\frac{3}{2}+1\right) - \frac{1}{2}\left(\frac{1}{2}+1\right) - 1(1+1)\right\} = \frac{1}{2}hc\tilde{A} \qquad (11.35)$$

$$E_{1\frac{1}{2}\frac{1}{2}} = \frac{1}{2}hc\tilde{A}\left\{\frac{1}{2}\left(\frac{1}{2}+1\right) - \frac{1}{2}\left(\frac{1}{2}+1\right) - 1(1+1)\right\} = -hc\tilde{A}$$
(11.36)

逆向きのときは、
$$s = 1/2$$
、 $l = 1, j = |1 - 1/2| = 1/2$ である。式(11.34)より、
 $E_{1,\frac{13}{2'2}} = \frac{1}{2}hc\tilde{A}\left\{\frac{3}{2}\left(\frac{3}{2} + 1\right) - \frac{1}{2}\left(\frac{1}{2} + 1\right) - 1(1+1)\right\} = \frac{1}{2}hc\tilde{A}$ (11.35)

25 周回運動する電子を座標にとると、電 荷をもつ核が周回していることにあた る。したがって,有効核電荷が大きくなる と、核の周回運動の電流が大きくなり、そ の磁場が強まる。電子のスピンはその磁 場と相互作用しているため、スピンー軌 道相互作用が大きくなる。

²⁶ 詳細は Appendix 11.D を参照。

27 合成角運動量の量子数 jは,

$$\hat{j}^2 \Psi = j(j+1) \frac{h^2}{4\pi^2} \Psi,$$

$$\hat{j}_z \Psi = \frac{h}{2\pi} m_j \Psi$$

をみたす整数である。 j², j₂は合成角運動 量が関係する演算子であり、j²は合成角 運動量の大きさの絶対値の2乗, ĵzはz方 向の合成角運動量に対応する。m_iは全角 運動量のz軸方向の磁気量子数である。

 $28 \vec{j} = \vec{s} + \vec{l}$ である。各量子数は離散的な 値をとることから $j = l + s, l + s - 1, \dots,$ $|l-s| \ge t_{a} \le 0$ (1/2) + $l = (1/2) + l = t_{a} \le 1$ $|l - 1/2| \ge t_{2} \le t_{2}$

$$s = 1/2$$
 $s = 1/2$
 $l = 1$ $j = 3/2$ $l = 1$ $j = 1/2$

³⁰ 本来は, Na 原子中のすべての電子につ いて考える必要がある。

- ・Sが同じになる電子配置の場合,最大の全軌道角運動量Lをもつ配置が 最安定。
- ・SとLが同じとなる電子配置では、被占軌道の電子が半数より少ない時に は全合成角運動量量子数Jが最小となる電子配置、半数より多い時には Jが最大になる電子配置がそれぞれ安定となる。

 $m_s=1/2$ $m_s=1/2$ $m_s = 1/2$ $m_s = -1/2$ $m_s = 1/2 \ m_s = -1/2$, † + $p_{x} = 0$ $p_{x} = p_{y}$ $m_{0} = 0$ $m_{0} = 1$ $m_{0} = -1$ $p_z p_x$ $p_z p_x p_y$ p_v $M_s = \frac{1}{2} + \left(-\frac{1}{2}\right) = 0$ $M_s = \frac{1}{2} + \left(-\frac{1}{2}\right) = 0$ $M_s \equiv \sum m_{s_i} = \frac{1}{2} + \frac{1}{2} = 1$ $M_L = 0 + 0 = 0$ $M_L = 0 + 1 = 1$ $M_L \equiv \sum m_{(l)_i} = 0 + 1 = 1$ S=0S=0 $M_{s} = S, S - 1, \dots, 0, \dots, -S$ なので S = 1L=0L=1 $M_L = L, L - 1, \cdots, 0, \cdots, -L \text{ to } \mathcal{O} \mathcal{O} L = 1$ J=0J=1 $I = L + S, L + S - 1, \dots, |L - S|$ なので J=2,1,0 安定な電子配置 不安定な電子配置

図 11-7 フントの規則(第3回の図 3-12 を再掲。px,py 軌道は *l*=1, *m*(*p*=±1の波動関数の線形結合であることに注意(Appendix 11.E))

磁場を印加したときに原子はどうなるのか

磁場 \vec{B} が多電子原子に印加されると、位置座標 \vec{r} で速度 \vec{v} の電子は 電荷 (-e)をもっているために、ローレンツ力 (-e) ($\vec{v} \times \vec{B}$)を受ける³¹。 このときのシュレーディンガー方程式は、原子核の運動を無視でき(ボル ンーオッペンハイマー近似、第4回)、またスピンー軌道相互作用も著し く小さいので無視して、

と表せる。ローレンツ力を受けた電子の運動エネルギーは、 $\nabla \times \vec{A} \equiv \vec{B}$ と定 義されたベクトルポテンシャル \vec{A} を用いて³²

$$\frac{1}{2m_e} \left(\vec{p} + e \, \vec{A} \right)^2$$

と表される(**p**は電子の運動量)。また,電子スピンと外部磁場の相互作用 エネルギーは,**s**を電子のスピン角運動量として

$$-\left(-\frac{e}{2m_e}\vec{s}\right)\cdot\vec{B} = \frac{e}{2m_e}\vec{s}\cdot\vec{B} \quad (11.38)$$

と表される。今,原子に対して著しく広い空間の外部磁場 \vec{B} が z 軸方向に 一様であるとみなせて (B_z は定数),

 $\vec{B} = (0, 0, B_z)$ (11.39) であるとする時,電子1個のみが原子(有効核電荷を+Zeとする)にある (水素様原子)場合には,電子の座標 \vec{r} に対して³³ ³² 磁場 \vec{B} がわき出しのない条件 ($\nabla \cdot \vec{B} = 0$) を満たせば, \vec{B} は $\vec{B} = \nabla \times \vec{A}$ となるベクトル場 \vec{A} で表される (:: $\nabla \cdot (\nabla \times \vec{A}) = 0$)。

電子は磁場の中でベクトルポテンシャル の向きに動かされるとみなせる。本来は, ラグラジアンを用いて,ローレンツ力の 式からハミルトニアンを導出する。詳細 は量子力学のテキストを参照。

³³ 一様な磁場での
$$\vec{A} = \frac{1}{2} (\vec{B} \times \vec{r})$$
が
 $\vec{B} = \nabla \times \vec{A}$ となる理由は次の通り。

$$A_x = \frac{1}{2} (zB_y - yB_z)$$
$$A_y = \frac{1}{2} (xB_z - zB_x)$$
$$A_z = \frac{1}{2} (yB_x - xB_y)$$

$$\begin{array}{l} \downarrow \psi , \\ \left(\nabla \times \vec{A} \right)_{x} = \frac{\partial A_{z}}{\partial y} - \frac{\partial A_{y}}{\partial z} = \frac{1}{2} (B_{x} + B_{x}) = B_{x} \\ \left(\nabla \times \vec{A} \right)_{y} = \frac{\partial A_{x}}{\partial z} - \frac{\partial A_{z}}{\partial x} = \frac{1}{2} (B_{y} + B_{y}) \\ = B_{y} \end{array}$$

$$\left(\nabla \times \vec{A}\right)_{z} = \frac{\partial A_{y}}{\partial x} - \frac{\partial A_{x}}{\partial y} = \frac{1}{2}(B_{z} + B_{z}) = B_{z}$$
$$\therefore \nabla \times \vec{A} = \vec{B}$$

10

$$\vec{A} = \frac{1}{2} \left(\vec{B} \times \vec{r} \right) = \frac{1}{2} \left(-B_z y, B_z x, 0 \right)$$
 (11.40)

および

$$\frac{e}{2m_e}\vec{s}\cdot\vec{B} = \frac{e}{2m_e}s_z B_z \qquad (11.41)$$

であるので,水素様原子の外部一様磁場下のシュレーディンガー方程式 は、式(11.26)をふまえて、それぞれの演算子を用いて

$$\left\{-\frac{h^2}{8m_e\pi^2}\nabla^2 - \frac{Ze^2}{4\pi\varepsilon_0 r} + \frac{eB_z}{2m_e}(\hat{l}_z + g\hat{s}_z) + \frac{e^2B_z^2}{8m_e}(\hat{x}^2 + \hat{y}^2)\right\}\Psi - F\Psi \quad (11.42)$$

と表される 34。ここで

$$\left\{-\frac{h^2}{8m_e\pi^2}\nabla^2 - \frac{Ze^2}{4\pi\varepsilon_0 r}\right\}\Psi_H = E_H\Psi_H \qquad (11.43)$$

を満たす波動関数 Ψ_H とエネルギー E_H は第3回ですでに導出されており、 外部磁場の強さに依存しない。よって、水素様原子の電子のエネルギーが 外部磁場の影響を受けるのは、2つのハミルトニアン

$$\frac{e_{B_z}}{2m_e} \left(\hat{l}_z + g \hat{s}_z \right) \quad \text{tot} \quad \frac{e^2 B_z^2}{8m_e} \left(\hat{x}^2 + \hat{y}^2 \right)$$

を考えればよい。

反磁性

上記の2つのハミルトニアンのうち,

$$\frac{e^2 B_z^2}{8m_e} (\hat{x}^2 + \hat{y}^2)$$

は、物質の反磁性の原因(Larmor反磁性とよぶ)となる。原子 1 個にお ける電子 1 個あたりのエネルギー E_d は(Ψ_d を対応する波動関数とおく)、 シュレーディンガー方程式の摂動論による補正(第 4 回 Appendix 4.G を 参照)に基づき、このハミルトニアンで波動関数を全空間積分すればよい ため、

$$E_{d} = \int \Psi_{d}^{*} \frac{e^{2}B_{z}^{2}}{8m_{e}} (\hat{x}^{2} + \hat{y}^{2})\Psi_{d} d\tau = \frac{e^{2}B_{z}^{2}}{8m_{e}} \int \Psi_{d}^{*} (\hat{x}^{2} + \hat{y}^{2})\Psi_{d} d\tau$$
$$= \frac{e^{2}B_{z}^{2}}{8m_{e}} \langle x^{2} + y^{2} \rangle = \frac{e^{2}B_{z}^{2}}{12m_{e}} \langle r^{2} \rangle \quad (11.44)$$

となる(〈 〉は空間平均を表す。rを円運動の半径とすると、x, y, zは独立 変数なので、〈 $x^2 + y^2$ 〉 = $\frac{2}{3}$ 〈 $x^2 + y^2 + z^2$ 〉 = $\frac{2}{3}$ 〈 r^2 〉となる)。物質(孤立した 原子やイオンまでも含む)が N 個の原子集団で、各原子が Z 個の電子を もっているとすると、物質の反磁性に寄与するエネルギーは、

$$NZE_d = \frac{NZe^2 B_z^2}{12m_e} \langle r^2 \rangle \tag{11.45}$$

となる。これは、等温(例:常温)のもと、<u>定積</u>過程での物質の状態変化 に伴うエネルギーを考えているので、ヘルムホルツ自由エネルギーFに対 応させることができる。すると、原子集団の磁化 *M*(単位体積当たりの磁 気モーメント)は、式(11.7)から

豊田太郎 物性化学ノート 2025 第 11 回 34 式(11.42)のハミルトニアンは次の通 り。 $\frac{1}{2m_a} \left(\vec{p} + e\vec{A} \right)^2$ $=\frac{1}{2m_e}\vec{p}\cdot\vec{p}+\frac{e}{2m_e}(\vec{p}\cdot\vec{A}+\vec{A}\cdot\vec{p})+\frac{e^2}{2m_e}\vec{A}\cdot\vec{A}$ これらを演算子で表すと, $\hat{p} = (\hat{p}_x, \hat{p}_y, \hat{p}_z)$ $=(-i\frac{h}{2\pi}\frac{\partial}{\partial x},-i\frac{h}{2\pi}\frac{\partial}{\partial y},-i\frac{h}{2\pi}\frac{\partial}{\partial z})$ $\therefore \frac{1}{2m_e}\hat{p}^2 = -\frac{h^2}{8m_e\pi^2}\nabla^2$ $\hat{A} = \frac{1}{2} (-\hat{y}B_z, \hat{x}B_z, 0) \quad \dot{\tau}_z \mathcal{O} \tilde{\tau},$ $\frac{e^2}{2m_e}\hat{A}\cdot\hat{A} = \frac{e^2{B_z}^2}{8m_e}(\hat{x}^2 + \hat{y}^2)$ および $\frac{e}{2m_e}(\hat{p}\cdot\hat{A}+\hat{A}\cdot\hat{p})=\frac{e}{2m_e}(-\hat{y}\hat{p}_x+\hat{x}\hat{p}_y)B_z$ $=\frac{e}{2m_e}B_z\left(-\mathrm{i}\frac{h}{2\pi}\left(-y\frac{\partial}{\partial x}+x\frac{\partial}{\partial y}\right)\right)$ $=\frac{e}{2m_e}B_z\hat{l}_z$ となる。ここで $\frac{e}{2m_e}B_z \hat{l}_z$

> の項は,電磁気学によって古典的に導か れた式(11.24)

$$\vec{\mu} = -\frac{e}{2m_e}\vec{\Gamma}$$

(*µ*は電子の軌道による磁気モーメント, *r*は電子の軌道の角運動量であり,互いに 向きが逆である)との比較によって,電子 の軌道に寄与する磁気モーメントは, 演 算子*µ*として

$$\hat{\mu} = -\frac{\partial (\nearrow \exists \nu \vdash \exists \mathcal{T} \vee)}{\partial B_Z} = -\frac{e}{2m_e}\hat{l}_z$$

に対応していることになる。 加藤雄介『量子力学II講義プリント』2007年 https://webpark1378.sakura.ne.jp/ kato/gm2_2007.htm (最終閲覧日 2023 年 2 月 24 日)

OTAL TAL

$$M = -\frac{\partial F}{\partial B_z} = -\frac{\partial}{\partial B_z} (NZE_d) = -\frac{NZe^2 B_z}{6m_e} \langle r^2 \rangle \qquad (11.46)$$

であり、一様磁場 $\vec{B} = (0,0,B_z)$ での物質の反磁性磁化率 χ_d は、

$$\chi_{d} = \frac{\mu_{0}M}{B_{z}} = -\frac{\mu_{0}NZe^{2}}{6m_{e}}\langle r^{2}\rangle$$
(11.47)

と求まる。つまり、ラーモア反磁性とは、各原子やイオン内で電子が、ローレンツ力の影響により、外部磁場を打ち消すように運動することに相当する。 (r^2) の項があることから、最外殻の軌道の電子がラーモア反磁性の反磁性磁化率に最も大きく寄与する。そして、この反磁性磁化率は温度に依存しない。また、グラファイトのような物質では π 電子が炭素原子層で非局在化しているため、原子層面に垂直な磁場がかかると非局在化した π 電子による環電流(図 11-8)が生じ、大きな反磁性磁化率があらわれることになる。

