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Abstract

This short note proposes an approximation method of pricing barrier options under stochastic
volatility environment by applying an asymptotic expansion approach combined with a static hedging
method. In particular, through numerical examples it shows that the fifth-order normal approximation
of an asymptotic expansion scheme (Shiraya-Takahashi-Toda[4],Takahashi-Takehara-Toda[7]) with a
modification of a static hedging method by Fink[1] provides good approximations under the \-SABR
model.

Keywords: barrier option, knock-out option, static hedge, asymptotic expansion, stochastic volatility, A-
SABR model

1 Static Hedge

We will apply an asymptotic expansion method with a modification of a static hedging method by Fink][1]
to approximate the value of barrier options. Especially, in addition to plain-vanilla options as described in
Fink[1], digital options may be useful in static hedging for an in-the-money knock-out call option. We will
briefly describe the method below.

e The payoff of an in-the-money knock-out call with maturity T, strike K and barrier B:
(ST - K)+1{MT<B}

where S; denotes the underlying asset price at ¢, M; := max{S,;0 < u <t} and B is a constant such
that B > K( and B > Sp).

The payoff of an out-of-the-money knock-out call with maturity T, strike K and barrier B:
(ST - K)+1{QT>B}
where Q; := min{S,;0 < u <t} and B is a constant such that B < K ( and B < Sp).

e C(t,T, K,v): the price of a plain-vanilla call option at ¢ with maturity 7', strike K and time-t volatility
.

D(t, T, K,v): the price of a digital option at ¢ with maturity 7', strike K and time-t volatility v. The
payoff is given by 1 if S7 > K and 0 otherwise.
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e First of all, for replication of the value of the barrier option at maturity when the barrier is not hit
until the maturity 7', we long one unit of a plain-vanilla call option with maturity 7" and strike K.

In addition, for an in-the-money knock-out call we may short a(B — K) (where « = 1 or a = 2) units
of a digital option with maturity 7" and strike B to replicate the value when the barrier is hit just
before the maturity.
e Example: in-the-money knock-out call with K = 90 and B = 100
(a) long one unit of a plain-vanilla call option with K = 90
(b) short 10 units when « = 1 or 20 units when o = 2 of a digital option with K = 100
(c) a portfolio of call options with K > 100(explained later)
Suppose that the barrier is hit just before the maturity.
The values of (a), (b), (¢):
(a) about 10,

(b) about 5 when o = 1, or 10 when o = 2 (the value of a digital option at ATM just before the
maturity is about a half of its payoff.),

(¢c) about 0

When « = 1, the replication error is reduced to about half of the error for the replication without
digital options.

When a = 2, the replication error is reduced to about 0. However, note that the error shows up
when the barrier is hit at maturity.

o Next, fix t1(< T), T1(€ (t1,T]) and v1, v, - - -, vy, (volatility at ¢1).
Then, we consider the case when the barrier is hit at ¢;.

We choose plain-vanilla call options with maturity T so that the total value combined with C(t1, T, K, v;)+
a(B — K)D(t1,T, K, v;) is 0 when the volatility at ¢; is v;(j = 1,---,m). Their strikes are chosen
above or equal to the barrier B so that they expire out-of-the-money if the barrier is not hit until 77.

Thus, at t; choose 1 (j = 1,---,m) units of plain vanilla options with strikes K = B + ~; and
maturity 77 where v; > 0 (j = 1,---,m) are given constants that are different each other and « is 0
for out-of-the-money knock-out call options and 0, 1 or 2 for in-the-money knock-out call options.

In other words, solve the following system of linear equations with respect to z1; (j =1,---,m).

C(tl,T, K, 1)1) =+ OL(B — K)D(tl,T7 K, ’Ul) + Z;nzl Ile(tl,Tl,B +")/j,1}1) = 0

C(tl,T,K,Um) —I—Oé(B — K)D(tl,T,K,’Um) +E;n:1 .’lﬁle(tl,ThB—f—’)/j,’Um) =0

o Next, fix to(< t1), To(€ (t2,t1]) and vy, va, - - -, vy, (volatility at t3).
Then, we consider the case when the barrier is hit at to.

We choose plain-vanilla call options with maturity 75 so that the total value combined with C'(¢1, T, K, v;)+
a(B=K)D(t1,T, K,vi)+>72, 21;C(t1, T1, B+v;,v1) is 0 when the volatility at to is v;(j = 1, -+, m).
Their strikes are chosen above or equal to the barrier B so that they expire out-of-the-money if the
barrier is not hit until 7T5.

