マリアバン解析を用いたオプションの リスク指標の数値計算について

今村 悟・内田 善彦・高橋 明彦

2006年12月29日

概 要

本稿は,マリアバン解析とモンテカルロ法を用い,原資産価格が拡 散過程に従うときのプレーンバニラ,デジタル,アジア型の各オプ ションのリスク指標(デルタ,ガンマ)に対する効率的計算方法を検 討した.特に,Fournié et al.[1999]の方法を拡張し,プレーンバニ ラ・オプションのガンマなどに対しては,より効率的な方法を,アジ ア型オプションのガンマに対しては新しい計算方法を考案した.ま た,価格の変動を記述する確率微分方程式についても,彼等が用い た例(対数正規過程)と共に,CEV(Constant Elasticity of Variance) 過程に対し,我々の方法の有効性を検証,確認した.さらに,既存 の結果に関しても明示されていなかった証明を示した.

1 はじめに

派生商品の価値評価と共に,リスク管理は金融実務上極めて重要な課題である.その方 法は目的に応じて様々であるが,トレーディングなどでは瞬時的なリスクをモニターする ための"グリークス"と総称されるリスク指標が重視される.派生商品の価値はしばしば 複数のパラメータの非線形関数により表現され,派生商品ポジションのリスクは,これ らのパラメータの変化に対する派生商品の価値変化として把握される.その代表的な方法 が,派生商品価値のパラメータに関する偏微分係数,すなわち,"グリークス"である.特 に,価値を表す関数の非線形性しだいで,リスクを正確に把握するために高階まで含めた 偏微分の"グリークス"をモニターする場合がある.

"グリークス"のリスク指標が解析的に求まる場合は実用上問題ないが,実務で用いられるモデルでは,派生商品の価値と共にリスク指標が解析的に得られず,数値的手法が用いられることが多い.このため,効率的計算方法,すなわち,高速で高精度な数値計算方法の開発が強く望まれている.

本稿では,特に"グリークス"の中でも最も重要と思われる,派生商品価値の現時点の 原資産価格に関する1階の偏微分係数であるデルタ(Delta, δ)と,2階の偏微分係数であ るガンマ(Gamma, γ)の効率的計算方法に焦点を当て考察する.なお,デルタは原資産 価格の微小変化に対する派生商品価値の変化を表し,ガンマは原資産価格の微小変化に対 するデルタの変化を表している.

以下では,原資産価格 X_t がリスク中立測度(同値マルチンゲール測度)の下で,

$$\begin{cases} dX_t = r(t)X_t dt + \sigma(X_t) dW_t \\ X_0 = x \\ ただし, r(t) (\geq 0) は確定的 \end{cases}$$
(1)

に従うとき,満期*T*におけるペイオフ関数が ϕ で与えられるヨーロッパ型の派生商品(オ プション)を考える.具体例として,

を対象とする. $\phi(X_T) = e^{-\int_0^T r(t)dt}\psi(X_T)$ とおくと,これらの派生商品価格は同値マルチン ゲール測度の下で, $u(x) = E^x[\phi(X_T)]$ と表されるが¹,この価格の初期値微分係数 (デル $1E^x[\cdot]$ は $E[\cdot|X_0 = x]$ を表す. タ) $u'(x) = \frac{d}{dx} E^x[\phi(X_T)]$ 及び2回微分係数 (ガンマ) $u''(x) = \frac{d^2}{dx^2} E^x[\phi(X_T)]$ を,モンテカ ルロ法を用いて効率的に計算することを目標とする.

自然な方法として,小さい ε に対して $u(x + \varepsilon)$, u(x), $u(x - \varepsilon)$ をそれぞれモンテカ ルロ法により生成して

$$u'(x) = \frac{u(x+\varepsilon) - u(x-\varepsilon)}{2\varepsilon},$$
(2)

$$u''(x) = \frac{u(x+\varepsilon) - 2u(x) + u(x-\varepsilon)}{\varepsilon^2},$$
(3)

とする差分法がある. しかし, これでは ϕ の微分可能性の条件によって収束が遅い場合が ある. 加えて, 収束値が ε の値に依存する必ずしも真値に収束するとは言えない.

次に、ペイオフ関数 ϕ を微分することにより

$$u'(x) = E^{x}[\phi' \times \text{weight}], \tag{4}$$

$$u''(x) = E^{x}[\phi'' \times \text{weight}], \tag{5}$$

ただし,weight は \mathcal{F}_T – 可測な確率変数

と表現する方法があるが,デジタル・オプションの場合はペイオフ関数 φ が微分不可能 であるため用いることができない.また,プレーンバニラ・オプションの場合でもペイオ フ関数 φ が 2 回微分できないためガンマについては適用できない.

これに対して Fournié et al. [1999] は,スコロホッド積分(後述の定義1を参照)を用いて,

$$u'(x) = E^x[\phi \times \text{weight}],\tag{6}$$

$$u''(x) = E^x[\phi \times \text{weight}],\tag{7}$$

のタイプの表現を与えた.しかし,このままでは,モンテカルロ法を適用すると,多くの 場合ウエイト (weight)の部分の分散が大きく収束が悪い.そこで,彼らは次のような局所 化 (localization) を行いこの問題を解決している.局所化とは, φ を

- $\phi = \phi_1 + \phi_2$
- *φ*₁: デルタでは連続で有限個の点を除いて微分可能

ガンマでは C¹ 級で有限個の点を除いて 2 回微分可能

*φ*₂: コンパクトな台(support)を持つ

と分解して, ϕ_1 に対しては微分(デルタなら1回,ガンマなら2回)して期待値をモンテ カルロ法により計算し, ϕ_2 に対してはスコロホッド積分を用いてペイオフ関数を微分せ ずに期待値をモンテカルロ法により計算する. このとき, ϕ_1 部分についてはペイオフ関数 を微分したときのウエイトの分散が微分しないときに比べて小さくなる. 一方, ϕ_2 部分も ペイオフ関数がコンパクトな台を持つため分散が大きくなることが回避される.

本稿では,ガンマに対して ϕ , ϕ'' ではなく ϕ' を用いた

$$u''(x) = E^x[\phi' \times \text{weight}],\tag{8}$$

のタイプの公式を導出する.これにより,アジア型オプションのガンマに関して差分法より大幅に効率的なモンテカルロ法による数値計算が可能となることを示すとともに,プレーンバニラ・オプションに関して,この表現を用いた局所化が,Fournié et al.[1999]の方法よりも優れていることを示す.