図 11-8 磁場印加下で環電流をなすベンゼンのπ電子の模式図。

常磁性

上記の2つのハミルトニアンのうち,

$$\frac{eB_z}{2m_e}(\hat{l}_z + g\hat{s}_z)$$

の方は、物質の常磁性の原因(Langevin常磁性とよぶ)の一つとなる。これは不対電子のスピンと軌道の角運動量が別々に起因している形になっている。 Ψ_p を1個の不対電子の波動関数とすれば、式(11.10)(11.11)(11.43)より

$$\begin{cases} -\frac{h^2}{8m_e\pi^2}\nabla^2 - \frac{Ze^2}{4\pi\varepsilon_0 r} + \frac{eB_z}{2m_e}(\hat{l}_z + g\hat{s}_z) \end{pmatrix} \Psi_p \\ = \{E_H + \mu_B mB_z + g\mu_B m_s B_z\} \Psi_n \tag{11.48} \end{cases}$$

とかける(*m*, *m*_sはそれぞれ磁気量子数とスピン磁気量子数)。ここで, P.8 で説明したように, スピンと軌道の間にはスピンー軌道相互作用がはたら くことを思い出そう。気体や固体など物質中で原子どうしが完全に孤立し ているとみなせる場合, 各原子の不対電子の合成角運動量の z 成分は

$$\hat{j}_z = \hat{l}_z + \hat{s}_z$$
 (11.49)

であり,対象となる物質に含まれる不対電子全ての和である全合成角運動量(P.9欄外)については,全軌道角運動量と全スピン角運動量を用いて

$$\hat{J} = \hat{L} + \hat{S} \qquad (11.50)$$

と表される。この物質が外部磁場から受けるポテンシャルエネルギーに基づくハミルトニアンは、全合成角運動量にも外部磁場にも比例することから、

³⁵ 導出は次の通り。 まず、

$$\hat{I}^2 \Psi = I(I+1)\Psi$$

である (Jは全合成角運動量の量子数であ り, 全合成角運動量の大きさの絶対値の 2 乗(固有値)がJ(J+1)である)。一方で,

$$\begin{split} &\left\{\hat{J} \cdot \frac{1}{g_J} \left(\hat{L} + g\hat{S}\right)\right\} \Psi \\ &= \frac{1}{g_J} \{\left(\hat{L} + \hat{S}\right) \cdot \left(\hat{L} + g\hat{S}\right)\} \Psi \\ &= \frac{1}{g_J} \{\hat{L}^2 + g\hat{S}^2 + (1+g)\hat{L} \cdot \hat{S}\} \Psi \\ &= \frac{1}{g_J} [L(L+1) + gS(S+1) \\ &\quad + \frac{1+g}{2} \{J(J+1) - S(S+1) - L(L+1)\}] \Psi \\ &= \frac{1}{g_J} \{\frac{1+g}{2} J(J+1) + \frac{1-g}{2} L(L+1) \\ &\quad + \frac{g-1}{2} S(S+1)\} \Psi \end{split}$$

$$J(J+1) = \frac{1}{g_J} \{ \frac{1+g}{2} J(J+1) + \frac{1-g}{2} L(L+1) + \frac{g-1}{2} L(L+1) \}$$

$$\therefore g_{J} = \frac{1+g}{2} - \frac{g-1}{2} \frac{L(L+1) - S(S+1)}{J(J+1)}$$

g~2であるので,

$$g_{J} = \frac{3}{2} - \frac{L(L+1) - S(S+1)}{2J(J+1)}$$
と表すテキストもある。

$$g_J \mu_B \hat{f} \cdot \hat{B}$$
 (11.51)
とかける (g_J は比例定数で、 $Landéの g$ 因子とよばれる)。よって $g_J \hat{f} = \hat{L} + g \hat{S}$ (11.52)

が成り立ち、 g_1 について解くと³⁵

$$g_J = \frac{1+g}{2} - \frac{g-1}{2} \frac{L(L+1) - S(S+1)}{J(J+1)}$$
(11.53)

となる。この不対電子の集団の J_z は磁場 \vec{B} に対して,離散的な値(-J, -J + 1, ..., J - 1, J) しかとることができないので,ボルツマン因子(第5回の P.3) に従うものと近似できる。つまり,不対電子の向きの確率分布Pを

$$P \propto \exp\left(\frac{-g_J \mu_B J_z B_z}{k_B T}\right) = D \exp\left(\frac{-g_J \mu_B J_z B_z}{k_B T}\right) \quad (11.54)$$

とおいて (Dは比例定数), 磁化の平均値 Mを求めると³⁶, 磁化率 χ_n は

$$\chi_p = \frac{N}{3} \frac{g_J^2 \mu_0 J (J+1) {\mu_B}^2}{k_B T}$$
(11.55)

と導かれる(Nは原子数)。式(11.55)はまさに、常磁性の物質の磁化率は 温度に反比例するという実験結果(式(11.2))に理論モデルを与えている。

物質に含まれる不対電子が常磁性の要因であることは,磁化率の測定結 果から理解されている。図 11-9 は遷移金属錯体(第 10 回)の塩の磁化率 から算出した実効的な磁気モーメントを示したものである。d 電子が 0 個 および 10 個の錯体の塩は実効的な磁気モーメントがほぼ 0 であった。d 電子が 6 個で低スピン状態の[Co(NH₃)₆]Cl₃ も,正の磁化率を検出できな かった。つまり,これらは反磁性とみなされる。これら以外の遷移金属錯 体の塩はいずれも常磁性であり,実効的な磁気モーメントの大きさの序列 も,不対電子の数の大小の傾向とおおよそ一致する。

	化合物	測定值 (B.M.)	計算值
d^0	K3ScF6,K2TiF6,KVF6	0	0
d^1	$CsTi(SO_4)_2\cdot12H_2O$	1.7	1.73
	K_2VF_6	1.8	
d^2	K ₃ VF ₆	2.79	2.83
Ĩ	$K_2 Cr F_6$	2.8	
d^3	[Cr(NH ₃) ₆]Cl ₃	3.8	3.88
	K ₂ [MnCl ₆]	3.87	
d^4	K_3MnF_6	4.95	4.90(高スピン)
	$K_4[Cr(CN)_6]$	3.15	2.83(低スピン)
	$K_3[Mn(CN)_6]$	2.95	
d^5	$[Mn(H_2O)_6]Cl_2$	5.9	5.9(高スピン)
	K ₃ [FeF ₆]	5.9	<i>1</i> 6
	$K_4[Mn(CN)_6]$	2.13	1.73(低スピン)
	$K_3[Fe(CN)_6]$	2.5	
d^6	$Fe(NH_4)_2(SO_4)_2 \cdot 6H_2O$	5.25	4.9(高スピン)
	K ₃ CoF ₆	5.2	
	$K_4[Fe(CN)_6]$	0	0(低スピン)
	$[C_0(NH_3)_6]Cl_3$	0	
d^7	$[\operatorname{Co}(\operatorname{NH}_3)_6](\operatorname{ClO}_4)_2$	5.04	3.88(高スピン)
	K ₃ NiF ₆	2.5	1.73(低スピン)
d^8	[Ni(NH ₃) ₆]Cl ₂	3.17	2.83
	K ₃ CuF ₆	2.8	
d^9	$[Cu(NH_3)_4](NO_3)_2$	2.0	1.73
d^{10}	CuCl	0	0
	$ZnSO_4 \cdot 7H_2O$	0	

図 11-9 遷移金属錯体の実効的な磁気モーメント(単位はボーア磁子 μ_B) ³⁷。計算値は n 個の不対電子について $\mu_B \sqrt{n(n+2)}$ として算出 ³⁸。

豊田太郎 物性化学ノート 2025 第11回

³⁶ 導出の詳細は Appendix 11. F。

低スピン状態 高スピン状態

³⁷ 図の出典:

中原勝儀, 金属表面技術, 29, 150 (1978).

³⁸ n 個の不対電子があると全スピン量子 数 S は S = (1/2)×n であるので、その磁 気モーメント μ は $\mu = 2\mu_B \sqrt{S(S+1)} = \mu_B \sqrt{n(n+2)}$

となる。

また,第5回 P.18 で説明した液体 O_2 も常磁性(不対電子は2個であり, ビラジカルとよぶ)であり,磁化率は正で約 10^{-3} という実験結果が得ら れている(例えば,水の磁化率を計測すると -10^{-6} なので,水は反磁性)。 液体窒素温度にまで冷却すれば,常磁性磁化率が大きくなり,液体 O_2 は 強力な永久磁石に引き寄せられるようになる。

有機化合物でも、不対電子をもつ分子(有機ラジカルもしくは遊離基と よぶ)が多数合成され、その磁化率が調べられている。最も単純な構造で よく調べられている有機化合物の一つは、トリメチレンメタン C₄H₆であ る(図 11-10)³⁹。ヒュッケル分子軌道法(第 6 回)により、この分子で は 2 個の π 電子が 2 個の C 原子それぞれにスピンの向きを同じとする不 対電子となっている(不対電子の分子軌道では、中央の炭素原子が完全に 節になっている)ことが示され、磁化率測定からも 2 個の不対電子の存在 が明らかにされた ⁴⁰。

図 11-10 トリメチレンメタンのπ電子の状態 41

また、岩村の研究グループは、ジアゾメタン(第5回 P.25)が N₂分子を放出して分解した際に生じる、同一 C 原子に 2 個の不対電子をもつカルベンに注目した。この 2 個の不対電子のスピンの向きは、直交する 2 つの等エネルギー準位の分子軌道においてフントの規則を満たすことで、同一のものとなる。さらに、m・キシリレン((CH₃)₂)CH-C₆H₄-CH(CH₃)₂はビラジカルとして、スピンの向きが同じ 2 個の不対電子で安定化される⁴²。この研究グループは、カルベンがベンゼン環を介して 4 個連結した図 11-11 の有機分子を新たに設計、合成し、スピンがすべて同一である不対電子 8 個がこの分子で生じることを実験的に示した ⁴³。この有機分子は、金属錯体がもつ不対電子の最大個数 (3d 軌道では 5 個、4f 軌道では 7 個)よりも多い不対電子をもつことから、「有機物は反磁性」という固定概念 にとらわれない有機分子磁性という新しい研究分野を盤石なものとした。

図 11-11 スピンが同じ不対電子を8個もつ有機分子の例。

原子間での電子のふるまいをもう一度、角運動量の観点で考える

ここまでの説明をまとめておこう。

 豊田太郎 物性化学ノート 2025 第 11 回
 ³⁹ トリメチレンメタンの合成経路は Appendix 11.G を参照。

> ⁴⁰ 不対電子のスピンを分光法(電子常磁 性共鳴分光法)で調べる方法もよく用い られる。Appendix 11. H を参照。

⁴¹ 図の出典:

Dowd, Acc. Chem. Res., 5, 242-248 (1972) Slipchenko, Krylov, J. Chem. Phys. 118, 6874 (2003) 永年方程式は次の通り。

 $\Leftrightarrow \lambda^4 - 3\lambda^2 = 0$

 $\Leftrightarrow \lambda = 0 \ (\texttt{\underline{\pm}}\texttt{\underline{m}}), \pm \sqrt{3}$

共鳴法は,π電子の分子軌道で不対電子が 存在することを前提として,ビラジカル で表現している。

⁴² m-キシリレンの共鳴法は次の通り。

カルの極限共鳴構造式よりも不対電子の ないそれの方が大きく安定性に寄与する ため,ビラジカルの寄与は無視されるこ とになる。

⁴³ 出典: Sugawara, T. et al, *J. Am. Chem. Soc.*, **106**, 6449 (1984).

・不対電子を1個もつ原子や分子に注目すると、その不対電子が α スピン か β スピンかにより(軌道運動量が0でなければ)、スピンー軌道カップリ ングによってごくわずかに電子のエネルギー(全体に対して約0.1%)が 異なるようになる(式(11.34))。

・外部から磁場を印加すると、電子は原子・分子1個あたり、外部磁場を わずかに打ち消すこと(反磁性)はあるが、不対電子は軌道の角運動量と スピン角運動量のハミルトニアンの影響を受ける(式(11.48))。このエネ ルギー準位の変化(常磁性)は、外部磁場の大きさと温度で制御される。

これらは、原子中の電子、特に1個の不対電子、について角運動量を考 慮してシュレーディンガー方程式を補正することで、説明されてきた。次 に、これ以降は、2個以上の原子の間での<u>電子スピンどうしのふるまい</u>に ついて、角運動量を考慮して理解することを目指す。

電子は負電荷をもつことから、2個の原子における電子の間には斥力的 な静電相互作用がはたらく(図 11-12)。その一方で、電子は磁気モーメン ト $\vec{\mu}_{s1}, \vec{\mu}_{s2}$ をもっているために、距離rにある2つの電子の間には、引力的 な磁気双極子相互作用もはたらく。

この磁気双極子相互作用のエネルギーの大きさ Eは、磁気モーメント $\hat{\mu}_{s1}$ がつくる磁場から磁気モーメント $\hat{\mu}_{s2}$ がうけるエネルギーであり、式 (11.56)の通りとなる ⁴⁴。

$$E = \frac{\mu_0}{4\pi r^3} \left\{ \vec{\mu}_{s1} \cdot \vec{\mu}_{s2} - \frac{3}{r^2} (\vec{\mu}_{s1} \cdot \vec{r}) (\vec{\mu}_{s2} \cdot \vec{r}) \right\}$$
(11.56)

ここで \vec{r} は電子1から電子2へひいた位置ベクトルである。しかし、この エネルギーは、1Åの距離に近づいた2個の電子(磁気モーメントの大き さは μ_B)でも10⁻²³J程度と極めて小さいため、磁気双極子相互作用は、 物質中の電子どうしがスピンの向きを揃えて秩序立った状態へ変化する 過程にはほとんど寄与しない。

2個の原子が共有結合をつくるほど接近すると、第3回で説明したよう に、原子軌道から分子軌道が形成され、構成原理・パウリの排他律・フン トの規則によって電子は α スピンと β スピンの対(スピン多重度 2*S*+1= 2(1/2+(-1/2))+1=1であり、一重項状態とよぶ)となって分子軌道を占 め、共有結合が安定に形成される。しかし、2個の原子がイオン結合して 不対電子が存在する場合や金属結合でできた結晶(金属結合結晶)の場合 では、電子が必ずしも α スピンと β スピンの対にならなくとも安定化して いることになる。このことを、角運動量も考慮したハミルトニアンと、電 子の全波動関数(つまり、軌道波動関数とスピン波動関数の積)を用いた シュレーディンガー方程式から導こう。

2 つの原子(原子 A, 原子 B, いずれも原子番号 Zとする)において, それぞれ電子が1個ずつ入っているとすると(電子 1, 電子 2 とする), この2 つの原子全体についてのシュレーディンガー方程式は,