In the same way as above, at tp choose xa; (j = 1,---,m) units of plain vanilla call options with
strikes K = B + v; and maturity 7> where 7; > 0 (j = 1,---,m) are given constants and « is 0 for
out-of-the-money knock-out call options and 0, 1 or 2 for in-the-money knock-out call options.
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In other words, solve the following system of linear equations with respect to zo; (j =1,---,m).

C(tQ,T, K, ’U1) + Oé(B - K)D(t27T7 K, Ul)
+Z;n:1 .’I?]jC(tQ,Tl,B +’Yj7v1) + E.’;‘ﬂ:l x2jc(t27T2vB + ’Yjavl) =0

C(t2, T, K,vm) + a(B — K)D(t2, T, K, vm)
+Z;n:1 xle(t27TlvB +’yj7vm) + Z;nzl $2jc(t27T27B + ’Yjafvm) =0

e In the same way, a portfolio of plain-vanilla call options for static hedging of a barrier option is
recursively determined towards time 0 at prespecified time points T'=tg > t; > to > - >ty = 0.

Hence, an approximate value at ¢ = 0 of the barrier option is obtained by the value of the portfolio
at t = 0.

2 Setup of Numerical Examples

This section shows setup of numerical examples that examine accuracy of our approximation method.
We take A-SABR Model for the underlying asset model, test both out-of-the-money and in-the-money
knock-out call options. and compute benchmark prices by Monte Carlo simulations.

2.1 M-SABR Model

For the underlying asset model, we take A-SABR Model(e.g. Labordere[3]) where the dynamics of the
underlying asset price S is given as follows:

dS(t) = uS(t)dt+ o(t)SE)PdW (1), (1)
do(t) = MO —o(t))dt+ vo(t)dW(t) + vao (t)dW2(t). 2)

Here, y is a constant, 3 € [0,1] is a constant, W = (W', W?) is a two dimensional Brownian motion and
v1 = prO s = (y/1 — p?)v where v is a positive constant and p(€ (—1,1)).

2.2 Parameters

the initial price of the underlying asset: S(0) = 100

the drift of the underlying asset price process: u =0
e the interval of calendar spreads(At; =¢;,_1 —t;(i =1,---,N)): 0.1 (T'=1,2), 0.01 (T = 0.05)

Ty =t;iq(i=1,---,N)

Table 1: Volatilities(n(t) = (6 + (a(0) — 0) e=*))

U1 U2 U3 V4 Vs
s 2, n(t)  (L+v)nE)  (1+3v)n(t)

The following three cases are tested for options in static hedging:

1. Ounly European Call Options(E)

2. European Call Options + [(B — K) units of a Digital Option] (E+D)

3. European Call Options + [2(B — K) units of a Digital Option] (E+DD)



Table 2: Strike Prices of Plain-Vanilla Options in Static Hedging (Strike Price = Barrier Price++;)

‘ et V2 V3 Y4 V5

T=2 0 2.5 5 7.5 10
T=1 0 2 4 6 8
T =10.05 0 1 2 3 4

Table 3: Strike and Barrier Prices of Barrier Options (I-IV, IX:out-of-the-money knock-out, V-VIII, X:in-
the-money knock-out)

\ Strike Barrier

I 95 85
11 105 85
111 95 90
v 105 90
A% 95 115
VI 105 115
VII 95 110
VIII 105 110
X 100 98
X 100 102

Table 4: Parameters

\ a(0) A 0 v p 8 T

1 1 1.2 1 0.3 -0.5 0.5 1
ii 0.2 1.2 0.1 0.6 -0.5 1 1
1ii 1 1.2 1 0.3 -0.5 0.5 2
v 0.2 1.2 0.1 0.6 -0.5 1 2
v 2 1.2 1 0.6 -0.5 0.5 1
vi 0.1 1.2 0.1 0.3 -0.5 1 1
vii 2 1.2 1 0.6 -0.5 0.5 2
viii 0.1 1.2 0.1 0.3 -0.5 1 2
ix 1 1.2 1 0.3 -0.5 0.5 0.05
X 0.2 1.2 0.1 0.6 -0.5 1 0.05
xi 2 1.2 1 0.6 -0.5 0.5 0.05
xii 0.1 1.2 0.1 0.3 -0.5 1 0.05