また, Fournié et al.[1999] のほとんどの結果はブラック・ショールズ・モデル(BSモ デル)²のみを対象にしていたが,BSモデルの"グリークス"などの代表的なリスク指 標は解析的に求められる.そこで,これらの結果を実務的にはより重要となるBSモデ ルを含む一般のモデルに拡張し,今まで明示されていなかった証明も示す.

この中で,ペイオフ関数 ϕ に対して $\Phi(z) = \int_0^z \phi(y) dy$ として

$$u'(x) = E^{x}[\Phi \times \text{weight}], \qquad (9)$$

$$u''(x) = E^{x}[\Phi \times \text{weight}], \qquad (10)$$

のタイプの公式も導出し,デジタル・オプションに関しては,この表現を用いたペイオフ 関数の分解が有効である場合があることも示す.

最後にBSモデルとCEV(Constant Elasticity of Variance)モデル双方の場合について実際に数値計算を行い,われわれの方法の有効性を検証・確認する.

本稿の構成は以下のとおりである.次節では準備としてマリアバン解析の基本事項など を説明し,第3節ではリスク指標のデルタ,ガンマに関する主要な表現を列挙する.第4 節では具体的な数値計算法を解説し,第5節においては数値計算例とその結果を分析す る.最後に第6節において第3節で挙げた定理,系の証明を与える.

2 準備

本節では,次節以降における主要な前提,仮定及びしばしば用いられるマリアバン解析の基本事項を概説する.マリアバン解析の詳細及びファイナンスへの他の適用例はIkeda

²原資産価格が対数正規過程に従うと仮定したモデル.

and Watanabe [1989], 重川 [1999], Nualart [1995], Oksendal [1997], 国友・高橋 [2003]な どを参照されたい.

 (Ω, \mathcal{F}, P) を完備確率空間とする. W_t を1次元ブラウン運動とし,フィルトレーション $\{\mathcal{F}_t\}$ は W_t で生成されるフィルトレーションを拡大化 (augmentation) したものとする.S を

$$\mathcal{S}:=\left\{F=f\left(\int_0^\infty h_1(t)dW_t,\cdots,\int_0^\infty h_n(t)dW_t\right); n\in\mathbf{N}, h_1,\cdots,h_n\in L^2(\mathbf{R}^+), f\in C_P^\infty\right\},$$

で定義する³.

以下では, $L^2(\Omega)$ は, Ω 上のウイナー測度に関し2乗可積分関数全体の空間を表し, $L^2(\Omega \times \mathbf{R}^+)$ は, $\Omega \times [0,\infty)$ 上のウイナー測度とルベーグ測度の積測度に関し2乗可積 分関数全体の空間を表す.

 $F \in S$ に対してマリアバン微分 { $D_t F, t \ge 0$ } $\in L^2(\Omega \times \mathbf{R}^+)$ を

$$D_t F := \sum_{i=1}^n \frac{\partial f}{\partial x_i} \left(\int_0^\infty h_1(t) dW_t, \cdots, \int_0^\infty h_n(t) dW_t \right) h_i(t), \tag{11}$$

で定義する⁴.また, $F \in S$ に対してノルムを

$$\|F\|_{1,2} := \left(E[F^2]\right)^{\frac{1}{2}} + \left(E[\int_0^\infty (D_t F)^2 dt]\right)^{\frac{1}{2}},\tag{12}$$

で定義する. このノルム $\|\cdot\|_{1,2}$ でSを完備化した空間を $\mathbb{D}^{1,2}$ で表す. $F \in L^2(\Omega)$ に対 して $\{F_n\} \subset S$, $F_n \to F$ in $L^2(\Omega)$ をとると D_t は閉線形作用素であるため, D_tF_n は $L^{2}(\Omega \times \mathbf{R}^{+})$ の意味で収束する. そこで $F \in L^{2}(\Omega)$ に対して $D_{t}F := \lim_{n \to \infty} D_{t}F_{n} \in D_{t}F_{n}$ $L^{2}(\Omega \times \mathbf{R}^{+})$ として定義する.

次に,後に用いるマリアバン微分の基本的性質を列挙する、以後, X_t は,

$$\begin{cases} dX_t = r(t)X_t dt + \sigma(X_t) dW_t \\ X_0 = x \end{cases},$$
(13)

に従うとする. ただし, r(t) は時間だけの確定的な連続関数, $\sigma(z)$ は 2回連続微分可能, $\sigma'(z)$ は有界, $\sigma''(z)$ は有界でリプシッツ条件を満たすとする (z は変数.以下同様). さらに, 以下を仮定する.

仮定

$$\sigma(z) \ge \epsilon > 0 \tag{14}$$

 $^{{}^{3}}C_{p}^{\infty}$ は無限回連続微分可能で,その導関数がすべて高々多項式で押さえられる関数の集合を表す. ${}^{4}\frac{\partial f}{\partial x_{i}}$ はfの第i番目の引数に関する偏微分を表す.

性質 1 (Nualart[1995] p.29) ϕ を連続微分可能な関数 , $F \in \mathbb{D}^{1,2}$ とすると , $\phi(F) \in \mathbb{D}^{1,2}$ であり ,

$$D_t \phi(F) = \phi'(F) D_t F. \tag{15}$$

性質 2 (Nualart[1995] p.109) X_t の "初期値 x による導関数" $Y_t := \frac{\partial}{\partial x} X_t$ は,以下の確率 微分方程式を満たす.

$$\begin{cases} dY_t = r(t)Y_t dt + \sigma'(X_t)Y_t dW_t \\ Y_0 = 1 \end{cases}$$
(16)

また, Y_t の"初期値xによる導関数" $Z_t := rac{\partial}{\partial x} Y_t$ は,

$$\begin{cases} dZ_t = r(t)Z_t dt + (\sigma''(X_t)Y_t^2 + \sigma'(X_t)Z_t)dW_t \\ Z_0 = 0 \end{cases},$$
(17)

を満たす.