豊田太郎 物性化学ノート 2025 第 11 回 ピン⁴⁴式(11.56)の導出。

> 磁気モーメント μ は,距離 *d* だけ離れた 位置に磁荷 $q_m \& -q_m$ をもつ物体に対 して, $-q_m$ から q_m の向きを正として $\mu \equiv q_m d/\mu_0$ と定義される (μ_0 は真空の透 磁率)。今,電子2の磁気モーメントから 電子1のそれまでの距離をr,電子1の磁 気モーメントとのなす角を θ ,電子1の磁 気モーメントの磁荷 $-q_m \& q_m$ までの距 離をそれぞれ r_1 , $r_2 \& r_3$ 。まず, μ_1 がつ くる磁場 \vec{H} を求める。

磁荷 – $q_{\rm m}$ のつくる磁位 U_{-} は

$$U_- = -\frac{1}{4\pi\mu_0} \frac{q_m}{r_1}$$

磁荷 qm のつくる磁位 U+は

$$U_+ = \frac{1}{4\pi\mu_0} \frac{q_m}{r_2}$$

となるので,その和が電子 2 の位置での 磁位 *U*となる。

$$\begin{split} U &= U_{-} + U_{+} = \frac{q_{m}}{4\pi\mu_{0}} \left(\frac{1}{r_{2}} - \frac{1}{r_{1}}\right) \\ \text{ここで,} & r_{1}, r_{2}$$
はそれぞれ $r, \ \theta, d を用いて \\ \frac{1}{r_{1}} &= \left\{r^{2} + \left(\frac{d}{2}\right)^{2} + rd\cos\theta\right\}^{-1/2} \\ &= \frac{1}{r} \left\{1 + \left(\frac{d}{2r}\right)^{2} + \left(\frac{d}{r}\right)\cos\theta\right\}^{-1/2} \\ \frac{1}{r_{2}} &= \left\{r^{2} + \left(\frac{d}{2}\right)^{2} - rd\cos\theta\right\}^{-1/2} \\ &= \frac{1}{r} \left\{1 + \left(\frac{d}{2r}\right)^{2} - \left(\frac{d}{r}\right)\cos\theta\right\}^{-1/2} \\ &\geq \pm \pm \Im, \ r >> d \ \ge \Rightarrow t_{3} \pm \Im, \ r \ll 1 \end{split}$

の近似を用いれば,

$$U = \frac{q_m}{4\pi\mu_0} \frac{d\cos\theta}{r^2} = \frac{\mu_0 |\vec{\mu}_{s1}|\cos\theta}{4\pi\mu_0 r^2} = \frac{\vec{\mu}_{s1} \cdot \frac{r}{r}}{4\pi r^2}$$
$$= \frac{\vec{\mu}_{s1} \cdot \vec{r}}{4\pi r^3}$$

と求まる。磁位 Uと磁場 \vec{H} の関係は(電位と電場と同じ関係である(電位と電場の関係は第1回 Appendix 1.D), \downarrow

$$\begin{split} \textbf{(f)} \\ \textbf{(f)}$$

$$\left\{-\left(\frac{h^2}{8\pi^2 m_e}\right)\nabla^2 - \frac{e^2}{4\pi\varepsilon_0 r_B}\right\}\phi_B = E_0\phi_B \qquad (11.64)$$

を満たしている。いったん,

$$\hat{H} = -\left(\frac{h^2}{8\pi^2 m_e}\right) \nabla_1^2 - \left(\frac{h^2}{8\pi^2 m_e}\right) \nabla_2^2 - \frac{Ze^2}{4\pi\varepsilon_0 r_{A1}} - \frac{Ze^2}{4\pi\varepsilon_0 r_{B2}} - \frac{Ze^2}{4\pi\varepsilon_0 r_{A2}} - \frac{Ze^2}{4\pi\varepsilon_0 r_{A2}} - \frac{Ze^2}{4\pi\varepsilon_0 r_{B1}} + \frac{e^2}{4\pi\varepsilon_0 r_{12}} + \frac{Z^2e^2}{4\pi\varepsilon_0 R}$$
(11.65)

とおこう。すると、全波動関数
$$\Psi_s, \Psi_t$$
に対応するエネルギー E_s, E_t は 45,
 $E_s = \int \Psi_s^* \hat{H} \Psi_s d\tau_1 d\tau_2 d\sigma_1 d\sigma_2$
 $= \int \phi_A(1)^* \phi_B(2)^* \hat{H} \phi_A(1) \phi_B(2) d\tau_1 d\tau_2$
 $+ \int \phi_A(1)^* \phi_B(2)^* \hat{H} \phi_A(2) \phi_B(1) d\tau_1 d\tau_2$ (11.66)

45 規格化条件

$$\int \alpha^* \alpha \mathrm{d}\sigma = 1, \qquad \int \beta^* \beta \mathrm{d}\sigma = 1$$

 $= -\frac{1}{4\pi} \Biggl\{ \frac{\vec{\mu}_{s1}}{r^3} - \frac{3(\vec{\mu}_{s1} \cdot \vec{r})\vec{r}}{r^5} \Biggr\}$

直交条件は

と

$$\int \beta^* \alpha d\sigma = \int \alpha^* \beta d\sigma = 0$$

して定義されている。また、
$$\int \phi_A^* \phi_A d\tau = 1, \quad \int \phi_B^* \phi_B d\tau = 1$$

$$\int \phi_B^* \phi_A d\tau = \int \phi_A^* \phi_B d\tau = 0$$

である。

16

$E_t = \int \Psi_t^* \widehat{H} \Psi_t \mathrm{d}\tau_1 \mathrm{d}\tau_2 \mathrm{d}\sigma_1 \mathrm{d}\sigma_2$

$$= \int \phi_A(1)^* \phi_B(2)^* \widehat{H} \phi_A(1) \phi_B(2) \, \mathrm{d}\tau_1 \mathrm{d}\tau_2$$
$$- \int \phi_A(1)^* \phi_B(2)^* \widehat{H} \phi_A(2) \phi_B(1) \mathrm{d}\tau_1 \mathrm{d}\tau_2$$

と求まる。したがって、全波動関数 Ψ_s, Ψ_t について、エネルギー差

$$E_s - E_t = 2 \int \phi_A(1)^* \phi_B(2)^* \widehat{H} \phi_A(2) \phi_B(1) d\tau_1 d\tau_2 \qquad (11.68)$$

が生じることになる。このとき,

$$\int \phi_A(1)^* \phi_B(2)^* \widehat{H} \phi_A(2) \phi_B(1) d\tau_1 d\tau_2 \equiv \mathcal{J}_{12} \qquad (11.69)$$

を交換積分とよぶ。いま,原子 A にある電子 1 のスピン角運動量の演算 子を \hat{s}_1 ,原子 B にある電子 2 のスピン角運動量のそれを \hat{s}_2 とかくとする と,s=1/2なので

の関係 46 があることを利用して、やや技巧的だが、全波動関数 Ψ_s , Ψ_t のエ ネルギーについて式(11.66)(11.67)はいずれも

$$E = \int \phi_A(1)^* \phi_B(2)^* \widehat{H} \phi_A(1) \phi_B(2) \, \mathrm{d}\tau_1 \mathrm{d}\tau_2 - \frac{4\pi^2}{h^2} \frac{1 + 4\hat{s}_1 \cdot \hat{s}_2}{2} \mathcal{J}_{12} \quad (11.71)$$

と表すことができる。式(11.71)の右辺にある項のうち,スピン状態に依存 するエネルギー

 $-2\mathcal{J}_{12}\hat{s}_1\cdot\hat{s}_2$

を交換相互作用(または交換エネルギー)とよび、交換積分*J*₁₂が正でれ ば、これは2個の電子スピンについて引力的な相互作用であることがわか る⁴⁷。つまり、2個の電子スピンが三重項状態(スピン波動関数について 対称)である場合、軌道波動関数は反対称であることで、電子スピンは安 定化される。

常磁性物質の磁気相転移

式(11.55)で示されたように常磁性の物質は,温度を下げると,それに反 比例して常磁性磁化率が上がり,磁気モーメントが外部磁場と向きが平行 になるように不対電子は安定化されるようになる。しかし,ボルツマン因 子で考える範囲では,有限温度 *T*をいくら小さくしても,物質中のすべて の不対電子が向きを完全に揃えることはない。一方で,実験では,ある温 度よりも低温になると,物質中の原子の配列(結晶格子)は変化せずに, 物質中のすべての不対電子の向きがほぼ完全に揃う(磁化率が著しく変化 する)現象がよく観察されている。これを磁気相転移とよぶ。

磁気相転移は相転移の一種であるので、ギブス自由エネルギーGを考えよう。エンタルピーHとエントロピーSによりGは

 $G = H - TS \tag{11.72}$

⁴⁶波動関数 ψ を用いて、スピン量子数 $S = s_1 + s_2$ であるので、演算子 \hat{S}^2 による シュレーディンガー方程式は

$$\hat{S}^2\psi = \frac{h^2}{4\pi^2}S(S+1)\psi$$

である。一重項状態では, S= (1/2) + (-1/2) =0 なので,

(11.67)

$$\hat{S}^2\psi = 0\cdot\psi$$

一方で, $\hat{S}^2 = (\hat{s}_1 + \hat{s}_2)^2 = \hat{s}_1^2 + \hat{s}_2^2 + 2\hat{s}_1 \cdot \hat{s}_2$ であるから, $\hat{S}^2 \psi = (\hat{s}_1^2 + \hat{s}_2^2 + 2\hat{s}_1 \cdot \hat{s}_2)\psi$

$$=\frac{h^2}{4\pi^2}s_1(s_1+1)\psi+\frac{h^2}{4\pi^2}s_2(s_2+1)\psi+2\hat{s}_1\cdot\hat{s}_2\psi$$

$$=\frac{3}{2}\frac{h^2}{4\pi^2}\psi+2\hat{s}_1\cdot\hat{s}_2\psi$$

が成り立つ。したがって,

$$\hat{s}_1 \cdot \hat{s}_2 \psi = \frac{1}{2} \left(-\frac{3}{2} \frac{h^2}{4\pi^2} \right) \psi = -\frac{3}{4} \frac{h^2}{4\pi^2} \psi$$

三重項状態でも同様にして,

$$\hat{s}_1\cdot\hat{s}_2=\frac{1}{4}\frac{h^2}{4\pi^2}\psi$$

47交換相互作用は,同一原子においては三 重項状態の方が安定になるようにはたら く。

と表される(第1回)。まず,電子スピンに引力的にはたらく交換相互作 用 $-2J_{12}\hat{s}_1 \cdot \hat{s}_2$ (温度にほとんど依存しない)はエンタルピー項に含まれる ことから,エンタルピー項は常磁性状態よりもスピン整列状態の方が小さ い。次に,エントロピーは,スピンの方向が無秩序な常磁性状態の方が, スピン整列状態より大きな値をもつため,高温ほど常磁性状態の方が安定 となる。したがって,常磁性状態から温度を下げると,常磁性状態のギブ ス自由エネルギーとスピン整列状態のそれとが交差して(交差する時の温 度を転移温度 T_c とよぶ),スピン整列状態が安定な状態となる。スピン整 列状態は,物質によって数種類あり磁化率が著しく変化することが報告さ れており,ここでは強磁性を説明する 48。

金属の Fe や Ni, 金属酸化物の CrO₂ などは常温では常磁性であるが, 温度が転移温度を下回ると磁気相転移して,電子スピンが全て同じ向きに そろうことで,外部磁場がない状況でも磁化をもつことで磁石となる⁴⁹。 これを強磁性とよぶ。この現象は次のように理解されている。

まず外部磁場を印加され、磁場 *B*が生じている状況を考えよう。結晶中の全電子スピンに関わるハミルトニアン*Ĥ*は、

$$\widehat{H} = -\sum_{i,j} \mathcal{J}_{ij}\,\widehat{s}_i \cdot \widehat{s}_j + g\mu_B \sum_i \widehat{s}_i \cdot \widehat{B}$$
(11.73)

とかける。式(11.73)の右辺第1項は交換相互作用に対応する。いま, i番目の電子スピンに着目すると,その電子スピンが周囲から感じる有効磁場 (分子場とよぶ)を

$$\hat{B}_{mf} = -\frac{2}{g\mu_B} \sum_j \mathcal{J}_{ij} \,\hat{s}_j \tag{11.74}$$

とおくことで,

$$\widehat{H} = g\mu_B \sum_i \widehat{s}_i \cdot (\widehat{B} + \widehat{B}_{mf}) \qquad (11.75)$$

とかくことができる。これは、磁場 $\hat{B} + \hat{B}_{mf}$ を感じている常磁性物質の電子スピンのハミルトニアンと相応しているといえる。ここで、分子場は物質中の電子スピンの秩序状態に依存することから、磁化 *M*を用いて

$$\hat{B}_{mf} = \lambda \hat{M} \tag{11.76}$$

と表せると近似できる(λ は比例定数(分子場係数とよぶ)で,強磁性物 質では $\lambda > 0$)。すると,低温では,磁場をかけない状態(つまり,B=0) とも電子スピンが整列してゆくことで得られる磁気モーメントが内部磁 場をつくり,その内部磁場が電子スピンを整列させ,安定化することにな る。そして,昇温すると磁化が徐々に減少し,転移温度を超えると,整列 状態がこわれると解釈できる(強磁性のWeissモデルとよぶ)。

Appendix 11. F より, 原子数を *N*個として, スピン角運動量に替わって 全合成角運動量の量子数 *J*を用いた場合, この集団の平均の磁化 *M*は,

$$\alpha' = \frac{g_J \mu_B J B_{mf}}{k_B T} \geq \sharp \leq \Xi \geq \mathfrak{C},$$

$$M = Ng_J \mu_B J \left\{ \frac{2J+1}{2J} \coth\left(\frac{2J+1}{2J}\alpha'\right) - \frac{1}{2J} \coth\left(\frac{\alpha'}{2J}\right) \right\}$$
(11.77)

と表される。ここで分子場の仮定として式(11.78)を組み入れると

$$\alpha' = \frac{g_J \mu_B J \lambda M}{k_B T} \quad \Leftrightarrow \ M = \frac{k_B T}{g_J \mu_B \lambda J} \ \alpha' \quad (11.78)$$

豊田太郎 物性化学ノート 2025 第 11 回
 48 強磁性の他に,磁場印加下でも磁化率
 が下がる現象が知られており,不対電子
 がスピンの向きを互いに逆平行になることもある(反強磁性とよぶ)。詳しくは
 び, Appendix 11. I を参照。

⁴⁹ 金属では、自由電子(フェルミ準位と その近傍のみにある電子)のスピンが原 子やイオン間の交換相互作用を媒介して いる。この自由電子に基づく常磁性とし て、温度 Tにあまり依存しないものも知 られている。それは、外部磁場により自由 電子の α スピンと β スピンの数のバランス がくずれ、磁場と平行なスピンの数が、反 平行のスピンの数よりも多くなることで 常磁性となる。これをパウリ常磁性(第12 回 Appendix 12. D で後述する)とよぶ。 パウリ常磁性の磁化率は、 $10^{-6} \sim 10^{-3}$ 程 度である。一方で、金属中の自由電子に基 づく反磁性も観測されており、これはラ ンダウ反磁性とよばれる。