Benchmark Prices are obtained by Monte Carlo simulations:
e Number of trials: 20,000,000

e Extrapolation method with 1000 and 2000 time steps for cases i, iii, vi, viii(small volatility cases)
Extrapolation method with 2000 and 4000 time steps for cases ii, iv, v, vii(large volatility cases)

Extrapolation method with 100 and 200 time steps for cases ix, xii(small volatility and short maturity
cases)

Extrapolation method with 200 and 400 time steps for cases x, xi(large volatility and short maturity
cases)

(Extrapolation method: e.g. Gobet[2])



Finally, the approximate values of portfolios of plain-vanilla and digital options are computed by the fifth-
order normal approximation of an asymptotic expansion scheme. ([4],[7]) See those papers for the detail

of the method.

3 Result

Tables 5 and 6 give the result.

Generally, it shows that the method provides good approximations of

barrier option prices. In particular, use of digital options seems effective for approximations of in-the-
money knock-out call option prices.

Table 5:
MC E [ Diff E | Plain Vanilla | MC E [ Diff E [ Plain Vanilla
I i 6.997  7.000 [ 0.004 7033 [ III i 6.690  6.694 [ 0.004 7.033
ii 8.728 8729 | 0.001 9.247 ii 7.644  7.640 | -0.004 9.247
iii 8.288 8291 | 0.004 8.543 iii 7442 7442 | 0.000 8.543
iv 9.630  9.634 |  0.004 10.743 iv 8.050  8.061 | 0.011 10.743
v 8.745 8748 | 0.003 9.354 v 7636 7.629 | -0.007 9.354
vi 6.954  6.960 | 0.005 6.984 vi 6.675  6.681 | 0.006 6.984
vii 9.630  9.625 | -0.005 10.893 vii | 8036 8036 | 0.000 10.893
viii | 8252  8.261 | 0.008 8.465 viii | 7455  7.448 | -0.007 8.465
I i 1.934  1.938 [ 0.004 1940 [ IV i 1.909  1.908 [ -0.001 1.940
ii 4.007  4.008 |  0.001 4.153 ii 3.660  3.661 | 0.001 4.153
i 3429 3435 | 0.005 3.473 iii 3.239  3.239 | 0.000 3.473
iv 5286 5.285 | -0.001 5.705 iv 4.603  4.610 |  0.007 5.705
v 3935 3937 | 0.003 4.107 v 3.587  3.584 | -0.003 4.107
vi 1972 1977 |  0.005 1.979 vi 1950  1.954 | 0.005 1.979
vii 5190  5.181 | -0.009 5.660 vii | 4508 4505 | -0.002 5.660
viii | 3490  3.496 |  0.007 3.528 viii | 3313 3.310 | -0.002 3.528
X  ix 0.858  0.858 [ -0.000 0.892
x 1321 1.317 | -0.005 1.758
xi 1315 1313 | -0.002 1.759
xii | 0.859  0.858 | -0.000 0.892




Table 6:

| MC E E+D E+DD | Dif E Diff E+D Diff E+DD | Plain Vanilla
Y i 4.572 4.559 4.562 4.566 -0.013 -0.010 -0.006 7.033
ii 2.523 2.534 2.525 2.516 0.010 0.001 -0.008 9.247

iii 2.880 2.885 2.882 2.878 0.005 0.002 -0.001 8.543

iv 1.659 1.668 1.659 1.650 0.010 0.001 -0.008 10.743

v 2.721 2.738 2.728 2718 0.017 0.007 -0.004 9.354

vi 4.338 4.335 4.337 4.338 -0.003 -0.002 -0.000 6.984

vii 1.806 1.817 1.807 1.797 0.011 0.001 -0.009 10.893

viii 2.669 2.681 2.676 2.671 0.011 0.007 0.002 8.465

VI i 0.689 0.684 0.686 0.687 | -0.005 -0.003 -0.002 1.940
ii 0.383 0.395 0.391 0.386 0.012 0.007 0.003 4.153

iii 0.434 0.436 0.434 0.432 0.002 0.001 -0.001 3.473

iv 0.246 0.256 0.251 0.247 0.010 0.005 0.001 5.705

v 0.433 0.446 0.441 0.436 0.013 0.008 0.003 4.107

vi 0.629 0.629 0.629 0.630 -0.000 0.000 0.001 1.979

vii 0.281 0.291 0.286 0.281 0.010 0.005 0.000 5.660

viii 0.383 0.388 0.386 0.383 0.005 0.003 0.000 3.528

VII i 2.368 2.370 2.368 2.367 0.002 0.000 -0.001 7.033
ii 1.018 1.028 1.022 1.016 0.009 0.003 -0.003 9.247