さらに, $ilde{X}_t := \int_0^t X_s ds$ とすると, $ilde{X}_t$ の初期値xによる微分 $ilde{Y}_t := rac{\partial}{\partial x} ilde{X}_t$ は,

$$\tilde{Y}_t = \int_0^t Y_s ds, \tag{18}$$

で与えられる.

*X_T*のマリアバン微分は次で得られる.

性質 3 (Nualart[1995] p.109)

$$D_t X_T = Y_T Y_t^{-1} \sigma(X_t) \mathbf{1}_{\{t \le T\}}.$$
(19)

これを $Y_T = D_t X_T \sigma(X_t)^{-1} Y_t$ $(t \le T)$ と変型し両辺に $\frac{1}{T} \int_0^T \cdot dt$ を施すと, 左辺は t に依らないので,

$$Y_T = \frac{1}{T} \int_0^T D_t X_T \sigma(X_t)^{-1} Y_t dt,$$
 (20)

となる. また, (20) 式の両辺を Y_T で割れば,

$$1 = Y_T^{-1} \frac{1}{T} \int_0^T D_t X_T \sigma(X_t)^{-1} Y_t dt, \qquad (21)$$

を得る.

定義 1 (スコロホッド積分) (Nualart[1995] p.35)

$$Dom(\delta) := \left\{ u : 確率過程; \left| E \left[\int_0^T \{ D_t \phi \} u(t) dt \right] \right| \le C(u) \| \phi \|_{1,2}, \forall \phi \in \mathbb{D}^{1,2}$$
ただし $C(u)$ は u に依存する定数 $\right\},$

とする $.u \in Dom(\delta)$ のスコロホッド積分 $\delta(u)$ を,任意の $\phi \in \mathbb{D}^{1,2}$ と任意の定数T > 0に対して,次を満たすものとして定義する.

$$E\left[\phi\delta(u)\right] = E\left[\int_0^T \{D_t\phi\}u(t)dt\right].$$
(22)

u(t) が適合過程であるとき スコロホッド積分は伊藤積分と一致する.

スコロホッド積分は適合過程でなくても定義することができるが,その場合には,数値 計算ができない.そこで,次の性質が重要になる.

性質 4 (Nualart[1995] p.40)

uを確率過程で $u \in Dom(\delta)$, $F \in \mathbb{D}^{1,2}$ を \mathcal{F}_T 可測な確率変数としたとき,

$$\delta(Fu) = F\delta(u) - \int_0^T \{D_t F\} u dt.$$
(23)

3 リスク指標 (デルタ, ガンマ)の表現

ペイオフ関数が $\phi(X_T)$ ($\in L^2(\Omega)$) で表される満期日 T のヨーロッパ型派生商品の価格 u は同値マルチンゲール測度を用いて

$$u(x) = E^x[\phi(X_T)], \tag{24}$$

により表される. 次に, $\tilde{X}_t = \int_0^t X_s ds$ として,ペイオフ関数が $\phi(\tilde{X}_T)$ で表されるアジア 型オプションを考える. このとき,オプションの行使が満期日 T に限られる場合の価格 uは,同様に,

$$u(x) = E^x[\phi(\tilde{X}_T)], \tag{25}$$

により表される.以下では,プレーンバニラ,デジタル,アジア型各オプションのデルタ, ガンマに関して数値計算上有用な表現を与える.なお,本節の定理,系の証明は補論にま とめた.

3.1 プレーンバニラ・オプション,デジタル・オプションのデルタ

定理 1 ペイオフ関数が $\phi(X_T)$ で表されるとき,デルタは,

$$u'(x) = \frac{d}{dx}u(x) = E^{x}[\phi'(X_{T})Y_{T}]$$
(26)

$$= E^{x} \left[\phi(X_{T}) \frac{1}{T} \int_{0}^{T} \sigma(X_{t})^{-1} Y_{t} dW_{t} \right]$$

$$= E^{x} \left[\Phi(X_{T}) \frac{1}{T^{2}} \left\{ \left(\int_{0}^{T} \sigma(X_{t})^{-1} Y_{t} dW_{t} \right)^{2} Y_{T}^{-1} - \left(\int_{0}^{T} (\sigma(X_{t})^{-1} Y_{t})^{2} dt \right) Y_{T}^{-1} + \left(\int_{0}^{T} \sigma(X_{t})^{-1} Y_{t} dW_{t} \right) \left(\int_{0}^{T} \sigma(X_{t})^{-1} Y_{t} \sigma'(X_{t}) dt + \int_{0}^{T} s \sigma''(X_{s}) Y_{s} dW_{s} - \int_{0}^{T} s \sigma'(X_{s}) \sigma''(X_{s}) Y_{s} ds \right) Y_{T}^{-1} \right\}$$

$$+ \Phi(X_{T}) \frac{1}{T^{2}} \left\{ Y_{T}^{-1} \int_{0}^{T} u \sigma(X_{u})^{-2} \sigma'(X_{u}) Y_{u}^{2} dW_{u} - Y_{T}^{-1} \int_{0}^{T} \sigma(X_{u})^{-1} Y_{u} \left(\int_{0}^{u} s \sigma''(X_{s}) Y_{s} dW_{s} \right) dW_{u} + Y_{T}^{-1} \int_{0}^{T} \sigma(X_{u})^{-1} Y_{u} \left(\int_{0}^{u} s \sigma''(X_{s}) Y_{s} dW_{s} \right) dW_{u} \right\} \right].$$

$$(27)$$

ただし, (26) 式は, $\phi(z)$ が連続で有限個の点を除いて微分可能である場合に限る. このとき,有限個の点を除いて導関数が定義されるのでそれを $\phi'(z)$ とする. また, Φ は $\Phi(z) = \int_0^z \phi(y) dy$ により定義され, (28) 式は $\Phi(X_T) \in L^2(\Omega)$ の場合に限る.