Niの3d不対電子の1つ

Niの結晶構造(立方最密充填構造)

一方, 金属塩(特に酸化物)では, 金属の 陽イオンどうしは,交換相互作用がはた らく程短い距離には存在せず、酸素の陰 イオンなどが直接交換相互作用を妨げ る。それにも関わらず、金属陽イオン間で 電子スピンが一斉にそろうのは、酸素の 2p 軌道が介在することで, M-O-Mの 間で電子が定常波として広がって重ね合 うために電子のエネルギーが安定化し て、結晶全体のエネルギーが下がってい るためである(これを超交換相互作用と よぶ)。そして, 金属陽イオンの eg軌道に ある電子が,酸素原子を介して隣の金属 陽イオンの非占有軌道に飛びうつったと き,その電子のスピンが他の t2g 軌道の電 子とスピンが同じであれば、フントの規 則より,エネルギーがより一層下がり,強 磁性となる。

が得られる。そこで、磁化率χpは、 Bが十分に小さい場合には

(11.83)

 $\chi_p = \frac{\mu_0 M}{B} = \frac{\mu_0 T_C / \lambda}{T - T_C}$ (11.84)

と導かれる。式(11.84)をキュリーーワイスの法則,分母の転移温度をキュ リー温度(またはワイス温度),分子をキュリー定数とそれぞれよぶ。実 験結果でも、転移温度を超える温度(Feでは 1043 K, Niでは 631 K, CrO₂ では386K)では、温度に反比例して磁化率が減少する常磁性状態が観察 される。

と求めることができる。

わかる。

T=T₁のとき の磁化

さらに,転移温度以上での物質の常磁性状態での磁化率を求める。 小さな

$$\alpha' = \frac{g_J \mu_B J \left(B + B_{mf} \right)}{k_B T} = \frac{g_J \mu_B J \left(B + \lambda M \right)}{k_B T} \quad (11.81)$$

のもとで,式

$$M = \frac{Ng_J^2 \mu_B^2 J(J+1)(B+\lambda M)}{2L}$$
(11.82)

磁場 **B**によ

って磁化が生じるとき、
$$\alpha' = \frac{g_J \mu_B J (B + B_{mf})}{g_J \mu_B J (B + \lambda M)}$$
 (11.8)

$$Ng_{I}^{2}\mu_{B}^{2}J(J+1)(B+\lambda M)$$

$$M = \frac{3k_B T}{3k_B T}$$

 $M = \frac{T_C B}{\lambda (T - T_C)}$

となり、これに式(11.80)を代入して整理すると

って磁化が生じるとき、
$$\alpha' = \frac{g_J \mu_B J (B + B_{mf})}{k_T} = \frac{g_J \mu_B J (B + \lambda M)}{k_T} \quad (11.81)$$

と近似できるため、転移温度 T_{c} は、 $T_C = \frac{Ng_J^2 \mu_B^2 J(J+1)\lambda}{3k_B}$ (11.80)

$$k_BT \gg g_J \mu_B J \lambda$$
のときには、テイラー展開 50 を利用して式(11.77)は

3 式(11.77)と式(11.78)を満たす *T*と *M*を求めるため
$$g_J \mu_B J \lambda$$
のときには、テイラー展開 ⁵⁰を利用して式(11.7
 $M = N g_J \mu_B J \left\{ \frac{J+1}{3J} \alpha' - \frac{1}{45} \frac{(J+1)\{(J+1)^2 + J^2\}}{2J^3} \alpha'^3 + \right\}$

$$\mu_{B}J\lambda \sigma ときには、テイラー展開 50 を利用して式(11.7'
$$M = Ng_{J}\mu_{B}J \left\{ \frac{J+1}{3J} \alpha' - \frac{1}{45} \frac{(J+1)\{(J+1)^{2} + J^{2}\}}{2J^{3}} \alpha'^{3} + \cdot \frac{Ng_{J}\mu_{B}(J+1)}{3} \alpha'$$
(11.79)$$

· a

この2式を満たす Tと Mを求めるには, α'-M 平面で式(11.78)の直線と式 (11.77)の曲線の交点を求めればよい(図 11-13)。特に、温度 Tを増大し てゆくと(α'は減少する方向),ある温度に達したときにこの2つのグラ フはα′=0で接して、それ以上に温度は高くならないことがわかる。この 温度 T = T_eが強磁性でなくなり常磁性状態になる転移温度であることが

= *T_c*のときの磁化

傾き $\frac{k_B T_C}{g_J \mu_B J \lambda}$

$$(f \in \frac{k_B T_1}{g_J \mu_B J \lambda})$$

 $M = Ng_J \mu_B J \left\{ \frac{2J+1}{2J} \coth\left(\frac{2J+1}{2J}\alpha'\right) - \frac{1}{2J} \coth\left(\frac{\alpha'}{2J}\right) \right\}$

(11.79)

oth
$$u - \frac{1}{u} \sim \frac{u}{3}$$

$$:: \operatorname{coth} u \mathcal{O} 分数 \mathcal{O} 分母 と 分子 を それぞれ テイラー展開する。
$$e^{u} - e^{-u} \sim 2(u + \frac{1}{3!}u^{3} + \cdots) \frac{1}{2\left(u + \frac{1}{3!}u^{3} + \cdots\right)} = \frac{1}{2u} \left(\frac{1}{1 + \frac{1}{6}u^{2} + \cdots}\right)$$$$

$$\sim \frac{1}{2u} \left(1 - \frac{1}{6}u^2 + \cdots \right)$$

 $e^u + e^{-u} \sim 2\left(1 + \frac{1}{2}u^2 + \cdots\right)$

$$\therefore \operatorname{coth} u = \frac{e^u + e^{-u}}{e^u - e^{-u}} \sim \frac{1}{u} + \frac{u}{3} + \cdots$$

19

<u>転移温度以下</u>での強磁性物質の磁化率は、スピンの向きがすでに一斉に そろっているにも関わらず、外部磁場に応じて変化する。これは、強磁性 物質の中で、磁区とよばれるスピンの向きがそろっている領域が、空間的 に分離して、各領域でスピンの向きが異なるためである⁵¹。磁区ができる 理由は、図 11-14 のように、強磁性物質の内部では、外の磁力線の向きと 磁化の向きは連続になっている一方で(図 11-14(a))、磁極が内部でつく る磁力線の向き(反磁界とよぶ)と反対になっており(図 11-14(b))、強 磁性物質として磁気的なエネルギーとして不安定であるため、反磁界を打 ち消すように、スピンの向きがそろっている領域が空間的に分離するから である(図 11-14(c))。磁区が生じている強磁性物質に外部磁場を印加す ると、その磁場の向きにスピンの向きがそろう磁区の領域が大きくなり磁 化率も大きくなり(図 11-14(d))、単一の磁区しかない状況になると磁化 率は変化しなくなる(図 11-14(e))。印加した磁場を弱めると、磁化率も 小さくなるが、外部磁場をゼロにしても磁化率はゼロにならず、残留する (残留磁化とよぶ)。

図 11-14 磁区が生じる模式図 (a-c) と強磁性体における磁化率の変化の 様子(d,e)。(a)外部磁力線に接続する磁化の向き,(b)内部磁力線(反磁界), (c)磁区の生成による反磁界の打ち消し,(d)外部磁界をかけることで磁化 と磁化率の増大(磁区の減少),(e)外部磁場による単一磁区の実現(磁化 の飽和)。

さらに、逆方向の外部磁場を印加すると、逆向きのスピンの磁区の領域が 大きくなることで磁化率はさらに小さくなり⁵²、磁化の向きも反転する。 磁化の向きが反転する境界での逆向き外部磁場の大きさを保持力とよぶ (図 11-15)。保持力が大きいほど、磁力の大きな磁石としてはたらく。

図 11-15 外部磁場により強磁性体の磁区と磁化が変化する様子(磁気ヒ ステリシス曲線とよぶ。縦軸の磁化を内部磁束密度 Bで表すこともある)。

豊田太郎 物性化学ノート 2025 第 11 回

⁵¹ 磁区は磁気力顕微鏡で観察することが できる。磁気力顕微鏡とは、強磁性物質を 小さな探針として、物質表面近傍(高さ数 nmを保ちながら)を横方向になぞること で、物質表面から生じている磁力によっ て、探針の先がたわんだり反ったりする 現象を、レーザー光を探針の先に照射し ておいて反射光の位置ずれとして検出す る走査型プローブ顕微鏡の一つである。

山岡武博, ぶんせき, 44-45 (2004).

⁵² いわゆる磁気カードやハードディスク を強力な磁石に近づけてはいけない理由 である。磁気カードやハードディスクは、 強磁性物質に外部から局所的に磁場を印 加して、磁化の向きの異なる磁区のパタ ーンを書き込んでいる。読み取るときは、 電磁石型の磁気ヘッド下で、そのパター ンを動かして、コイルに流れる電流を計 測して 01 の信号として読み取る。よっ て、いったん生じた磁区のパターンが変 更されてしまう強い磁場の環境を忌避し なければ、情報は消えてしまう(もちろ ん、高温環境も忌避すべきである)。

磁気カード

〔発展〕スピンクロスオーバー錯体

磁気相転移は、これまで述べてきたように、常磁性と強磁性として完全 に性質が異なる2状態間を系が遷移する現象である。これに対して、部分 的に性質が混ざりあう2状態間を系が遷移する現象は、相転移とは区別し て、クロスオーバーという。中でも、基底状態が高スピン状態と低スピン 状態の境界領域にあって、温度や圧力で基底状態が低スピン状態になった り高スピン状態になったりする遷移金属錯体をスピンクロスオーバー錯 体とよび、3d 電子を6個もつ[Fe^{II}(ptz)₆](BF₄)₂はその代表例として知ら れている(図 11-16)。

この錯体は正八面体型錯体で、120 Kより低温では、無色で低スピン状態 (S=0)の反磁性を示すが、それより高温になると、赤紫色で高スピン状態 (S=2)となり常磁性を示す。さらに、50 K以下で可視光領域の光を 照射すると、低スピン状態に変化し、長時間持続することが知られている。 これは、可視光領域の波長のレーザー光をスポット状に照射して高スピン 状態の領域をつくり、同じ場所を長波長のレーザー光を照射すると周囲と 同じ低スピン状態に戻すことができることから、新しい光メモリーデバイ ス開発への発展が期待されている。

〔発展〕体内の電子スピンで地磁気を感じて行動する生物

生物の中には、地磁気を利用して生息地をもとめて移動しているものが ある。細菌では走磁性細菌がその代表例であり、渡りをする昆虫や魚類や 鳥類も好例である。渡りをしない生物でも地磁気を感じる感覚の研究が近 年盛んになっている。走磁性細菌は、その体内に取り込んだ鉄イオンを酸 化して、100 nm 程度の大きさの四酸化三鉄 Fe₃O₄粒子(マグネタイトと よぶ)を 10 個程度合成しており、マグネタイトがフェリ磁性 ⁵³に由来す る磁化率をもつので、地磁気を感じる伏角コンパス ⁵⁴(池などの水面と水 底の位置の探索)として利用している(図 11-17)。

図 11-17 四酸化三鉄 Fe₃O₄の特徴と走磁性細菌の電子顕微鏡写真 55

53 フェリ磁性:

常磁性状態から降温して磁気相転移した 状態において,構成原子やイオンの全ス ピン角運動量(および軌道の全角運動量) から期待される磁気モーメントほど大き な磁気モーメントが観測されない磁気的 性質。詳細は Appendix 11. J を参照。

54 伏角コンパス:

地磁気の磁力の方向が水平面とつくる角 度。重心でささえられた磁針が水平面と つくる角度であり,緯度だけでなく,水中 や大気中での高低によっても変化する。

ジョンジョー・マクファデン他,『量子力学で生命の 謎を解く「量子生物学」へ』, SBCreative, 2015

55 図の出典:

Nature Digest, 7, 32, 2009. 培養中の走磁性細菌に磁石を近づける と,走磁性細菌は磁石に寄ってくる。

Lucas Le Nagard et al., JoVE, 140, e58536 (2018).

渡りをする鳥類や昆虫で近年見つかったのは,植物に広く存在する光受容 タンパク質クリプトクロムである。これら動物で見つかったクリプトクロ ムは,眼球など光受容器の細胞の細胞膜近傍に存在しており,ほ乳類にも 存在することが明らかにされている。クリプトクロムは,フラビンアデニ ンジヌクレオチド FAD 56を補因子とする。FAD はクリプトクロム内で還 元されて FADH⁻となって,同じくクリプトクロムが取り込んだ酸素分子 との間で複合体をつくり,可視光領域の光で励起されて1電子移動して生 成するラジカル FADH・とスーパーオキシドアニオンラジカル O₂⁻⁻(分 子軌道は第4回 P.18 で説明した)が一重項状態(スピンの向きが反平行 の状態)のみならず三重項状態(スピンの向きが平行の状態)にもなって 安定化する(図 11-18)。このときの不対電子が地磁気に応答することでク リプトクロムが構造変化し,視神経側にシグナル伝達が行われている(つ まり,視覚への影響)と考えられており,機構の全容解明が現在精力的に 進められている。

豊田太郎 物性化学ノート 2025 第 11 回
 容 ⁵⁶ FAD そのものはフラビン部位が青色光
 を吸収して蛍光を発する化合物であり,
 クリプトクロムは植物の概日リズム(サ
 ーカディアンリズムともよばれる)に深

http://www.ks.uiuc.edu/Research/
cryptochrome/

図 11-18 FADH⁻と酸素分子がクリプトクロム内で光励起により不対電 子をもつ状態(ラジカル対生成とよぶ)へ遷移する模式図。

〔発展〕超伝導

磁気相転移には、極低温 57 で磁化率が負の値となる完全反磁性とよば れる現象が知られている。この転移が起きる固体に外部磁場をかけて降温 すると、固体内部での磁力線は全て打ち消される状態となる(マイスナー (・オクセンフェルト)効果とよぶ)。外部から近づく磁石に対して大き な反発力を生じるため、完全反磁性の固体の上に磁石をのせると重力に拮 抗して磁石は宙に浮く(図 11-19) 58。これは外部磁場を打ち消すように 電子が固体中で干渉なく移動できる、つまり固体中の抵抗値がゼロになる ことで実現され、超伝導とよぶ。電子は固体の中では通常、電圧がかかっ ていても原子や他の電子の影響で移動に制約がかかるが(第 12 回で後 述)、超伝導体では、原子の運動を介して、1 個目の電子の移動につられて 2 個目の電子が移動しやすくなる(クーパー対とよぶ)と考えられている 59。現在、実用化も念頭において、高温(およそ液体窒素の沸点(77 K)~ ドライアイスの昇華点(195 K))の転移温度をもつ超伝導体の開発が行わ れている。