iii 1.177 1.188 1.185 1.183 0.010 0.008 0.006 8.543

iv 0.618 0.627 0.622 0.616 0.009 0.004 -0.001 10.743

v 1.075 1.085 1.078 1.072 0.009 0.003 -0.004 9.354

vi 2.257 2.249 2.254 2.260 -0.008 -0.002 0.003 6.984

vii 0.655 0.662 0.657 0.651 0.008 0.002 -0.004 10.893

viii 1.117 1.125 1.123 1.120 0.009 0.006 0.004 8.465

VIII i 0.114 0.116 0.115 0.115 0.001 0.001 0.000 1.940
ii 0.046 0.052 0.050 0.048 0.005 0.003 0.002 4.153

iii 0.053 0.055 0.054 0.053 0.002 0.002 0.001 3.473

iv 0.028 0.032 0.030 0.028 0.004 0.002 0.000 5.705

v 0.052 0.057 0.055 0.053 0.005 0.003 0.001 4107

vi 0.104 0.101 0.103 0.105 -0.003 -0.001 0.001 1.979

vii 0.031 0.035 0.033 0.031 0.004 0.002 0.000 5.660

viii 0.047 0.050 0.049 0.048 0.002 0.002 0.001 3.528

X ix 0.121 0.138 0.130 0.122 0.017 0.009 0.001 0.892
X 0.023 0.030 0.030 0.029 0.007 0.007 0.006 1.758

xi 0.023 0.025 0.024 0.024 0.002 0.002 0.001 1.759

xii 0.119 0.133 0.127 0.120 0.014 0.007 0.000 0.892
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In the following appendix, we give a brief summary of an asymptotic expansion method following [7]. See
the paper for the detail.

A An Asymptotic Expansion in a General Markovian Setting

Let (W, P) be the r-dimensional Wiener space. We consider a d-dimensional diffusion process Xt(e) =

(Xt(s)’l, e Xt(e)’d) which is the solution to the following stochastic differential equation:
AX( M = VI(X(D e)dt + evi(XNdW, (i=1,---,d) (3)
X(()e) =X € Rd
where W = (W1 ... WT)is a r-dimensional standard Wiener process, and € € (0, 1] is a known parameter.
Let

Suppose that Vo = (Vi -+, Vi) : RYx (0,1] = Réand V = (V,.--,V9): R — RY®@R" satisfy some
regularity conditions.(e.g. Vo and V are smooth functions with bounded derivatives of all orders.)

Next, suppose that a function g : RY — R to be smooth and all derivatives have polynomial growth
orders. Then, g(X; (6)) has its asymptotic expansion;

Q(Xq(f)) ~ gor + €giT + - -

in L? for every p > 1(or in D*°) as € | 0. g,7 € D*(n = 0,1,---), the coefficients in the expansion, can
be obtained by Taylor s formula and represented based on multiple Wiener-Ito integrals.

k
Let Ay = ad t—|e=o and Akt, i = 1,---,d denote the i-th elements of Ay;. In particular, A is
represented by

i
A= [ ¥ (0% (X, 0)du+ V(X)) (4)
0

where Y denotes the solution to the differential equation;

dy, = V(X0 0)dt; Yo = I,.
Here, 0V, denotes the d x d matrix whose (j, k)-element is OV = 6‘/3? :©) Vj is the j-th element of V),
and I4 denotes the d x d identity matrix.
For k> 2, A,,i=1,---,d is recursively determined by the following:

i, = /a’% X, 0)ds (5)

l t]. d
+ zl, — zz/oa > a0 HAzsds
B=1 €Lg

dy,,dg=1

D>

p=1 f/feLfi,k—l

d
1
@Z a5 . 4, Vil (x() HA AW,

1dy,,dg=1

S—
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Then, gor and g1 can be written as

gor = (X(O))
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For n > 2, g, is expressed as follows:

nATT(L) st/ OV TT (i

FeS, I= PPLEP, ' i=1

where

=1
d

Next, normalize g(Xéf)) to

G(e) _ g(Xéf)) — gor
€
for € € (0,1]. Then,
G~ gir + egor + -+
in LP for every p > 1(or in D*). Moreover, let