注意

- 1. 例えば , $\phi(z) = (z K)^+$ のとき $\phi'(z) = 1_{\{z \ge K\}}$ $(z = K \ continue of the content of the$
- 2. なお, $E^x[\phi'\cdots]((26) \exists)$, $E^x[\phi\cdots]((27) \exists)$, $E^x[\Phi\cdots]((28) \exists)$ の3種類の表現があるのは, ペイオフ関数 ϕ の微分可能性によって使い分けられるようにするためである.
- 3. また「補論:定理の証明」で詳述するが,特別な場合を除いて(28)式,後の(37),(38),
 (45)式の計算にはY_Tのマリアバン微分 D_tY_Tを求める必要がある.これは(16)式より計算できて,(19)式を用いれば以下を得る.

$$D_t Y_T = \int_t^T r(u) D_t Y_u du + \int_t^T \sigma'(X_u) D_t Y_u dW_u$$

$$+\sigma'(X_t)Y_t + \int_t^T \sigma''(X_u)\sigma(X_t)Y_u^2Y_t^{-1}dW_u.$$
 (29)

さらに, D_tY_T は,

$$D_{t}Y_{T} = \sigma'(X_{t})Y_{T} + Y_{T}Y_{t}^{-1}\sigma(X_{t})\int_{t}^{T}\sigma''(X_{s})Y_{s}dW_{s}$$

- $Y_{T}Y_{t}^{-1}\sigma(X_{t})\int_{t}^{T}\sigma'(X_{s})\sigma''(X_{s})Y_{s}ds$ (30)

と表現できる.

実際(30)式をT = uとして微分形式で書くと,

$$\begin{split} d(D_t Y_u) &= (dY_u)(Y_u^{-1} D_t Y_u) + Y_u Y_t^{-1} \sigma(X_t) \sigma^{''}(X_u) Y_u dW_u \\ &+ Y_t^{-1} \sigma(X_t) d < Y, \sigma^{''}(X) Y dW >_u \\ &- Y_t^{-1} \sigma(X_t) \sigma^{'}(X_u) \sigma^{''}(X_u) Y_u^2 du \\ &= \{r(u) du + \sigma^{'}(X_u) dW_u\} (D_t Y_u) + Y_t^{-1} \sigma(X_t) \sigma^{''}(X_u) Y_u^2 dW_u \\ &+ Y_t^{-1} \sigma(X_t) \sigma^{'}(X_u) \sigma^{''}(X_u) Y_u^2 du - Y_t^{-1} \sigma(X_t) \sigma^{''}(X_u) \sigma^{''}(X_u) Y_u^2 du \\ &= r(u) (D_t Y_u) du + \sigma^{'}(X_u) (D_t Y_u) dW_u + \sigma^{''}(X_u) \sigma(X_t) Y_u^2 Y_t^{-1} dW_u \end{split}$$

なので, $d(D_tY_u)$ を u について t から T まで積分し, u = t のとき (30) 式において $D_tY_u = \sigma'(X_t)Y_t$ となることに注意すれば (29) 式を得る.

系 1 X_t がBSモデル, すなわち

$$\begin{cases} dX_t = rX_t dt + \sigma X_t dW_t \\ X_0 = x \end{cases},$$
(31)

に従うとき(ただし,r, σ は定数),

$$u'(x) = E^x \left[\phi'(X_T) \frac{1}{x} X_T \right]$$
(32)

$$= E^{x} \left[\phi(X_T) \frac{1}{x \sigma T} W_T \right]$$
(33)

$$= E^{x} \left[\Phi(X_{T}) \frac{1}{x \sigma^{2} T^{2}} \frac{1}{X_{T}} (W_{T}^{2} + \sigma T W_{T} - T) \right].$$
(34)

3.2 プレーンバニラ・オプション,デジタル・オプションのガンマ

定理 2 ペイオフ関数が $\phi(X_T)$ で表されるときガンマは,

$$u''(x) = \frac{d^2}{dx^2}u(x)$$
(35)
= $E^x \left[\phi''(X_T)Y_T^2 + \phi'(X_T)Z_T\right]$ (36)

$$= E^{x} \left[\phi'(X_{T}) \left\{ \frac{1}{T} \left(\int_{0}^{T} \sigma(X_{t})^{-1} Y_{t} dW_{t} \right) Y_{T} - \frac{1}{T} Y_{T} \left(\int_{0}^{T} \sigma'(X_{t}) \sigma(X_{t})^{-1} Y_{t} dt + \int_{0}^{T} s \sigma''(X_{s}) Y_{s} dW_{s} - \int_{0}^{T} s \sigma'(X_{s}) \sigma''(X_{s}) Y_{s} ds \right) + Z_{T} \right\} \right]$$
(37)
$$= E^{x} \left[\phi(X_{T}) \left\{ \frac{1}{T^{2}} \left(\int_{0}^{T} \sigma(X_{t})^{-1} Y_{t} dW_{t} \right)^{2} - \frac{1}{T^{2}} \int_{0}^{T} (\sigma(X_{t})^{-1} Y_{t})^{2} dt + \frac{1}{T} \int_{0}^{T} (-\sigma(X_{t})^{-2} \sigma'(X_{t}) Y_{t}^{2} + \sigma(X_{t})^{-1} Z_{t}) dW_{t} \right\} + \phi(X_{T}) \frac{1}{T^{2}} \left\{ - \int_{0}^{T} \sigma(X_{u})^{-1} Y_{u} \left(\int_{0}^{u} \sigma'(X_{t}) \sigma(X_{t})^{-1} Y_{t} dt \right) dW_{u} - \int_{0}^{T} \sigma(X_{u})^{-1} Y_{u} \left(\int_{0}^{u} s \sigma''(X_{s}) Y_{s} dW_{s} \right) dW_{u} + \int_{0}^{T} u \sigma(X_{u})^{-2} \sigma'(X_{u}) Y_{u}^{2} dW_{u} \right\}$$

$$+ \int_{0}^{T} \sigma(X_{u})^{-1} Y_{u} \Big(\int_{0}^{u} s\sigma'(X_{s}) \sigma''(X_{s}) Y_{s} ds \Big) dW_{u} \Big\} \Big]$$
(38)

ただし, (36) 式は $\phi(z)$ が C^1 級で有限個の点を除いて 2 回微分可能である場合に, (37) 式 は $\phi(z)$ が連続で有限個の点を除いて微分可能である場合に, それぞれ限る.

注意

 $u''(x) = E^x[\Phi \cdots]$ のタイプの表現は、この式を用いた具体的な数値的評価にかなりの計算時間を要し実用的でないため省略した.