図 11-19 マイスナー(・オクセンフェルト)効果と超伝導磁気浮上

⁵⁷ 超伝導の転移温度は, 1911 年 Kamerlingh Onnesによって, 水銀で 4.3 Kと見出されたこと (1913 年ノーベル物 理学賞受賞) が契機になり, 多くの金属元 素, 合金, 金属間化合物などで測定されて きている。

⁵⁸ 反発力だけではなく、欠陥のある超伝 導体における欠陥内部で磁束がとらわれ ることで(量子ピンニング効果とよぶ)浮 上位置が決まる。

村上 雅人, *低温工学*, 42, 414-418 (2007)

⁵⁹ 超伝導の理論は, Bardeen, Cooper, Schriefferの 1957 年の論文によって与え られた (BCS 理論とよぶ)。三人は 1972 年にノーベル物理学賞を受賞した。BCS 理論の詳細は固体物理学のテキストを参 照。

	太郎 物性化学ノート 2025 第 11 回
Appendix 11.A 磁気モーメントをもつ物体が外部磁場から受け	60 出典:
るポテンシャルエネルギー ⁶⁰	Blundell, 中村訳, <i>固体の磁性</i> , 内田老鶴圃 (2015),
磁束密度 の磁場中で長さ drの導線素片に電流 I が流れるとき, 電線素	p.256
片に作用するローレンツ力 d F は	
$\mathrm{d}ec{F} = I\mathrm{d}ec{r} imesec{B}$	\vec{B}
となる(×はベクトルの外積)。いま,xy平面上にある環状導線の素片が	
磁場から受ける偶力 Gを求めると 61,	
$\mathrm{d}G_x = -IB_v\mathrm{d}x\mathrm{d}y$	61
$\mathrm{d}G_{y} = IB_{z}\mathrm{d}x\mathrm{d}y$	同じ大きさで、平行かつ反対向きの2つ
となる。この環状導線がもつ磁気モーメントをdµ _z = Idxdyで定義してお	の力。並進ではなく回転をうみだす。
くと、このGは	
$\mathrm{d}ec{G}=\mathrm{d}ec{\mu} imesec{B}$	
とかける(×はベクトルの外積)。有限の大きさで積分すると	
$ec{G}=ec{\mu} imesec{B}$	
である。ここで,この環状導線の x 軸方向の素片に作用するローレンツ力	
は	
$(\partial B_{\tau}) \qquad \partial B_{\tau}$	
$dF_x = Idy \left(B_z + \frac{2}{\partial x} dx \right) - Idy B_z = d\mu_z \frac{2}{\partial x}$	
であるので,	
$\mathrm{d}ec{F}=(\mathrm{d}ec{\mu}\cdot abla)ec{B}$	
となる。有限の大きさで積分すると	
$ec{F}=(ec{\mu}\cdot abla)ec{B}$	
これは,磁場が変化するときにのみ環状導線の磁気モーメントがローレン	
ツ力を受けることを示す。トルクが加えられて初めて磁気モーメントが磁	
場 Вから傾くようになる。その傾く角度をθとすると、トルクがする仕事	
Wは	
$W = \int_{0}^{\theta} C d\theta = \int_{0}^{\theta} u B \sin \theta d\theta = u B (1 - \cos \theta)$	
$w = \int_0^{\infty} 6uv = \int_0^{\infty} \mu B \sin v uv = \mu B (1 - \cos v)$	
である。したがって、磁気モーメントのポテンシャルエネルギーUは、角	
度 θに依存する項として,	
$U = -\mu B \cos \theta = -\vec{\mu} \cdot \vec{B}$	^z ↑ 角運動量L
と導かれる。	$\checkmark \overrightarrow{p} (= m \overrightarrow{v})$
	0 e [−]
Appendix 11. B 角運動量の演算子	x y
電子は原子核のまわりで運動していることから、その軌道での運動の向	
さは角連動量Lに関連付けられる(軌道のエネルギーと形は第3回で運動	A S
エイル・ $T = M$ ・ $O = V$ ・ CI_0 再理則重は、 $U \equiv T C 速度 U C = U C C = U U C = U $	

 $\vec{L} \equiv \vec{r} \times m\vec{v} = \vec{r} \times \vec{p}$ で定義される (×はベクトルの外積を表す)。 \vec{p} は運動量である。すなわち, $\vec{r} \ge \vec{p}$ がなす角を δ とおくと,

 $\vec{L} = \sin\delta |\vec{r}| |\vec{p}| \, \vec{c}$

たはたとうのつくる平面に垂直な 単位ペクトルで、たたたは右手座標系 をつくるように向いている

であり(*c*は*r*と*p*がなす平面に垂直な単位ベクトル),

 $\vec{L} = (yp_z - zp_y)\vec{e}_x + (zp_x - xp_z)\vec{e}_y + (xp_y - yp_x)\vec{e}_z$ である ($\vec{e}_x, \vec{e}_y, \vec{e}_z$ は3次元直交座標系の単位ベクトル)。よって,角運動量 \vec{L} の各成分は

$$yp_z - zp_y = L_x$$
$$zp_x - xp_z = L_y$$
$$xp_y - yp_x = L_z$$

となる。今,位置と運動量の演算子は、 \hat{x} ならびに $\hat{p}_x = -i\frac{\hbar}{2\pi}\frac{\partial}{\partial x}$ と表せる

ので⁶²,角運動量の演算子**î**について

$$\hat{L}_{x} = \hat{y}\hat{p}_{z} - \hat{z}\hat{p}_{y} = -i\frac{h}{2\pi}\left(y\frac{\partial}{\partial z} - z\frac{\partial}{\partial y}\right)$$
$$\hat{L}_{y} = \hat{z}\hat{p}_{x} - \hat{x}\hat{p}_{z} = -i\frac{h}{2\pi}\left(z\frac{\partial}{\partial x} - x\frac{\partial}{\partial z}\right)$$
$$\hat{L}_{z} = \hat{x}\hat{p}_{y} - \hat{y}\hat{p}_{x} = -i\frac{h}{2\pi}\left(x\frac{\partial}{\partial y} - y\frac{\partial}{\partial x}\right)$$

である。これらを3次元極座標(第1回 Appendix 1.J)で表すと

$$\hat{L}_{x} = -i\frac{h}{2\pi} \left(-\sin\phi \frac{\partial}{\partial\theta} - \cot\theta \cos\phi \frac{\partial}{\partial\phi} \right)$$
$$\hat{L}_{y} = -i\frac{h}{2\pi} \left(-\cos\phi \frac{\partial}{\partial\theta} - \cot\theta \sin\phi \frac{\partial}{\partial\phi} \right)$$
$$\hat{L}_{z} = -i\frac{h}{2\pi} \frac{\partial}{\partial\phi}$$

となり、角運動量の大きさを2乗した値の演算子 ใ2は

$$\hat{L}^2 = \hat{L}_x^2 + \hat{L}_y^2 + \hat{L}_z^2 = -\frac{h^2}{4\pi^2} \left(\frac{1}{\sin\theta} \frac{\partial}{\partial\theta} \left(\sin\theta \frac{\partial}{\partial\theta} \right) + \frac{1}{\sin^2\theta} \frac{\partial^2}{\partial\phi^2} \right)$$

と求まる。そこで,第3回 P.4 で導いた水素原子中の電子の波動関数 $\Psi_{n,l,m}(r,\theta,\phi) = R_{n,l}(r) \cdot Y_l^m(\theta,\phi)$ に対して,角運動量の大きさの2乗お よび各成分の演算子をそれぞれハミルトニアンとしてシュレーディンガ ー方程式を解くと,

$$\hat{L}^{2}\Psi_{n,l,m}(r,\theta,\phi) = \frac{h^{2}}{4\pi^{2}}l(l+1)\Psi_{n,l,m}(r,\theta,\phi)$$

$$\hat{L}_{x}\Psi_{n,l,m}(r,\theta,\phi) \rightarrow \text{ 固有値が求まらない}$$

$$\hat{L}_{y}\Psi_{n,l,m}(r,\theta,\phi) \rightarrow \text{ 固有値が求まらない}$$

$$\hat{L}_{z}\Psi_{n,l,m}(r,\theta,\phi) = \frac{h}{2\pi}m\Psi_{n,l,m}(r,\theta,\phi)$$

$$\hat{L}\Psi_{n,l,m}(r,\theta,\phi) \rightarrow \text{ 固有値が求まらない}$$

となる。つまり、水素原子中の電子の軌道角運動量の大きさは $\frac{h}{2\pi}\sqrt{l(l+1)}$ であり、軌道角運動量の3方向成分の全てを同時に定めることはできないが、軌道角運動量のある1方向の成分のみが $\frac{h}{2\pi}m$ と求まる。

⁶² 運動量の演算子は定義とみなされる。 波長λ で1次元に進む平面波の波動関数

$$\Psi = \exp\left(\frac{2\pi \mathrm{i}}{\lambda}x\right)$$

とこの運動量の演算子をつかって,1次元 の(時間に依存しない)シュレーディンガ ー方程式(第3回 Appendix 3. Dで導出 した)に適用すると,

$$-i\frac{h}{2\pi}\frac{\mathrm{d}\Psi}{\mathrm{d}x} = -i\frac{h}{2\pi}\frac{\mathrm{d}}{\mathrm{d}x}\left(\exp\left(\frac{2\pi i}{\lambda}x\right)\right)$$
$$= \frac{h}{\lambda}\exp\left(\frac{2\pi i}{\lambda}x\right) = \frac{h}{\lambda}\Psi$$

ド・ブロイの仮説(第3回 P.2)に基づけ ば

$$-\mathrm{i}\frac{h}{2\pi}\frac{\mathrm{d}\Psi}{\mathrm{d}x} = p\Psi$$

であり,波動関数Ψの固有値として運動量 *p*が求まる。

Appendix 11. C ハートリー積で表される全波動関数の固有値⁶³

準安定ヘリウム原子や水素分子など,直交する2つの軌道波動関数を電 子2個が占める場合の全波動関数について,ハートリー積で表されるとし て,軌道角運動量(軌道角運動量の大きさの2乗と1方向成分の大きさ) とスピン角運動量(スピン角運動量の大きさの2乗と1方向成分の大き さ)を計算してみよう。ただし,軌道角運動量の大きさの2乗の演算子 \hat{l}^2 は,非球形の軌道では方位量子数*l*だけでなく磁気量子数*m*も含めた固有 値を与えることになるので,ここでは全波動関数に対して演算子 \hat{L}_z , \hat{s}^2 , \hat{s}_z それぞれを作用させて計算すれば十分である。

準安定ヘリウム原子(図11-5)のハートリー積で表された全波動関数

$$\Psi_a = \frac{1}{\sqrt{2}} \{ \phi_{1s}(1)\phi_{2s}(2) - \phi_{1s}(2)\phi_{2s}(1) \} \alpha(1)\alpha(2)$$

はパウリの原理を満たす(軌道について反対称で、スピンについては対称)。軌道角運動量の1方向の成分の大きさは、 $\hat{L}_z = \hat{L}_{z1} + \hat{L}_{z2}$ を作用させると、 $\hat{L}_{zi}\phi_{is} = 0 \cdot \phi_{is}$ (i = 1,2)であること(s 軌道は方位量子数l = 0だから)を用いて、

$$\begin{split} \hat{L}_{z}\Psi_{a} &= \left(\hat{L}_{z1} + \hat{L}_{z2}\right) \frac{1}{\sqrt{2}} \{\phi_{1s}(1)\phi_{2s}(2) - \phi_{1s}(2)\phi_{2s}(1)\}\alpha(1)\alpha(2) \\ &= \frac{1}{\sqrt{2}} \{\hat{L}_{z1}\phi_{1s}(1)\phi_{2s}(2) + \phi_{1s}(1)\hat{L}_{z2}\phi_{2s}(2) - \hat{L}_{z1}\phi_{1s}(2)\phi_{2s}(1) \\ &- \phi_{1s}(2)\hat{L}_{z2}\phi_{2s}(1)\}\alpha(1)\alpha(2) \\ &= 0 \cdot \frac{1}{\sqrt{2}} \{\phi_{1s}(1)\phi_{2s}(2) - \phi_{1s}(2)\phi_{2s}(1)\}\alpha(1)\alpha(2) = 0 \cdot \Psi_{a} \end{split}$$

つまり,固有値として0であると導かれる。続いて,スピン角運動量1方向の成分の大きさは, $\hat{s}_z = \hat{s}_{z1} + \hat{s}_{z2}$ を作用させると, $\hat{s}_{zi}\alpha_i = \frac{1}{2} \cdot \alpha_i$ (i = 1,2)であることを用いて,

$$\begin{split} \hat{s}_{z} \Psi_{a} &= (\hat{s}_{z1} + \hat{s}_{z2}) \frac{1}{\sqrt{2}} \{ \phi_{1s}(1) \phi_{2s}(2) - \phi_{1s}(2) \phi_{2s}(1) \} \alpha(1) \alpha(2) \\ &= \frac{1}{\sqrt{2}} \{ \phi_{1s}(1) \phi_{2s}(2) - \phi_{1s}(2) \phi_{2s}(1) \} \{ \hat{s}_{z1} \alpha(1) \alpha(2) \\ &+ \alpha(1) \hat{s}_{z2} \alpha(2) \} \\ &= 1 \cdot \frac{1}{\sqrt{2}} \{ \phi_{1s}(1) \phi_{2s}(2) - \phi_{1s}(2) \phi_{2s}(1) \} \alpha(1) \alpha(2) = 1 \cdot \Psi_{a} \end{split}$$

つまり,固有値として1であると導かれる。さらに,スピン角運動量の大きさの2乗は, $\hat{s}^2 = \hat{s}_{-}\hat{s}_{+} + \hat{s}_{z}^2 + \hat{s}_{z}$ を作用 64 するので($\hat{s}_{z} = \hat{s}_{z1} + \hat{s}_{z2}$, $\hat{s}_{+} = \hat{s}_{1+} + \hat{s}_{2+}$, $\hat{s}_{-} = \hat{s}_{1-} + \hat{s}_{2-}$ に注意する),

$$\hat{s}^2 \Psi_a = \left(\hat{s}_- \hat{s}_+ + \hat{s}_z^2 + \hat{s}_z\right) \frac{1}{\sqrt{2}} \{\phi_{1s}(1)\phi_{2s}(2) - \phi_{1s}(2)\phi_{2s}(1)\}\alpha(1)\alpha(2)$$

右辺についてスピン波動関数のみで計算すると,

 $\hat{s}_{-}\hat{s}_{+}\alpha(1)\alpha(2) = \hat{s}_{-}(\hat{s}_{1+} + \hat{s}_{2+})\alpha(1)\alpha(2) = \hat{s}_{-}\{\hat{s}_{1+}\alpha(1)\alpha(2) + \alpha(1)\hat{s}_{2+}\alpha(2)\}$ $= 0 \cdot \alpha(1)\alpha(2)$