V(z,t) = (9g()) [Y7Y, 'V ()]

and make the following assumption:
T A ’
(Assumption 1) Xp :/ V(X x© ,DHVI(X (0),15) dt > 0.
0

Note that gip follows a normal distribution with variance ¥p; the density function of g;r denoted by
Jur () is given by

() =~ exp (2
) = exp| —=—— ).
gir 27TET p QET
Hence, Assumption 1 means that the distribution of gi7 does not degenerate. In application, it is easy
to check this condition in most cases. Hereafter, Let S be the real Schwartz space of rapidly decreasing
C°°-functions on R and &’ be its dual space that is the space of the Schwartz tempered distributions. Next,
take ® € &’. Then, by Watanabe theory(Watanabe [8], Yoshida [9]) ®(G(?)) has an asymptotic expansion
in D~>°(a fortiori in D~*°) as ¢ | 0. In other words, the expectation of ®(G(9)) is expanded around e = 0
as follows: For N =0,1,2,---

)

j—m+1

N J
€ 1 1 m ), m ’
BRG] = > > —E 1™ (gr)q >, T gy | +ole)
: n=1

j=0 m=0 KEK m
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I
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/ (I)(m ) Z Cj,m,kE [ij%k| giT = gg] fng (I)dx -+ O(EN)

j=0 R kEK  m
al 1 om
D ot 2@ 3 R B [0 g = ] f )+ o)
7=0 m=0 kGK] m
(7)
where ®(™)(g7) = % )
T=g1T
j—m+1 j—m+1
Kj,m = {(k17"'7kjm+1);kn >0, Z kn =m, Z nky :J} y
n=1 n=1
Jj—m+1
jm.k kn
X7 = H In+1)T
n=1
j—m+1
C«j,m,k _
TH kl j m+1

B Computation Scheme

e To compute conditional expectations in the right hand side of (7), we use the following lemma which
can be derived from the property of Hermite polynomials and leads us to compute the unconditional
expectations instead of the conditional ones.

Lemma 1 Let (2, F, P) be a probability space. Suppose that X € L*(Q, P) and Z is a random
variable with Gaussian distribution with mean 0 and variance . Then, the conditional expectation
E[X|Z = z] has following ezpansion in L*(R, ) where u is the Gaussian measure on R with mean
0 and variance X:

E[X|Z = z] Z anH (8)
where H,(x;X) is the Hermite polynomial of degree n which is defined as

n_z? dn —z2
H,(z;%) = (=X)" /Ed?e /2%

and coefficients a,, are given by

11 o I
“"muz)naag_o{@ “Ee X]} (9)

e Recall g1 is defined as

T
dir = (9g(X)) / YrY, V(X )dW, = gir — C
0
where
, T
— o) [ vavlova(x(” oyt
0

and define
© O
Zy' = exp{i€ir + EET}.



e Then, from Lemma 1 and (7), we have the following expression of E[®(G()]:

N J
) 1 ) anL . )
E[@(G(e))] - el Z ﬁ/ @(:L‘) Z Cj,m,k(_l)maxim{E [Xj,m,k’ng = r— C] fng(ac)}dx + O(GN)
j=0 m=0 'R kEK; m
N J j+m
- ZGjZi/ ) S i {Zaﬂmkﬂlx—c 1) forr () b + oY)
j=0 m=0 m! Jr keKJ -

where

jme 11 o'
@ = Ty Al
(X))t 9€ ],

e In particular, let ® be the delta function at € R, §,, we obtain the asymptotic expansion of density

of G©):
fao (o)

{BIximiz{9)

I
fe
&
Q

Jj+m Jka‘]mk 8m

= 2> Z Z ()" S {Hix = C5Z1) fyp (@)} + o).