系 2 X_t がBSモデルに従うとき,

$$u''(x) = E^{x} \left[\phi''(X_T) \frac{1}{x^2} X_T^2 \right]$$
(39)

$$= E^{x} \left[\phi'(X_T) \frac{1}{x^2 \sigma T} (W_T X_T - \sigma T X_T) \right]$$
(40)

$$= E^{x} \left[\phi(X_{T}) \frac{1}{x^{2} \sigma^{2} T^{2}} (W_{T}^{2} - \sigma T W_{T} - T) \right]$$
(41)

$$= E^{x} \left[\Phi(X_{T}) \frac{1}{x^{2} \sigma^{3} T^{3}} \frac{1}{X_{T}} (W_{T}^{3} - (3T + \sigma^{2} T^{2}) W_{T}) \right].$$
(42)

3.3 アジア型オプションのデルタ

定理 3 $ilde{X}_t = \int_0^t X_s ds$ とする. ペイオフ関数が $\phi(ilde{X}_T)$ で表されるときデルタは ,

$$u'(x) = \frac{d}{dx} E^{x}[\phi(\tilde{X}_{T})] = E^{x}[\phi'(\tilde{X}_{T})\tilde{Y}_{T}]$$

$$E^{x}[\psi(\tilde{X}_{T}) = 2\tilde{\Sigma}\left(-(X)^{-1}V^{2}\tilde{Y}^{-1}\right)]$$

$$(43)$$

$$= E^{x} \left[\phi(X_{T}) \cdot 2\delta \left(\sigma(X_{t})^{-1} Y_{t}^{2} Y_{T}^{-1} \right) \right]$$

$$= E^{x} \left[\phi(\tilde{X}_{T}) \cdot 2 \left\{ \tilde{Y}_{T}^{-1} \int_{0}^{T} \sigma(X_{t})^{-1} Y_{t}^{2} dW_{t} \right\}$$

$$(44)$$

$$+ \tilde{Y}_{T}^{-2} \left(\int_{0}^{T} \sigma(X_{t})^{-1} Y_{t}^{2} \sigma'(X_{t}) (\tilde{Y}_{T} - \tilde{Y}_{t}) dt + \int_{0}^{T} \sigma''(X_{u}) Y_{u} (\tilde{Y}_{T} - \tilde{Y}_{u}) \tilde{Y}_{u} dW_{u} - \int_{0}^{T} \sigma'(X_{u}) \sigma''(X_{u}) Y_{u} (\tilde{Y}_{T} - \tilde{Y}_{u}) \tilde{Y}_{u} du \right) \right\} \right].$$
(45)

ただし, (43) 式は $\phi(z)$ が連続で有限個の点を除いて微分可能である場合に限る.

系 3 X_t がBSモデルに従うとき,

$$u'(x) = E^x \left[\phi'(\tilde{X}_T) \frac{1}{x} \tilde{X}_T \right]$$
(46)

$$= E^{x} \left[\phi(\tilde{X}_{T}) \left\{ \frac{2}{x\sigma} \tilde{X}_{T}^{-1} \int_{0}^{T} X_{t} dW_{t} + \frac{1}{x} \right\} \right].$$

$$(47)$$

3.4 アジア型オプションのガンマ

定理 4 $ilde{X}_t = \int_0^t X_s ds$ とする. ペイオフ関数が $\phi(ilde{X}_T)$ で表されるときガンマは,

$$u''(x) = \frac{d^2}{dx^2} E^x[\phi(\tilde{X}_T)]$$
(48)

$$= E^{x} \left[\phi''(\tilde{X}_{T})\tilde{Y}_{T}^{2} + \phi'(\tilde{X}_{T})\tilde{Z}_{T} \right]$$

$$\tag{49}$$

$$= E^{x} \left[\phi'(\tilde{X}_{T}) \left(2 \int_{0}^{T} \sigma(X_{t})^{-1} Y_{t}^{2} dW_{t} + \tilde{Z}_{T} \right) \right].$$
 (50)

ただし , (49)式は $\phi(z)$ が C^1 級で有限個の点を除いて 2 回微分可能である場合に , (50)式 は $\phi(z)$ が連続で有限個の点を除いて微分可能である場合に , それぞれ限る.

系 4 X_t がBSモデルに従うとき,

$$u''(x) = E^x \left[\phi''(\tilde{X}_T) \frac{1}{x^2} \tilde{X}_T^2 \right]$$
(51)

$$= E^{x} \left[\phi'(\tilde{X}_{T}) \frac{1}{x\sigma} \int_{0}^{T} X_{t} dW_{t} \right].$$
(52)

4 数值計算方法

本節では,デルタ,ガンマの数値的評価に関し,前節の定理・系の各式と,以下で紹介 するペイオフ関数の分解法に基づく,モンテカルロ法を用いた効率的計算法を解説する.

一般に, \mathbf{R}^d 値確率過程 $\mathbf{X}_u(0, z)$ $(0 \le u \le T, z \in \mathbf{R}^d)$ が確率積分方程式

$$\mathbf{X}_u(0,z) = z + \int_0^u V_0(\mathbf{X}_s(t,z))ds + \int_0^u V(\mathbf{X}_s(t,z))dW_s.$$

を満たすものとして⁵, ある関数 f に対して $E[f(\mathbf{X}_T(0, z))]$ をモンテカルロ法により近似 することを考える.まず,オイラー・丸山法により時間軸を n 等分して, この確率微分方 程式を離散化する.すなわち,

$$\bar{X}_u = z + \int_0^u V_0(\bar{\mathbf{X}}_{\eta(s)}) ds + \int_0^u V(\bar{\mathbf{X}}_{\eta(s)}) dW_s.$$

ただし, $\eta(s) = [ns/T]T/n$ であり,[y]はyを超えない最大の整数を表す.このとき,各 独立試行をN回実行して得られたモンテカルロ法による近似値は,

$$\frac{1}{N}\sum_{j=1}^{N}\left[f(\bar{\mathbf{X}}_{T})\right]_{j},$$

で表される. ここで, $[U]_i$ (j = 1, ..., N) は確率変数 U の j 番目の独立試行の結果である.