⁶³ 出典:

太郎

山崎勝義, *分子科学アーカイブス AC0012 Pauli 原* 理と Slater 行列式, 分子科学会, 2009

物性化学ノート 2025 第11回

Note, 内建動量の()
取(c), 内建動量の()
なわる。定義は

$$\hat{L}_{\pm} \equiv \hat{L}_x \pm i \hat{L}_y$$

であり、角運動量の大きさの量子数 *l*, あ
る方向の角運動量の量子数 *m* をもつ波動
関数 ψ に対して、
 $\hat{L}_{\pm}\psi_{l,m} = \sqrt{l(l+1) - m(m\pm 1)}\psi_{l,m\pm 1}$
という漸化式を与える(証明は下記の出
典を参照)。スピン角運動量の場合、

$$\hat{s}_{i+}\alpha(i) = 0$$

$$\begin{split} \hat{s}_{i+}\beta(i) &= \sqrt{\frac{1}{2} \left(\frac{1}{2} + 1\right) - \frac{1}{2} \left(-\frac{1}{2} + 1\right)} \alpha(i) \\ &= \alpha(i) \\ \hat{s}_{i-}\alpha(i) &= \sqrt{\frac{1}{2} \left(\frac{1}{2} + 1\right) - \frac{1}{2} \left(-\frac{1}{2} - 1\right)} \beta(i) \\ &= \beta(i) \end{split}$$

 $\hat{s}_{i-}\beta(i)=0$

山崎勝義, *分子科学アーカイブス AC0002 Clebsch-Gordan 係数と射影演算子*, 分子科学会, 2007 $\hat{s}_{z}\alpha(1)\alpha(2) = (\hat{s}_{z1} + \hat{s}_{z2})\alpha(1)\alpha(2) = \hat{s}_{z1}\alpha(1)\alpha(2) + \alpha(1)\hat{s}_{z2}\alpha(2)$

$$= \frac{1}{2}\alpha(1)\alpha(2) + \frac{1}{2}\alpha(1)\alpha(2) = 1 \cdot \alpha(1)\alpha(2)$$

$$\hat{s}^2 \Psi_a$$

$$= \frac{1}{\sqrt{2}} \{ \phi_{1s}(1) \phi_{2s}(2) - \phi_{1s}(2) \phi_{2s}(1) \}$$

× $\{0 \cdot \alpha(1)\alpha(2) + 1^2 \cdot \alpha(1)\alpha(2) + 1 \cdot \alpha(1)\alpha(2)\} = 2\Psi_a$ であり、固有値として2が導かれる。

以上より、 Ψ_a は演算子 \hat{L}_z 、 \hat{s}^2 、 \hat{s}_z それぞれを作用させても固有値を与えたことから、シュレーディンガー方程式を満たす波動関数が満たすべき十分性を示せた。

次に,図 11-5(c)に対応する全波動関数

$$\Psi_1 = \frac{1}{\sqrt{2}} \{ \phi_{1s}(1)\alpha(1)\phi_{2s}(2)\beta(2) - \phi_{1s}(2)\alpha(2)\phi_{2s}(1)\beta(1) \}$$

についても、演算子 \hat{L}_z 、 \hat{s}_z 、 \hat{s}^2 それぞれを作用させて計算する。すると

$$\begin{split} \hat{L}_{z}\Psi_{1} &= \left(\hat{L}_{z1} + \hat{L}_{z2}\right) \frac{1}{\sqrt{2}} \{\phi_{1s}(1)\alpha(1)\phi_{2s}(2)\beta(2) - \phi_{1s}(2)\alpha(2)\phi_{2s}(1)\beta(1)\} \\ &= \frac{1}{\sqrt{2}} \{\hat{L}_{z1}\phi_{1s}(1)\alpha(1)\phi_{2s}(2)\beta(2) \\ &+ \phi_{1s}(1)\alpha(1)\hat{L}_{z2}\phi_{2s}(2)\beta(2) - \hat{L}_{z1}\phi_{1s}(2)\alpha(2)\phi_{2s}(1)\beta(1) \\ &- \phi_{1s}(2)\alpha(2)\hat{L}_{z2}\phi_{2s}(1)\beta(1)\} = 0 \cdot \Psi_{1} \\ \hat{s}_{z}\Psi_{1} &= \left(\hat{s}_{z1} + \hat{s}_{z2}\right) \frac{1}{\sqrt{2}} \{\phi_{1s}(1)\alpha(1)\phi_{2s}(2)\beta(2) - \phi_{1s}(2)\alpha(2)\phi_{2s}(1)\beta(1)\} \\ &= \frac{1}{\sqrt{2}} \{\phi_{1s}(1)\hat{s}_{z1}\alpha(1)\phi_{2s}(2)\beta(2) + \phi_{1s}(1)\alpha(1)\phi_{2s}(2)\hat{s}_{z2}\beta(2) \\ &- \phi_{1s}(2)\hat{s}_{z1}\alpha(2)\phi_{2s}(1)\beta(1) - \phi_{1s}(2)\alpha(2)\phi_{2s}(1)\hat{s}_{z2}\beta(1)\} \\ &= \frac{1}{\sqrt{2}} \{\frac{1}{2}\phi_{1s}(1)\alpha(1)\phi_{2s}(2)\beta(2) - \frac{1}{2}\phi_{1s}(1)\alpha(1)\phi_{2s}(2)\beta(2) \\ &- \frac{1}{2}\phi_{1s}(2)\alpha(2)\phi_{2s}(1)\beta(1) + \frac{1}{2}\phi_{1s}(2)\alpha(2)\phi_{2s}(1)\beta(1)\} \\ &= 0 \cdot \frac{1}{\sqrt{2}} \{\phi_{1s}(1)\alpha(1)\phi_{2s}(2)\beta(2) - \phi_{1s}(2)\alpha(2)\phi_{2s}(1)\beta(1)\} \\ &= 0 \cdot \Psi_{1} \\ \hat{s}^{2}\Psi_{1} &= \left(\hat{s}_{-}\hat{s}_{+} + \hat{s}_{z}^{-2} + \hat{s}_{z}\right) \\ &\times \frac{1}{\sqrt{2}} \{\phi_{1s}(1)\alpha(1)\phi_{2s}(2)\beta(2) + \phi_{-1}(1)\beta(1)\phi_{-1}(2)\alpha(2)\phi_{2s}(1)\beta(1)\} \\ &= \cdots \\ &= \frac{1}{2} \{\phi_{-1}(1)\alpha(1)\phi_{-1}(2)\beta(2) + \phi_{-1}(1)\beta(1)\phi_{-1}(2)\alpha(2)\phi_{2s}(1)\beta(1)\} \\ &= \cdots \\ &= \frac{1}{2} \{\phi_{-1}(1)\alpha(1)\phi_{-1}(2)\beta(2) + \phi_{-1}(1)\beta(1)\phi_{-1}(2)\alpha(2)\phi_{2s}(1)\beta(1)\} \\ &= \cdots \\ &= \frac{1}{2} \{\phi_{-1}(1)\alpha(1)\phi_{-1}(2)\beta(2) + \phi_{-1}(1)\beta(1)\phi_{-1}(2)\alpha(2)\phi_{2s}(1)\beta(1)\} \\ &= 0 \cdot \psi_{1} \\ &= 0 \cdot \psi_$$

$$= \frac{1}{\sqrt{2}} \{ \phi_{1s}(1)\alpha(1)\phi_{2s}(2)\beta(2) + \phi_{1s}(1)\beta(1)\phi_{2s}(2)\alpha(2) \\ - \phi_{1s}(2)\alpha(2)\phi_{2s}(1)\beta(1) - \phi_{1s}(2)\beta(2)\phi_{2s}(1)\alpha(1) \} \\ = \frac{1}{\sqrt{2}} \{ \phi_{1s}(1)\phi_{2s}(2) - \phi_{1s}(2)\phi_{2s}(1) \} \{ \alpha(1)\beta(2) + \beta(1)\alpha(2) \}$$

。 一 一 一 一 一

となり、スピン角運動量の大きさの2乗の演算子 \hat{s}^2 では固有値が求まらないことがわかる。つまり、 Ψ_1 にはシュレーディンガー方程式を満たす波動関数が満たすべき十分性が認められない。一方で、

$$\frac{1}{2} \{ \phi_{1s}(1)\phi_{2s}(2) - \phi_{1s}(2)\phi_{2s}(1) \} \{ \alpha(1)\beta(2) + \beta(1)\alpha(2) \} \equiv \Psi_t$$

は、演算子 \hat{L}_z 、 \hat{s}_z 、 \hat{s}^2 それぞれを作用させると固有値が求まる(計算は省略 する)。

Appendix 11.D スピン一軌道相互作用

1

古典的な電磁気学から考えよう。電子(電荷:-e)の原子核(有効核電 荷 *Z**e)周囲での運動は,電子における相対座標では,原子核が電子の周 囲を距離 *R*にて速度**v**で動いているとみなせる(図 11-20)。

図 11-20 電子からみたときの原子核の運動

まずは、この原子核の電流が周囲につくる磁場を、<u>E-B</u>対応の<u>SI</u>単位系</u>で求める。マクスウェル方程式の一つ(\vec{H} :磁場、 \vec{D} :電束密度、 \vec{f} :電流 密度、 \vec{E} :電場、 \vec{B} :磁束密度、 ϵ_0 :真空の誘電率、 μ_0 :真空の透磁率)

$$\nabla \times \vec{H} = \frac{\partial \vec{D}}{\partial t} + \vec{J} = \varepsilon_0 \frac{\partial \vec{E}}{\partial t} + \vec{J}$$

において,静電場であるとして $(\frac{\partial \vec{E}}{\partial t} = 0)$, $\vec{H} = \frac{1}{\mu_0} \nabla \times \vec{A}$ であるベクトル ポテンシャル ⁶⁵を適用すると,

$$\nabla \times \nabla \times \vec{A} = \mu_0 \vec{J}$$

が導かれる。ここで

が成り立つ。グリーン関数法

$$\begin{array}{l} \nabla\times\nabla\times\vec{A}=\nabla(\nabla\cdot\vec{A})-\nabla^{2}\vec{A}\\ (\mathcal{D}-\Box\mathcal{V}\mathcal{F}-\mathcal{V}) \ \nabla\cdot\vec{A}=0 \end{array} \end{array}$$

を利用すれば

$$\nabla^2 \vec{A} = -\mu_0 \vec{J}$$

⁶⁶ でこの微分方程式を解くことができて、

$$\vec{A} = \frac{\mu_0}{4\pi} \int_V \frac{\vec{J}(\vec{r}')}{|\vec{r} - \vec{r}'|} \mathrm{d}^3 \vec{r}$$

が導かれる(電子および原子核の位置を \vec{r},\vec{r}' で表し, $|\vec{r}-\vec{r}'| = R$, $d^3\vec{r}'$ は電荷に対して全空間で積分するための体積素片である)。よって原子核の運動でできる磁場は

$$\vec{B} = \nabla \times \vec{A} = \frac{\mu_0}{4\pi} \int_V \nabla \times \frac{\vec{J}(\vec{r}')}{|\vec{r} - \vec{r}'|} d^3 \vec{r}' = \frac{\mu_0}{4\pi} \int_V \nabla \times \frac{\vec{J}(\vec{r}')}{R} d^3 \vec{r}'$$
$$\subset \subset \vec{\nabla} \vec{J}(\vec{r}') = (J_x, J_y, J_z), \ \vec{R} = \vec{r} - \vec{r}' = (R_x, R_y, R_z) \quad \succeq \exists < \succeq$$

⁶⁵ 磁場 \vec{B} (= $\mu_0 \vec{H}$) がわき出しのない条件 ($\nabla \cdot \vec{B} = 0$) を満たせば, \vec{B} は $\vec{B} = \nabla \times \vec{A}$ となるベクトル場 \vec{A} で表される (:: $\nabla \cdot (\nabla \times \vec{A}) = 0$)。

66 グリーン関数法:

$$\widehat{L}y(x) = f(x)$$

を満たすとき,

$$\hat{L}G(x,s) = \delta(x-s)$$

(δはデルタ関数)を満たす関数*G(x,s)*を 見つけると, y(x)の解は

$$y(x) = \int G(x,s)f(s)ds$$

と求まる。詳しくは微分方程式のテキス トを参照すること。

マ×
$$\frac{\vec{J}}{R} = \left(\frac{\partial}{\partial R_y} \left(\frac{J_z}{R}\right) - \frac{\partial}{\partial R_z} \left(\frac{J_y}{R}\right), \frac{\partial}{\partial R_z} \left(\frac{J_x}{R}\right) - \frac{\partial}{\partial R_x} \left(\frac{J_z}{R}\right), \frac{\partial}{\partial R_x} \left(\frac{J_y}{R}\right) - \frac{\partial}{\partial R_y} \left(\frac{J_x}{R}\right) \right)$$
であり、

$$\frac{\partial}{\partial R_{y}} \left(\frac{J_{z}}{R} \right) = \frac{\partial J_{z}}{\partial R_{y}} \frac{1}{R} + J_{z} \frac{\partial}{\partial R_{y}} \left(\frac{1}{R} \right) = \frac{\partial J_{z}}{\partial R_{y}} \frac{1}{R} + J_{z} \frac{\partial}{\partial R_{y}} \left(\frac{1}{\sqrt{R_{x}^{2} + R_{y}^{2} + R_{z}^{2}}} \right)$$
$$= \frac{\partial J_{z}}{\partial R_{y}} \frac{1}{R} + J_{z} \frac{-R_{y}}{\left(R_{x}^{2} + R_{y}^{2} + R_{z}^{2}\right)^{\frac{3}{2}}} = -J_{z} \frac{R_{y}}{R^{3}}$$

と変形できるので(電流 J_z の R_y 依存性は無視した),同様の変形により

$$\frac{\partial}{\partial R_{y}} \left(\frac{J_{z}}{R} \right) - \frac{\partial}{\partial R_{z}} \left(\frac{J_{y}}{R} \right) = -J_{z} \frac{R_{y}}{R^{3}} + J_{y} \frac{R_{z}}{R^{3}} = \frac{1}{R^{3}} (J_{y}R_{z} - J_{z}R_{y})$$

$$\frac{\partial}{\partial R_{z}} \left(\frac{J_{x}}{R} \right) - \frac{\partial}{\partial R_{x}} \left(\frac{J_{z}}{R} \right) = -J_{x} \frac{R_{z}}{R^{3}} + J_{z} \frac{R_{x}}{R^{3}} = \frac{1}{R^{3}} (J_{z}R_{x} - J_{x}R_{z})$$

$$\frac{\partial}{\partial R_{x}} \left(\frac{J_{y}}{R} \right) - \frac{\partial}{\partial R_{y}} \left(\frac{J_{x}}{R} \right) = -J_{y} \frac{R_{x}}{R^{3}} + J_{x} \frac{R_{y}}{R^{3}} = \frac{1}{R^{3}} (J_{x}R_{y} - J_{y}R_{x})$$

$$\therefore \nabla \times \frac{\vec{J}}{R} = \frac{\vec{J} \times \vec{R}}{R^{3}}$$