(10)

e Here it is noted that with this expression we now need to compute unconditional expectations
E[vam’kZ<T£>] instead of the conditional expectations.

e Remark
We remark the relation between our method and an approach presented by Takahashi[5],[6] in which
the density function of G(© is derived by Fourier inversion of its formally expanded characteristic

function. In fact, [5],[6] formally expanded ¥y (€) = E[ei6G"”] as

\IJG(e) (5) —E |:ei§G(€)i| _ ——ET-HEC Zej Z Z Cj,’m k Zf mE |:Xj,’m kz< >:| ( ) (11)

m=0"" kEKJ m

7=0

ovn e 1 k k (6

_72 i ok (oM j,m, N

= T+ig ZOH 2:0 - ke; CrmE ™ E {E {XJ Zy \ngH +o(e")
J= m= j,m

and computed the conditional expectations in this expansion. Then, fo @ (x) was derived by Fourier
inversion of ¥qe (£);

fowo (@) =F 1 (Vgo) = 1 /Oo e oo (€)dE. (12)

2r J_

e This approach is completely equivalent to our method. From (10) we obtain

N Jj+m ]kajmk om

foo (@) = eﬂz >y (~1)" o {Hi(w = O3 57) fyur ()} + ole)

0 0kEK; m 1=0

.
Il

Jjt+m ] m kcj m.k

YD ZT Fl <(i§)m(¢ng)lesz+isc>+o(eN>
ckj,

I
.MZ

j=0 m=0k m =0
2 . N ) J 1 _ Jj+m )
= Flle ey Ay — CImEGE™ Ny " al ™ (i) e | + o(eM)
j=0 m=0 " k€Kjm 1=0
€2 , AN 1 . .
= e Ee Sy o Ik (i) E | X7k 240 | | 4 o(e).
j=0 m=0 """ keK; .,



Then it is obvious that the inversion of the characteristic function expanded up to e¥-order (11)
coincides with the density function obtained by our approach.

B.1 Asymptotic Expansion of Density Function

e In this subsection, we propose a new computational method for the asymptotic expansion of the
density function (10). In particular, we show that coefficients in the expansion is obtained through
a system of ordinary differential equations that is solved easily, and derive an expression of the
expansion up to e3-order.

First, we write down the equation (10) more explicitly up to e3-order:
0,0,(0
faw@) = a™ P Ho(e - C;5r) for ()

2
te { al bW (=1) %{Hl(x —C;%7) fgrr (m>}}
1=
3 )
+62{ ap MOV (1) S Hi(x — C581) fou (2))
=0
I (2,0) 0
+ > a;” " @{Hl(qf - C; ZT)fng (x)}}
4 9
GS{Z a?‘,l,(0,0,l) (—1) %{Hl(m - C; ET)fng (x)}
92
%Z 1711°> o3 U@ = O 1) fo,0 (1)}

(300) i?’ A
Z ) O3 {Hl(m ¢ ET)fng(x)}

=0
+o(e%),
where coefficients a{ Mk are given by
000 _ zlv(zle)l (f;g_o{E[Zéa]}
ot = ll'(zZlT)l ('fﬁll =0 {E[QQTZ<T>]}
A =y g o Blosr 21}
2HE0 %(ile)l (%E_O{E[QSTZ”}Q]}
ay >t = %(iElT)l 88; g:O{E[92T93TZ )
a?,3,(3,0,0) _ lll(zElT)l 38511 - {E[ggTZ¥>]}_ (13)

e Since E[Z;Q] =1, we have ag 00— 1 and a?,o,(o) =0 for [ > 1. The other expectations above are

(3

expressed in terms of Ay and Z;'. For example,

11



d

1
E[92TZ§§>] = = Z 0;0j9(X. [AzTA ZE >] + 52@‘9( X0 )> [AéTz< >]
zj 1 i=1
1 d 1 d
% 0 % ]
BlosrZy’) = 5 D 0:0i0kg(X7 Bl Al AL 2 + 5 37 00;9(Xy Bl Ay Al 7]
i,j,k=1 4,5=1
1 d
0 i
5 0 DXy B[4 2],
i=1
d

Elg3: 2] = 009 (X VE[ALp Al Al AL 2]

Gk l=1

d
1 2
3 Z 0;9(X7 )X VBl ATp Al AS7 21

+5 Zagx“))ajg( NE[ALp AL 2L

,j=1

where Ay, is given by (4), and Ag; and Ag; are expressed as

t d d
Ay = / YtYu‘l<Z 0,0k Vo (X0, 0)A], A du + 2~ 0.0;Vo(X (", 0) AT, du
0 Gk=1 J=1
+02Vo (X0, 0)du + 228 V(X )A{uqu>,
j=1
t d . d )
Asy = / ytyu—1< > 0;000Vo(X D, 0) A7, AF Al du+3 " 0,0,V (XY, 0) A, A5, du
0 3k i=1 jk=1
d _ d )
+3 ) 0,060 Vo(X(0,0) AL, AF du+ 3" 8;0.Vo (X0, 0) A, du
7,k=1 j=1