次に,ペイオフ関数の分解法の適用を考える.ペイオフ分解法とは局所化を用いた分散 減少法を差す.第3節ではスコロホッド積分を用いて,

$$u'(x) = E^x[\phi \times \text{weight}],$$

 $u''(x) = E^x[\phi \times \text{weight}],$

のタイプの表現を与えた.しかし,このままモンテカルロ法を適用すると,多くの場合ウエイト (weight) の部分の分散が大きく収束が悪い.そこで, ϕ を

- $\phi = \phi_1 + \phi_2$
- *φ*₂: コンパクトな台を持つ

 $^{{}^{5}}V_{0}$, V は確率積分方程式が一意の強い解を持つための適当な数学的条件を満たす関数とする.

と分解(局所化)したうえで, ϕ_1 に対しては微分(デルタなら1回,ガンマなら2回)して 期待値をモンテカルロ法により計算し, ϕ_2 に対してはスコロホッド積分を用いてペイオ フ関数を微分せずに期待値をモンテカルロ法により計算する.このとき, ϕ_1 部分について はペイオフ関数を微分したときのウエイトの分散が微分しないときに比べて小さくなる. 一方, ϕ_2 部分もペイオフ関数がコンパクトな台を持つため分散が大きくなることが回避 される.具体的には,ペイオフ関数の形によって以下の2つのタイプがあり,デルタに関 して,

$$E^{x}[\phi'(X_{T})\cdots] = E^{x}[\phi'_{1}(X_{T})\cdots] + E^{x}[\phi_{2}(X_{T})\cdots],$$
(53)

$$E^{x}[\phi'(X_{T})\cdots] = E^{x}[\phi_{1}(X_{T})\cdots] + E^{x}[\Phi_{2}(X_{T})\cdots],$$
(54)

あるいはガンマに関して,

$$E^{x}[\phi''(X_{T})\cdots] = E^{x}[\phi''_{1}(X_{T})\cdots] + E^{x}[\phi'_{2}(X_{T})\cdots],$$
(55)

$$E^{x}[\phi''(X_{T})\cdots] = E^{x}[\phi_{1}(X_{T})\cdots] + E^{x}[\Phi_{2}(X_{T})\cdots],$$
(56)

などと計算することにより,さらに収束を速めることができる.

4.1 $\phi(z) = (z - K)^+$ のタイプ

前節の結果に基づき数値計算を行うと、ペイオフ関数部分の台がコンパクトでないため 分散が大きくなる. そこで、デルタについては $\phi = \phi_1 + \phi_2$ を

となるように決め,

$$E^{x}[\phi'(X_{T})\cdots] = E^{x}[\phi'_{1}(X_{T})\cdots] + E^{x}[\phi_{2}(X_{T})\cdots],$$
(57)

とする.ガンマに対しては,

- *⁶* ¹
 ¹ ¹
 ¹

となるように決め,

$$E^{x}[\phi''(X_{T})\cdots] = E^{x}[\phi_{1}''(X_{T})\cdots] + E^{x}[\phi_{2}'(X_{T})\cdots],$$
(58)

として数値計算すれば収束が速くなる.具体的にはプレーンバニラ・オプションのデルタ, ガンマについて,次のようにペイオフ関数を分解した(図表1).

$$\phi = \phi_1 + \phi_2, \tag{59}$$

$$\phi_{1}(z) = \begin{cases} 0 & \text{for } z \in (-\infty, K - \Delta) \\ \frac{1}{4\Delta}(z - (K - \Delta))^{2} & \text{for } z \in [K - \Delta, K + \Delta) \\ z - K & \text{for } z \in [K + \Delta, \infty) \end{cases}$$

$$\phi_{2}(z) = \begin{cases} 0 & \text{for } z \in (-\infty, K - \Delta) \\ -\frac{1}{4\Delta}(z - (K - \Delta))^{2} & \text{for } z \in [K - \Delta, K) \\ -\frac{1}{4\Delta}(z - (K + \Delta))^{2} & \text{for } z \in [K, K + \Delta) \\ 0 & \text{for } z \in [K + \Delta, \infty) \end{cases}$$
(61)

また,アジア型オプションの場合は上式のzを $\frac{1}{r}\tilde{z}$ に置き換えたものを用いた⁶.

4.2 $\phi(z) = 1_{\{K \leq z \leq K'\}}$ のタイプ

デジタル・オプションに関しては、ペイオフ関数がコンパクトな台であるので上の方法を 用いる必要はない.ただ、2種類の等式が得られているので、その被積分部分の相関係数を 用いて収束を速くできる可能性がある.具体的には、デジタル・オプションのデルタ、ガンマ に対して $\sigma_1^2 = Var[\phi(X_T)\cdots]$ 、 $\sigma_2^2 = Var[\Phi(X_T)\cdots]$ 、 $\sigma_{12} = Cov[\phi(X_T)\cdots, \Phi(X_T)\cdots]$ を用いて、

$$\alpha = \frac{\sigma_2^2 - \sigma_{12}}{\sigma_1^2 + \sigma_2^2 - 2\sigma_{12}},\tag{62}$$

とする.このときに,デルタ,ガンマを

$$u'(x) = \alpha E^{x}[\phi(X_T)\cdots] + (1-\alpha)E^{x}[\Phi(X_T)\cdots],$$
(63)

$$u''(x) = \alpha E^{x}[\phi(X_T)\cdots] + (1-\alpha)E^{x}[\Phi(X_T)\cdots],$$
(64)

により求めた.ただし,(63)式の右辺の第1項は(33)式,第2項は(34)式であり,(64)式の第1項は(41)式,第2項は(42)式である.これは,

$$\phi = \phi_1 + \phi_2, \tag{65}$$

$$\phi_1(z) = \alpha \phi(z), \tag{66}$$

$$\phi_2(z) = (1 - \alpha)\Phi(z), \tag{67}$$

 ${}^{6}\frac{1}{T}\tilde{z}$ は原資産価格を時刻0から時刻Tの間で平均したものを示す.

としたものに相当し、ここで用いた α は、デルタとガンマを、それぞれ (63) 式、(64) 式 に基づいてモンテカルロ法で求める際に、標本分散を最小にするものである.