となる。したがって,

$$\vec{B} = \frac{\mu_0}{4\pi} \int_V \frac{\vec{J} \times \vec{R}}{R^3} \mathrm{d}^3 \vec{r}$$

となる。今、原子核の運動が電流密度をなしているから

$$\vec{J} = Z^{\#} e \vec{v}$$

であり、軌道の角運動量 $\vec{l} = m\vec{v} \times \vec{R}$ を考えれば、原子核の運動でできる 磁場の演算子 \hat{B} は、軌道の角運動量の演算子 \hat{l} を用いて

$$\hat{B} = \frac{\mu_0}{4\pi} \frac{Z^{\#}e}{m} \frac{h}{2\pi} \frac{\hat{l}}{R^3}$$

と表される(角運動量iに対応する演算子は $\frac{h}{2\pi}$ iである)。よって、この磁場から電子のスピン \hat{s} がうける相互作用のエネルギーは

$$E = -\frac{1}{2}g\mu_B\hat{s}\cdot\hat{B} = -\frac{1}{2}\frac{h}{2\pi}\frac{g\mu_Be}{m}\frac{\mu_0}{4\pi}\frac{Z^{\#}}{R^3}\hat{s}\cdot\hat{l}$$

と表される (μ_B はボーア磁子)。特に、1/2 という因子は相対論的効果を含めたディラック方程式 67 から導入される。

Appendix 11. E フントの規則とスピン一軌道相互作用

合成角運動量の量子数 *j* は離散した値であり、軌道角運動量とスピン角 運動量の方向によって、それぞれの量子数 *l* と*s* を用いて

$$j = l+s, l+s-1, ..., |l-s|$$

となる。よって、電子1個についてのスピン-軌道相互作用のエネルギー $E_{l,s,i}$ は ⁶⁷ ディラック方程式はシュレーディン ガー方程式のハミルトニアンに相対論的 効果を含めた場合の波動方程式である。 詳細は下記の出典を参照。

日笠健一,『ディラック方程式』サイエンス社, p.14, 2014,.

$$E_{l,s,j} = \frac{1}{2}hc\tilde{A}\{j(j+1) - s(s+1) - l(l+1)\}$$

であり、電子が複数個あれば、全軌道角運動量量子数L,全スピン角運動 量量子数 S. 全合成角運動量量子数 J はそれぞれ

として,

$$E_{L,S,J} = \frac{1}{2}hc\widetilde{A}'\{J(J+1) - S(S+1) - L(L+1)\}$$

かつ

$$J = L + S, L + S - 1, \dots, |L - S|$$

を考えることになる。次に、 Jのとり得る値の範囲を考えよう。全軌道角 運動量量子数 L と全スピン角運動量量子数 S はそれぞれ,全軌道角運動 量磁気量子数 MLと全スピン角運動量量子数 Msにたいして

 $\sum_{i} m_{l_i} \equiv M_L = L, L-1, \dots, 0, \dots, -L$

 $\sum_{i} m_{s_{i}} \equiv M_{S} = S, S-1, \dots, 0, \dots, -S$

という関係がある。複数個の電子のスピンー軌道相互作用のエネルギーが 大きくなるようにJの値を考えると、Jは最大でL+Sなので、LもSも 大きい方がよいが、そのうちSは $m_s=1/2$ と $m_s=-1/2$ の2つしかないた め、Sが大きくなるには、Msが大きければよく、スピン磁気量子数が同 じである電子の数が多いことに対応する。

具体的に 2p 軌道 (n = 2, l = 1, m_l = -1, 0,1) に電子が 2 個あるとき,電 子が4個あるときのそれぞれの電子配置ついて, ML, MS, L, S, Jを全て 書き出してみる(2pz 軌道は 𝒯2.1.0 であり、 2px 軌道と 2py 軌道は 𝒯2.1.1 と Ψ_{2.1,-1}の線形結合であることを思い出そう(第3回))。

・電子が2個の場合

m ₁ =1	$m_l = 0$	$m_1 = -1$	M	Ms	L	S	J	J(J+1)-S(S+1)-L(L+1)
			1+1=2	1/2+(-1/2)=0	2	0	2,1,0	0, -4, -6
1	1		1+0=1	1/2+1/2=1	1	1	2,1,0	2, -2, -4
1	Ļ		1+0=1	1/2+(-1/2)=0	1	0	1	0
1		1	1+(-1)=0	1/2+1/2=1	0	1	1	0
Î		Ļ	1+(-1)=0	1/2+(-1/2)=0	0	0	0	0
1	1		1+0=1	(-1/2)+1/2=0	1	0	1	0
1	1		1+0=1	(-1/2)+(-1/2)=-1	1	1	2,1,0	2,-2,-4
Ļ		1	1+(-1)=0	(-1/2)+(-1/2)=-1	0	1	1	0
1		1	1+(-1)=0	1/2+(-1/2)=0	0	0	0	0
	↑↓		0+0=0	1/2+(-1/2)=0	0	0	0	0
	1	1	0+(-1)=-1	1/2+1/2=1	1	1	2,1,0	2,-2,-4
	1	1	0+(-1)=-1	1/2+(-1/2)=0	1	0	1	0
	Ļ	1	0+(-1)=-1	(-1/2)+1/2=0	1	0	1	0
	Ļ	Ļ	0+(-1)=-1	-1/2+(-1/2)=-1	1	1	2,1,0	2, -2, -4
		_ ↑ ↓	(-1)+(-1)=-2	-1/2+(-1/2)=-1	2	0	2,1,0	0, -4, -6

・電子が4個の場合

m _i =1	m _i = 0	$m_1 = -1$	ML	Ms	L	S	J	J(J+1)-S(S+1)-L(L+1)
†↓	<u>↑</u> ↓		1+1+0+0=2	1/2+(-1/2)+ 1/2+(-1/2)=0	2	0	2,1,0	0, -4, -6
†↓	Î	Î	1+1+0+(-1)=1	1/2+(-1/2)+ 1/2+1/2=1	1	1	2,1,0	2, -2, -4
†↓	Î	Ļ	1+1+0+(-1)=1	1/2+(-1/2)+ 1/2+(-1/2)=0	1	0	1	0
†↓	Ļ	Î	1+1+0+(-1)=1	$\frac{1/2+(-1/2)+}{(-1/2)+1/2=0}$	1	0	1	0
†↓	Ļ	Ļ	1+1+0+(-1)=1	1/2+(-1/2)+ (-1/2)+(-1/2)=-1	1	1	2,1,0	2,-2,-4
†↓ 		†↓	1+1+(-1)+ (-1)=0	1/2+(-1/2)+ (-1/2)+1/2=0	0	0	0	0
Î	†↓	Î	1+0+0+(-1)=0	1/2+1/2+(-1/2) +1/2=1	0	1	1	0
Î	†↓	Ļ	1+0+0+(-1)=0	1/2+1/2+(-1/2) +(-1/2)=0	0	0	0	0
Ļ	†↓	Î	1+0+0+(-1)=0	(-1/2)+1/2+ (-1/2)+1/2=0	0	0	0	0
Ļ	†↓	Ļ	1+0+0+(-1)=0	(-1/2)+1/2+ (-1/2)+(-1/2)=-1	0	1	1	0
Î	Î	↑↓	1+0+(-1)+ (-1)=-1	1/2+1/2+1/2 +(-1/2)=1	1	1	2,1,0	2,-2,-4
Î	Ļ	†↓ 	1+0+(-1)+ (-1)=-1	1/2+(-1/2)+1/2 +(-1/2)=0	1	0	1	0
Ļ	Î	Î ↓	1+0+(-1)+ (-1)=-1	(-1/2)+1/2+1/2 + $(-1/2)=0$	1	0	1	0
Ļ	Ļ	∱↓	1+0+(-1)+(-1)=-1	(-1/2)+(-1/2)+ 1/2 +(-1/2)=-1	1	1	2,1,0	2, -2, -4
	†↓	†↓	0+0+(-1)+ (-1)=-2	1/2+(-1/2)+1/2 +(-1/2)=0	2	0	2,1,0	0, -4,-6

以上より, Sが大きい電子配置が,スピンー軌道相互作用のエネルギー分だけ原子軌道を安定化できる(Lだけが大きくてもダメ)。d 軌道やf 軌道についても同様に考えることで,フントの規則を理解することができる。 ただし,フントの規則は,すべての原子軌道で観測されている電子配置を説明できる規則ではなく,例外も存在することが知られている。

Appendix 11. F 一様磁場下での合成角運動量の離散値を用いた 常磁性磁化率の算出

不対電子をもつ原子またはイオンの集団に,一様磁場 \vec{B} =(0,0, B_z)を外部から印加した際の常磁性磁化率を求める。この原子またはイオンの不対電子の全合成角運動量 Jの z 軸方向の成分 J_z は,磁場 \vec{B} に対して,離散的な値($-J, -J + 1, \dots, J - 1, J$)しかとることができない。よって,

 $\mu_{z} = -g_{I}\mu_{B}J_{z} \quad ($ *kki* $U_{z} = -J, -J + 1, \cdots, J - 1, J)$

として磁化の平均値 *M*を求める必要がある。このときの不対電子の向きの分布はボルツマン因子(第5回の P.3)に従うものと近似でき,不対電子の向きの確率分布*P*を

$$P \propto \exp\left(\frac{-g_J \mu_B J_z B_z}{k_B T}\right) = D \exp\left(\frac{-g_J \mu_B J_z B_z}{k_B T}\right)$$

とおく (Dは比例定数)。原子数をNとすると、z軸方向の磁化の平均値 Mは、

$$M = \frac{N \sum_{J_z=-J}^{J} (-g_J \mu_B J_z) D \exp\left(\frac{-g_J \mu_B J_z B_z}{k_B T}\right)}{\sum_{J_z=-J}^{J} D \exp\left(\frac{-g_J \mu_B J_z B_z}{k_B T}\right)}$$

となる。 $\alpha = \frac{g_J \mu_B J B_z}{k_B T}$ とおくと,

$$= Ng_{J}\mu_{B}J\left\{\frac{2J+1}{2J}\operatorname{coth}\left(\frac{2J+1}{2J}\alpha\right) - \frac{1}{2J}\operatorname{coth}\left(\frac{\alpha}{2J}\right)\right\}$$

と求まる ({ }の中をブリユアン関数B_J(α)とよぶ ⁶⁹)。

高温・低磁場で $k_BT \gg g_J \mu_B J B_z$ ($\alpha \ll 1$)のときには、テイラー展開 (P.19 欄外)を利用して

$$M = Ng_{J}\mu_{B}J\left\{\frac{J+1}{3J}\alpha - \frac{1}{45}\frac{(J+1)\{(J+1)^{2} + J^{2}\}}{2J^{3}}\alpha^{3} + \cdots\right\}$$
$$\sim \frac{N}{3}g_{J}\mu_{B}(J+1)\alpha = \frac{N}{3}\frac{g_{J}^{2}J(J+1)\mu_{B}^{2}B_{Z}}{k_{B}T}$$

となる。

 $\sum_{k=1}^{2J+1} b^{k-1} = \frac{1 - b^{2J+1}}{1 - b}$

$$\frac{d}{db} \left(\sum_{k=1}^{2J+1} b^{k-1} \right) = \sum_{k=1}^{2J+1} k b^{k-1}$$
$$\frac{d}{db} \left(\frac{1-b^{2J+1}}{1-b} \right)$$
$$= \frac{1}{1-b} \left(\frac{1-b^{2J+1}}{1-b} - (2J+1)b^{2J+1} \right)$$

つまり,

$$\sum_{k=1}^{2J+1} k b^{k-1} = \frac{1}{1-b} \left(\frac{1-b^{2J+1}}{1-b} - (2J+1)b^{2J+1} \right)$$
を利用した。

⁶⁹ coth は「ハイパボリックコタンジェント」と読み、双曲線関数の一つ。
coth
$$\alpha = \frac{e^{\alpha} + e^{-\alpha}}{e^{\alpha} - e^{-\alpha}}$$

🥮 🛓

Acc. Chem. Res., 5, 242-248 (1971)

Appendix 11. H 電子常磁性共鳴分光法

電子1個のみ(不対電子)をもつ水素原子1個にz軸方向に一様な外部 磁場 B_z が印加されると(水素原子半径は著しく小さいので、ラーモア反磁 性の項を無視できるとして)、シュレーディンガー方程式は式(11.42)から

$$\left\{-\frac{h^2}{8m_e\pi^2}\nabla^2 - \frac{Ze^2}{4\pi\varepsilon_0 r} + \frac{eB_z}{2m_e}(\hat{l}_z + g\hat{s}_z)\right\}\Psi = E\Psi$$

とかける。このときの波動関数 Ψ とエネルギーEは、摂動論(第 4 回 Appendix 4. G)を利用すれば、n, l, mをそれぞれ水素原子の主量子数、方 位量子数、磁気量子数としたときの水素原子の軌道波動関数 $\Psi_{n,l,m}$ とスピ ン波動関数 σ (= α または β)との積(全波動関数)およびエネルギー E_n (第 3 回 P.4)を用いて、ハミルトニアン $\frac{eB_z}{2m_e}(\hat{l}_z + g\hat{s}_z)$ の影響を考えればよい。

つまり,

$$E = E_n + \int \int (\Psi_{n,l,m}\sigma)^* \left(\frac{eB_z}{2m_e}(\hat{l}_z + g\hat{s}_z)\right) (\Psi_{n,l,m}\sigma) \, d\tau d\sigma$$
$$= E_n + \frac{e}{2m_e} B_z \int \Psi_{n,l,m}^* \hat{l}_z \Psi_{n,l,m} d\tau \times \int \sigma^* \sigma \, d\sigma$$
$$+ \frac{e}{2m_e} B_z \int \Psi_{n,l,m}^* \Psi_{n,l,m} d\tau \times \int \sigma^* \hat{s}_z \sigma d\sigma$$
$$= -\frac{m_e e^4}{8\varepsilon_0^2 h^2} \frac{1}{n^2} + \mu_B B_z m + g\mu_B B_z m_s$$

が成り立つ⁷⁰。ここで、 m_s はスピン磁気量子数で、1/2 または-1/2 であ る。この式は、外部磁場があるとき H 原子は、磁気量子数mとスピン磁気 量子数 m_s の分だけ、エネルギー準位が分裂する(つまり、縮重が解ける) ことを示している。磁気量子数mだけの効果を正常Zeeman効果⁷¹、磁気 量子数mとスピン磁気量子数 m_s の効果を異常Zeeman効果とそれぞれよ ぶ。さらに、外部磁場でスピン磁気量子数のみの違いによって縮重が解け たところに、そのエネルギー間隔 ΔE に相当する光が照射されると、エネル ギー準位の低い β スピンがエネルギー準位の高い α スピンへ遷移する。こ れを電子常磁性共鳴(Electron Paramagnetic Resonance; EPR)とよぶ。

$$\Delta E = \frac{1}{2}g\mu_B B_z - \left(-\frac{1}{2}g\mu_B B_z\right) = g\mu_B B_z$$