d
+3) " 0;02Vo (XY, 0) AT, du + 92Vo(X [V, 0)du
j—l

+3Zaakv () A7, AL, AW, +3Zav )Agudw>

J,k=1 Jj=1

Here, we redefine §; = {g1:;t € R*} and Z¢¢) = {Zt@;t € R"} as a stochastic processes

t
Gy = / V(X w)dw,
0
and )
Zt(£> = exp{i€gis + %Zt}»

respectively where
A~ 0 ’ _
Vi, t) = (9g(X3)) [YrY, 'V (@),
; ; ik g ik ik g ik ik ik ik Kl
We define 75 1, 15 1, 77;,27 73,15 77;,,2, 77;,,3, M4,15 77}1,2717 773172,27 77%,27 77%,37 and 7725 3 a8
. , T -
() = BlALZE), () = BA5, 2, nyh(t) = ElA}, AL 2],
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M (8) == BIALZ), i (t) = E[AL, A% 2], né’@’l( t) == B[Al,AF, AL 2,
i 4 i,k 4 4
Ny (t) == B 4tZt<E>]7 Nyoq(t) = E[A1tA]§tZt ], 774 2, 5(t) == [AztAlzth@}
i () = BlAL A AL Z), it () = BlAL AL AL AT 28,
i,k t EAZ Ak (5) i,k,l t *EAZ Ak Al Z<£> i,k,l Az Ak Al Z<€>
775,2( ) = E[AY A3, 2], M5,3,1 ) = E[A}, A, A3, Z™], 77532( ) = E[A], A5, A, ls
i,k,l,m 7 m i,k,l,m,n i m An
775,4l (t) == [AltA]ftAlltA%Z >] 775,5l (t) = E[AuAIftAlltAltAltZt(é ls
i,k,l L z k Jm L 1 c m
ngy' (8) = BlAL AL AL Z), ikt () = BIAL, AV AL A 2],
e OF E[ALA’&ALA{@A&ZPL ngstTO(t) = BIAL AL, AL AT AT, A3, 2,

)

(14)

e We derive a system of ordinary differential equations of 5. In the followings, for simplicity, we assume
that V5 doesn’t depend on ¢, and write Vy(z, €) as Vo(x).

e Consider the evaluation of 77571 (T) = E[A},Z >] which appears in the e-order. Applying Ité’s formula

to A%tZt@, we have
d(ALZSy = Ab,dzl® + 78 dA, + dAd,dzd

= { (i€) ZAJ ZEv(xV H)o; vi(xOy +ZA ©0, v (x1)

+ Z Z A{;A’fQZé@aj/an(X?’)}dt

J'=1k'=1

+{ (i6) AL, 29V (x +2ZA £, v (x() b dw.

e Note that the second and third terms are martingales. Thus, taking the expectation on both sides,
we have the following ordinary differential equation of 77%11:

d
d , L ,
Zmat) = 20 Yl (VX" 09, v (X
j'=1
d , d d
+ 3 na 0o Vi () + Z Z £)0; 0 VI (X 0.
j'=1 '=1k'=1

e Here, n{"l(j =1,---,d) appearing in the right hand side of above ODE are evaluated in the similar
manner:

d(A},z) = A},dz\" + 2" A}, + dAjaz®

= 2V (x", v (x{”) +ZA ©9, v (x) § dt

Jj'=1

+{6©,28V(x0 0) + 2OV} aw,

hence, we have
d

d
) = GOV OVIY + 37y (09, V) (X)),

=1

13



o n%:g is evaluated in the same way.
d ) . _ , .
S0 = G (o OV X oVIY 4 07, vy )

+VI (X OWVRXD) + Z Z My (1) Vg (X Ve (X,)

i'=1k'=1

e Note that 77{’1, 77%15 and 77%,1 are evaluated in the following order:

e The key observation is that each ODE does not involve any higher order terms, and only lower or the
same order terms appear in the right hand side of the ODE. Hence, one can easily solve (analytically
or numerically) the system of ODEs and evaluate expectations.