5 数値計算例と結果の考察

本節では,前節で説明した数値計算法に基づきプレーンバニラ・オプション,デジタル, アジア型各オプションのデルタ,ガンマの数値例を紹介する.特に,原資産価格の確率モ デルとして,BSモデルとCEVモデルを用いた.BSモデルは第3節の系1で示したよ うに,原資産価格Xが同値マルチンゲール測度の下で,

$$\begin{cases} dX_t = rX_t dt + \sigma X_t dW_t \\ X_0 = x \end{cases},$$
(68)

に従うモデルである.ただし,x = 100,r = 0.1, $\sigma = 0.2$ とする. CEVモデルは,原資産価格Xが同値マルチンゲール測度の下で,

$$dX_t = rX_t dt + \sigma X_t^{\gamma} dW_t , \qquad (69)$$
$$X_0 = x$$

に従うモデルである. ただし , x = 100 , r = 0.1 , $\sigma = 0.2$, $\gamma = 0.5$ とおく.

また,派生商品のペイオフ関数は,満期日をT = 1[年]として,

プレーンバニラ・オプション: $\phi(X_T) = (X_T - K)^+$, K = 100 デジタル・オプション: $\phi(X_T) = 1_{\{K \le X_T \le K'\}}$, K = 100, K' = 110 アジア型オプション: $\phi(\tilde{X}_T) = (\frac{1}{T}\tilde{X}_T - K)^+$, K = 100

とする.

具体的な数値計算については,(68)式,(69)式の確率微分方程式をオイラー・丸山法に より離散化し,デルタ,ガンマを"差分法"(初期値の変動を $\varepsilon = 0.1$ とした),第3節の定 理及び系で導出した" $E^{x}[\phi'\cdots]$ "," $E^{x}[\phi\cdots]$ "" $E^{x}[\Phi\cdots]$ "のタイプの表現,および第4節 で説明したペイオフ関数の分解法,を利用してモンテカルロ法によるシミュレーションを 実施した.ただし,1年を1000分割した.

離散化することにより X_t が負になる確率があるが, X_t の代わりに $\max(X_t, 0)$ を考えるものとする. また, CEVモデルにおいては $\sigma(z)$ は z = 0 のまわりで係数条件を満たさないが, C^{∞} 関数で近似することで回避する. すなわち, g(z)を十分に小さい ε に対して $z \ge \varepsilon$ では $g(z) = \sigma(z)$ となるような C^{∞} 関数とし, その g(z)を $\sigma(z)$ の代わりに用いる.

なお,今回の場合, X_0 の水準が高く,時間分割も細かくしたため, $X_t < 0$ となることはなかった.

このように $\{X_t\}$ を離散近似して得られたものの N 個の独立試行の結果を $\{X_t^{(j)}\}_{j=1,2,\cdots,N}$ $(t = \frac{1}{1000}, \frac{2}{1000}, \cdots, T = 1)$ とする. $\{Y_t\}$, $\{Z_t\}$ などに対しても離散近似したものを $\{Y_t^{(j)}\}_{j=1,2,\cdots,N}$, $\{Z_t^{(j)}\}_{j=1,2,\cdots,N}$ で表す.期待値の被積分部分を F で表すとして, $\{X_t^{(j)}\}$ などを用いて近似したものを $F^{(j)}$ で表す⁷. このとき,パスを N 個発生させた時点での $E^x[F]$ の推定値として $\frac{1}{N}\sum_{i=1}^{N} F^{(j)}$ を用いる.

それぞれの方法の推定値の収束の速さの目安として,真値 E[F]に対する誤差率の標本 標準偏差 $\left(=\left\{\frac{1}{N}\sum_{j=1}^{N}\left(\frac{F^{(j)}-E[F]}{E[F]}\right)^{2}\right\}^{\frac{1}{2}}\right)$ を用いる. ただし, E[F]はBSモデルのプレーン バニラ・オプション,デジタル・オプションに対しては,解析的に得られる値を用いたが, それ以外では,最も収束が速いと思われるもの (CEVモデルにおけるデジタル・オプ ションのデルタ,ガンマは $E[\phi\cdots]$ の表現 〈デルタ:(27)式,ガンマ:(38)式〉, CEVモ デルにおけるアジア型オプションのデルタは $E[\phi'\cdots]$ の表現 〈(43)式〉,それ以外では第 4節で説明した組み合わせのタイプ)を用いて $F^{(j)}$ を 100万回発生させたときの標本平均 を真値とした.

N回パスを発生させたときの真値 E[F] に対する推定値の比の分散は

$$V\left[\frac{1}{N}\sum_{j=1}^{N}F^{(j)}/E[F]\right] = \frac{1}{N}V\left[F^{(j)}\right]/E[F]^{2},$$

である.よって,これをある所与の値に押さえたいとき,必要なパスの発生回数は誤差率の標準偏差の2乗に比例すると言える.

各方法の比較の結果は,図表2,図表3のとおりである.また本稿の最後に,パスの発 生回数と対応する標本平均値をプロットしたグラフを挙げた.なお,各図の水平線は各々, 真値(細実線),真値+1%(細破線),真値-1%(細破線)の値を示し,図に関するそ の他の事項は各図表に付した.以下では,各ケースについての考察を述べる.

5.1 プレーンバニラ・オプションのデルタ(図表4,5)

BSモデル, CEVモデル共に, ペイオフ関数を微分した $u'(x) = E^x[\phi'(X_T)\cdots]((26) \exists)$ の表現を用いた計算と差分法による計算とではほとんど同じ結果になっている. さらに, ペイオフ関数の微分回数が減り $u'(x) = E^x[\phi(X_T)\cdots]((27) \exists)$, $u'(x) = E^x[\Phi(X_T)\cdots]((28)$

 $^{^{7}}$ 例えば (26) 式であれば $F = \phi'(X_T)Y_T$, $F^{(j)} = \phi'\left(X_T^{(j)}
ight)Y_T^{(j)}$.

式) となるに従い, 収束が遅くなっている.また, Fournié et al. [1999] がBSモデルで提唱 した局所化が, CEVモデルにおいても誤差率の標準偏差を減らし収束を速くするのに有 効であることが分かった.

5.2 プレーンバニラ・オプションのガンマ(図表6,7,8)

差分法では収束が非常に遅く,第3節の結果に基づく $E^{x}[\phi'(X_{T})\cdots]((37)$ 式)や $E^{x}[\phi(X_{T})\cdots]((38)$ 式)のタイプが有効であることが分かる.局所化に関しては,新しく示し た $E^{x}[\phi'(X_{T})\cdots]((37)$ 式)のタイプの表現を用い, $E^{x}[\phi''(X_{T})\cdots]((36)$ 式)と $E^{x}[\phi'(X_{T})\cdots]$ ((37)式)を組み合わせる方法を採用したが,Fournié et al.[1999]の提唱した $E^{x}[\phi''(X_{T})\cdots]$ ((36)式)と $E^{x}[\phi(X_{T})\cdots]((38)$ 式)を組み合わせる方法と比較する必要がある.