さらに興味深いのは、このとき電子が感じる磁場(局所磁場とよぶ)は、 外部磁場からわずかながら核スピンの影響を受けることである。この局所 磁場*B_z^{local}*は*B_z*を用いると 70最後の式変形では,

$$\hat{l}_{z}\Psi_{n,l,m} = \frac{h}{2\pi}m\Psi_{n,l,m}$$
$$\hat{s}_{z}\sigma = \frac{h}{2\pi}m_{s}\sigma$$

を用いた。前者は, Appendix 11. B を参照。 後者は式(11.10),(11.11)である。

⁷¹ H 原子の吸収または発光スペクトルで あるライマン系列 α 線 (m=1,0,-1) は, 外部磁場を印加すると,正常ゼーマン効 果により次のように3つに分裂をする (\hbar = $h/2\pi$)。実際には,異常ゼーマン効 果までが観測されて,gはほぼ2なので, 4つに分裂することが知られている。

小尾, 渋谷, 『基礎量子化学』, 化学同人 (2002)

32

田太郎 物性化学ノート 2025 第11回

$B_{z}^{local} = B_{z} + am_{l}$

と表すことができる(比例定数a(> 0)を超微細結合定数 ⁷²とよぶ)。する と、H 原子の共鳴条件 $g\mu_B B_z$ は、核スピン磁気量子数が $m_I = \pm \frac{1}{2}$ だから、 $g\mu_B B_z - \frac{a}{2}, g\mu_B B_z + \frac{a}{2}$ の2つへと変化することになる(図 11-21)。

図 11-21 水素原子における核スピン (*m*₁ = 1/2, -1/2) による電子常磁 性共鳴の模式図。

したがって、この非常に小さなエネルギー間隔に相当する波長をもつ光 (実験装置では、波長がおよそ3 cm の光(マイクロ波領域であり、周波 数は9500MHz)を用いることが多い)の吸収を、外部磁場を掃引しなが ら計測できれば、分子の中における H 原子の核スピンに由来する局所磁 場を電子スピン遷移から知ることができる⁷³。これを EPR 分光法とよび、 分子やイオンの骨格や不対電子の有無を調べる有力なツールとなってい る(図 11-22)。特に、超微細結合定数 a は、周囲の電子や原子核の影響を 受ける(図 11-23)。

図 11-22 ベンゼンアニオンラジカル ⁷⁴の溶液中の EPR スペクトル。 6 個の H 原子核スピンが共鳴条件の吸収ピークの分裂を引き起こし,強 度比が 1:6:15:20:15:6:1 の7本のピークがスペクトルに表れている (aは 超微細結合定数で 0.375 mT)。

図 11-23 ナフタレンアニオンラジカル ⁷⁵の溶液中の EPR スペクトル。 8 個の H 原子核スピンが共鳴条件の吸収ピークの分裂を引き起す。ただ し,2 つの異なるa値 0.187 mT, 0.495 mT で分裂しており(強度比が 1:4:6:4:1 の分裂,および 6:24:36:24:6 の分裂にそれぞれ対応),H 原子の 局所磁場が2種類あることを示している。

⁷² 単位は[G] (ガウスと読む) または[T] (テスラと読む)。1G = 0.1 mT

⁷³ EPR 分光装置は、マイクロ波光源(発振器),電磁石,温度制御系,磁場変調の コイルとその電子回路(分光器)で成り立 っている。共振器の中の試料がマイクロ 波の光をわずかにしか吸収しないため, 光量変化を直接計測することは難しい。 そこで,試料周りに小さなコイル(変調コ イル)を巻き,そこに100kHz 程度の交 流電流を流して電磁石の掃引磁場を変調 させる。これによって,電子常磁性共鳴が 起こるときの電磁石側の磁場の変化量 (微分量)を計測する。

原英之, ぶんせき, 7,337 (2021)

⁷⁴ ベンゼンの溶液に電極を入れ、電圧を かけてベンゼンを還元させる。なお、¹²C 原子核は $m_l = 0$ であり、EPR には寄与し ない。

⁷⁵ ナフタレンの溶液に金属 Kを添加する と、 $C_{10}H_8 + K \rightarrow K^+ + C_{10}H_8$.-とい う反応が起きて、溶液は緑色となる。 山内淳, *Trans. Res. Inst. Oceanochemistry*, **19**, 113 (2006).

ナフタレンの LUMO の概形は

である。アニオンラジカルの π 電子の電 子密度の大きさには 2 種類あり,これが 2 種類の H 原子の局所磁場に対応するこ とがわかる。実際, McConnellは芳香族化 合物のアニオンラジカルについて, *i* 番目 の C 原子に結合する H 原子の超微細結合 定数 a_i は,その C 原子の π 電子の電子密 度 ρ_i に比例する,つまり

 $a_i = Q_i \rho_i$

が成り立つというモデルを提唱した(*Qi* は比例係数)。

Appendix 11.1 反強磁性の転移温度と磁化率

金属酸化物 MnO などは常温では常磁性であるが、温度が転移温度を下 回ると磁気相転移して,電子スピンの半数が全てαスピンに,もう半数が 隣接原子上で全てβスピンにそろうことで 76,磁場印加下でも磁化率が下 がる現象があらわれる。これを反強磁性とよぶ。反強磁性が起こる理由は、 式(11.69)の交換積分況が負だからである。この現象は、各スピンに注目し た時の2つの空間領域(副格子とよぶ(図11-24))それぞれで強磁性と同 様に分子場を与えることで理解されている(反強磁性のワイスモデル)。

αスピンとβスピンの副格子をそれぞれ+,-で表し,各副格子の分子場を他 方の副格子の磁化だけに決まるとして

$$\hat{B}_{+} = -|\lambda|\hat{M}_{-}$$
$$\hat{B}_{-} = -|\lambda|\hat{M}_{+}$$

とかくことにする。ここで, λは分子場係数であり, 負の値をとる。

すると各副格子の磁化 M_+ , M_- は $\alpha_{\pm} = -\frac{g_J \mu_B J |\lambda| M_{\mp}}{k_B T}$ (複合同順)とおいて

$$M_{\pm} = N g_J \mu_B J \left\{ \frac{2J+1}{2J} \coth\left(\frac{2J+1}{2J} \alpha_{\pm}\right) - \frac{1}{2J} \coth\left(\frac{\alpha_{\pm}}{2J}\right) \right\}$$

と求まる。これらの副格子はモーメントの方向以外は等価なので $|M_+| = |M_-| \equiv M$

として,

$$M = Ng_J \mu_B J \left\{ \frac{2J+1}{2J} \operatorname{coth}\left(\frac{2J+1}{2J}\alpha\right) - \frac{1}{2J} \operatorname{coth}\left(\frac{\alpha}{2J}\right) \right\}$$

と導くことができる (
$$\alpha = \frac{g_J \mu_B J |\lambda| M}{k_B T}$$
とおいた)。これは式(11.81)と同じ形の

式なので、同様にして Tと Mを求めることができ、転移温度(ネール温 度とよぶ) T_Nは,

$$T_N = \frac{Ng_J^2 \mu_B^2 J(J+1)|\lambda}{3k_B}$$

となり、磁化率も磁場 Bが極めて小さい場合には

$$\chi_p = \frac{\mu_0 M}{B} \propto \frac{1}{T + T_p}$$

であるとわかる。ただし、実験結果として得られる多くの反強磁性体の転 移温度はこの計算値のものと異なる場合が多い。この不一致の原因は、一 方の副格子の分子場が他方の副格子の磁化だけで決まると仮定したため なので,自身の副格子の磁化も含めた分子場に補正すると,実験結果によ り近づく。

豊田太郎 物性化学ノート 2025 第 11 回

76 金属酸化物では、金属の陽イオンどう しは, 交換相互作用がはたらく程短い距 離には存在せず,酸素の陰イオンなどが 直接交換相互作用を妨げる。それにも関 わらず、金属陽イオン間で電子スピンが 一斉にそろうのは, 酸素の 2p 軌道が介在 することで、M-O-Mの間で電子が定 常波として広がって重ね合うために電子 のエネルギーが安定化して,結晶全体の エネルギーが下がっているためである (超交換相互作用)。そして,金属陽イオ ンの eg軌道にある電子が、酸素原子を介 して隣の金属陽イオンの非占有軌道に飛 びうつったとき、その電子のスピンが他 のtag軌道の電子とスピンが異なる状態の ほうが安定化されるのであれば(つまり, 交換積分が負),反強磁性となる。

Mnの3d不対電子の1つ

MnOの結晶構造(塩化ナトリウム型)

Appendix 11. J フェリ磁性の転移温度と磁化率

転移温度以下の結晶中に3種類の交換積分がはたらく結果(図 11-25 の ような2つの副格子をA,Bとしたときの J_{AA}, J_{AB}, J_{BB}),逆方向やほぼ逆 方向のスピンを持つ2種類のイオンが存在し,互いの磁化の大きさが異な るために全体として磁化をもつ状態をフェリ磁性とよぶ。

図 11-25 フェリ磁性の状態で互いに入れ子になった副格子の模式図

分子場近似として反強磁性の時(Appendix 11. H)と同様に,λを分子場係 数として

$$\hat{B}_A = -|\lambda|\hat{M}_B$$
$$\hat{B}_B = -|\lambda|\hat{M}_A$$

とおき, 副格子Aと副格子Bとだけに負の交換積分がはたらくとする。

副格子 A と B それぞれにキュリー定数 C_A , C_B を定義しておくと、印加 磁場を B_A として

$$M_A T = C_A (B_a - |\lambda| M_B)$$
$$M_B T = C_B (B_a - |\lambda| M_A)$$

と表すことができる。印加磁場が0のときでも0でない M_A, M_B を与えるためには

$$\begin{vmatrix} T & |\lambda|C_A \\ |\lambda|C_B & T \end{vmatrix} = 0$$

でなければならない。したがってフェリ磁性の転移温度 $T = T_c$ は

$$T_C = |\lambda| \sqrt{C_A C_B}$$

となる。さらに小さな外部磁場 B_a を印加している時の磁化率 χ は、上記の 連立方程式から

$$M_{A} = \frac{B_{a}(C_{A}T - |\lambda|C_{A}C_{B})}{T^{2} - |\lambda|^{2}C_{A}C_{B}} = \frac{B_{a}(C_{A}T - |\lambda|C_{A}C_{B})}{T^{2} - T_{C}^{2}}$$
$$M_{B} = \frac{B_{a}(C_{B}T - |\lambda|C_{A}C_{B})}{T^{2} - |\lambda|^{2}C_{A}C_{B}} = \frac{B_{a}(C_{B}T - |\lambda|C_{A}C_{B})}{T^{2} - T_{C}^{2}}$$

であることを用いて

$$\chi = \frac{\mu_0(M_A + M_B)}{B_a} = \frac{\mu_0\{(C_A + C_B)T - 2|\lambda|C_A C_B\}}{T^2 - T_C^2}$$

と求まる。実際、CA=CBでは反強磁性の極限を考えることに相当し

$$T_{C} = |\lambda|C_{A}$$
$$\chi = \frac{\mu_{0}\{2C_{A}T - 2|\lambda|C_{A}^{2}\}}{T^{2} - T_{C}^{2}} = \frac{2\mu_{0}C_{A}(T - T_{C})}{(T - T_{C})(T + T_{C})} = \frac{2\mu_{0}C_{A}}{T + T_{C}}$$

となり、このときの転移温度は確かに Appendix 11.1 のネール温度 T_N に 対応している。

演習問題

周期表の一部は以下の通りである。	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	
H	
Li Be B C N O F Ne	
Na Mg Al Si P S Cl Ar	
K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr	
光速 $c = 3.00 \times 10^8 \text{ m s}^{-1}$, プランク定数 $h = 6.63 \times 10^{-34} \text{ kg m}^2 \text{ s}^{-1}$, アボガド ロ数 $N_A = 6.02 \times 10^{23}$, ボルツマン定数 $k_B = 1.38 \times 10^{-23} \text{ m}^2 \text{ kg s}^{-2} \text{ K}^{-1}$, 気体 定数 $R = 8.31 \text{ m}^2 \text{ kg s}^{-2} \text{ K}^{-1} \text{ mol}^{-1} $ を用いよ。	
[11-1] 常磁性物質に外部磁場を印加してから断熱状態で外部磁場を除くと,その 物質の温度は上がるか下がるか答えよ。	[11-1] の略解: 下がる
[11-2] 基底状態の水素原子の集団(密度 M)に外部磁場 Hをかけると,水素原 子のエネルギー準位が $E_{+} = \frac{g}{2}\mu_{B}H, E_{-} = -\frac{g}{2}\mu_{B}H$ の2つに分裂した(μ_{B} は ボーア磁子)。各エネルギー準位に分布する水素原子の確率 P4, P-(ここ では P4< P-)はボルツマン分布に従うものとする。この2つのエネルギ 一準位の間で水素原子が状態遷移するための電磁波の周波数を求めよ。ま た,この水素原子集団の磁化 Mが $M = N\mu_{B}(P_{-} - P_{+})$ であるとして,外 部磁場 Hが小さく $\mu_{B}H/(k_{B}T)$ が1より十分に小さいとみなせる場合に(k_{B} はボルツマン定数),磁化率 χ が温度 Tに反比例することを示せ。必要なら ば $exp(ax) \sim 1 + ax + \frac{a^{2}}{2}x^{2} + \frac{a^{3}}{6}x^{3}$ を用いよ (aは定数, $ x \ll 1$)。プランク定数,真空の透磁率はそれぞれ h, μ_{0} とする。	[11-2]の略解: 周波数 $\frac{g\mu_BH}{h}$ 磁化率 $\chi \propto \frac{N\mu_0 g\mu_B^2}{k_BT}$
[11-3] 正八面体型コバルト(III)錯体 [Co(CN) ₆] ³⁻ と [CoF ₆] ³⁻ のうち,磁化率が 大きい方を答えよ。配位子の分光化学系列は CN ⁻ > F ⁻ としてよい。	[11-3]の略解: [CoF ₆] ³⁻
[11-4] フェリシアン化カリウム (K ₃ [Fe(CN) ₆]) とフェロシアン化カリウム (K ₄ [Fe(CN) ₆]) のうち,反磁性であるのはどちらであるか答えよ。これ らを混合すると多孔性結晶であるプルシアンブルーが得られる。プルシア ンブルーは常温で常磁性か反磁性か推定せよ。プルシアンブルー内での鉄 イオンどうしや配位子との間の電子の移動は無視できるとしてよい。	[11-4]の略解 : 反磁性 K4[Fe(CN)6] プルシアンブルー 常磁性

豊田太郎 物性化学ノート 2025 第 11 回