Proposition 1 For 1, ., 1 defined in (14), the following system of ordinary differential equations
holds:

d
i) = Ve, ovix®) P+ 3 00
i'=1
d d
. i ¥ (0 i 0
Zha(t) = 20 Dl (VG 0. vy
=1
d d d o
+Z ()al/v() X(O) Z Z ({92/3k/‘/[)(X(0))
i'=1 — —
Zngh) = &) {nb, OV Vi) + m,1<t>v<xé°>,t>vk<X§°>>'}
d d
+VIXOWEXOY 373 nb s 000 Vi (X))o v (x()
i'=1k'=1

d
d . i > 7
Zsa () = O3 m LoV o V(xS
d d -/ ! A~ .
33 S ¥ v, t)ai,ak,vz(Xf‘”)’}
i'=1k'=1
d /
+ 3 nh (00 Vi (X(Y) +3Z Z £)03 9 Vi (X))
/=1 '=1k'=1

d d d
2020 Doy (0000 Vi (X[

i'=1k'=110'=1

d
d | ' 1- e
Znih(t) = GO{ns, OV oviO) +2 3w v 0”00, vEx®y |
/=1
d . .
+2 3 0 OV vE XY
=1

+Zn )0y Vi(X °)+Zn32 ()0 VE(X)

=1 k'=1
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d d
+3° 3 s N (0000w VEX)

=1k'=1
=55 (1) = <zs>{n§; OV OV +05h OV (XD, VX “) + 5OV, ovix”y )
L VROV +n’f OVIX WY + b VIXO)VRXDY
d
Z "6)0 V(X)) +Zn "o Vi (x +Zn”” (O VHX)

k=1 =1
(The remaining equations are omitted.)
e We summarize the discussion above as the following theorem:

Theorem 1 The asymptotic expansion of density of G\ up to e3-order is given by

fG(E)(x) = fng(.’K)

3
+e {Z CyuH(x; ET)} forr (@)

=1

6
€ {Z CZlHl(x; ZT)} fng (l‘)

=1

9
+€3 {Z Ongl(l'; 2T)} fng (‘T)

1=1
+o(e?).
where
Cu= ETallLll’(l),
Oy = ETag’l’(O’l), Oy = al, LOD) | 22 22 (2 O)(l > 9),
Cs1 = ETag’l’(O’O’l), Cso =X a3 1.0, 1) + 22 3’2’(1 2 0)

Oy — ETGZ 1(001)+ EQT 32(120)+623 33(300)(173).

Here, a™" are given by (13):

a) ™ = zlv(ile)l;;g_o{E[Z}@]}
= ll'(z'le)l;&llg=o{E[92TZT§>]}
a0 = lll(z'ZlT)zgﬁllFo{E[g?’TZ;@]}
2220 _ ll!(ZZ]-T)l 5; 5:O{E[93T2§5>]}
gt



B.2

The expectations in (138) are obtained as the solutions to the system of ordinary differential equations
given tn Proposition 1.

Asymptotic Expansion of Option Prices

We apply the asymptotic expansion to option pricing. We consider the plain vanilla option on the

underlying asset g(X:(F6 )) where the dynamics of X:(FE ) is given by (3).

For example, an asymptotic expansion upto e(Nt1 of a call option price at time 0 with maturity T
and strike price K where K = X,EFO) — ey for arbitrary y € R is given by

oo
C.T) = PO.T) [ (@) e y(o)ds + ol D).

~y
Here, P(0,T') denotes the price at time 0 of a zero coupon bond with maturity 7" and fg x is the
normal asymptotic expansion of density of G(® up to eV-th order given by (10):

N o J j+maj’m’kcj’m’k om
feon@ = Y &> > (V)" g iz = O3 Er) four ()}

7=0 m=0keK; ,, 1=0

In particular, using Theorem 1, an asymptotic expansion upto e* of a call option price at time 0 with

maturity 7" and strike price K where K = X;O) — ey for arbitrary y € R is expressed as

o0

C(K.T) = eP(0.T) / (2 + ) forr (2)d

-y

oo 3
+62P(07T)/ (:E + y) {Z CllHl(x; ET)} fng (x)dm

—y 1=1

o 6
+e2P(0,T) / (z+y) {Z Co H(x; ET)} forr (z)dz

Y =1

oo

+e*P(0,7) /

-y

9
(z+y) {Z Ca Hy(; 2T)} four (x)d
=1
+o(eh).

Integrals appeared in the right hand side can be calculated by following formulas related to the
Hermite polynomial

o0

Hi(2;%) fgr(x)de = SHyp_1(—y;2) fgr (y) (k> 1),

/Ooka(x;E)fng(x)dx Sy H (- D) e ()

-y
+32Hy o (=4 2) four () (k> 2).
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