局所化の際,ペイオフ関数を分解する関数の形を事前に決めるが,例えば(60)式と(61) 式に分解する場合, ϕ_2 の台の幅を表すパラメータ Δ を決める必要がある.そこで,パラメー タ Δ に対して誤差率の標準偏差を調べた(図表 6).グラフから,Fournié et al.[1999]の方法, 新しい方法共に Δ が小さいときには局所化の効果があらわれずに誤差率が大きくなってい ることが分かる.また, Δ が大きい場合は,新しい方法がFournié et al.[1999]の方法に比 べて誤差率が小さく Δ に対して安定的であることが分かる.これは, $E^x[\phi'(X_T)\cdots]((37)$ 式)と $E^x[\phi(X_T)\cdots]((38)$ 式)を比べたとき $E^x[\phi'(X_T)\cdots]$ の方が誤差率が小さく,その分 パラメー タ Δ が大きくなっても,それほど全体の誤差率が大きくならないためであると 思われる.

5.3 デジタル・オプションのデルタ(図表9,10)

BSモデル,CEVモデル共に差分法では10万回程度の計算回数では収束は見られな かった.これに対し,第3節の $E^{x}[\phi(X_{T})\cdots]((27)$ 式)を用いた計算はより速く収束してい る.ペイオフ関数の分解法に関しては,次に述べるガンマほどの効果は見られなかった.こ れは,2つの公式を用いたシミュレーションの誤差率の分散の差が大きいため,分散を最 小にする α が0.96程度と1に非常に近くなり $E^{x}[\phi(X_{T})\cdots]$ のみを用いた計算と大差がな いためである.

5.4 デジタル・オプションのガンマ(図表11,12)

デジタル・オプションのデルタと同様に,差分法では収束が見られず,また, $E^{x}[\phi(X_{T})\cdots]$ ((38)式)に基づく計算法は有効である. BSモデルにおけるペイオフ関数の分解法につい ては,デルタとは異なり,ある程度有効であると言える.なお,最適なαは0.63 程度,相 関係数は-0.22 程度であった.他のオプションに対してもこの方法を用いたが,デジタル・ オプションのガンマのみで有効であった.他のオプションでは,デジタル・オプションの デルタの場合と同様に,2つの公式を用いたシミュレーションの誤差率の分散の差が大き いため,最適なαを求めても1に非常に近い値になってしまうためであると思われる.

5.5 アジア型・オプションのデルタ(図表13,14)

プレーンバニラ・オプションのデルタと類似した結果となった. これは, ペイオフ関数が 共通であるためである. なお, CEVモデルにおける局所化の数値計算は省略した. これは, $E^x[\phi(\tilde{X}_T)\cdots]$

((45)式)の計算には,パスごとに2重積分を数値的に求める必要があり,パス1回の計算 に時間分割数の2乗のオーダーの時間を要し,実用に耐えないためである.

5.6 アジア型・オプションのガンマ(図表15,16)

新しく示した $E^x[\phi'(\tilde{X}_T)\cdots]$ ((49) 式) の表現を用いることにより, 差分法に比して収束 が大幅に速くなった.また,局所化を用い, $E^x[\phi''(\tilde{X}_T)\cdots]$ ((48) 式) のタイプの公式と組 み合わせることにより,さらに速くなることが分かった.

5.7 時間分割数と収束(図表17~20)

プレーンバニラ・オプションとアジア型オプションのガンマに対してモンテカルロ法に おける時間分割数と収束の関係を調べ,新しい数値計算法,特に組み合わせ法が極めて効 率的であることを示した.

6 まとめ

本稿では, ガンマに対して ϕ , ϕ'' ではなく ϕ' を用いた

$$u''(x) = E^x[\phi' \times \text{weight}],\tag{70}$$

のタイプの公式を導出した.これにより,アジア型オプションのガンマに関しては,差分 法より大幅に効率的なモンテカルロ法による数値計算が可能となった.さらに,プレーン バニラ・オプションに関しては,この表現を用いた局所化が,Fournié et al.[1999]の方法 よりも優れていることを示した.

また, Fournié et al. [1999] の結果を実務的にはより重要となるBSモデルを含む一般の モデルに拡張し, 今まで明示されていなかった証明も示した.

この中で,ペイオフ関数 ϕ に対して

$$u'(x) = E^{x}[\Phi \times \text{weight}], \tag{71}$$

$$u''(x) = E^{x}[\Phi \times \text{weight}], \qquad (72)$$

のタイプの公式も導出した. デジタル・オプションに関しては,ペイオフ関数がコンパク トな台であるため局所化する必要はないが,この表現を用いたペイオフ関数の分解が有効 である場合があることも示した.

最後にBSモデルとCEVモデルを用いて数値例を計算し,我々の方法の有効性を検証・確認した.ここでは,プレーンバニラ・オプションとアジア型オプションのガンマに対してモンテカルロ法における時間分割数と各計算法の収束の関係も調べ,新しい数値計算法が効率的であることを示した.

以 上

補論:定理の証明

A.1 定理1(プレーンバニラ・オプション,デジタル・オプションのデル
 タ)の証明

まず, $\phi \in C_0^{\infty} := \{ \exists \lambda , d \in C^{\infty} | \exists \lambda , \phi \in L^2 | c d \in L$

 $(i)\phi \in C_0^\infty$ のとき

$$\frac{1}{h}\left\{\phi(X_T^{x+h}) - \phi(X_T^x)\right\} \to \phi'(X_T^x)Y_T^x \quad a.s.(h \to 0),\tag{73}$$

である. ただし, X_T^x , X_T^{x+h} はそれぞれ $X_0 = x, x+h$ のときの X_T を表す. Y_T^x も同様である.

いま $\phi \in C_0^\infty$ より ϕ' が有界なので,左辺はあるM > 0を用いて

$$\frac{1}{h}\left\{\phi(X_T^{x+h}) - \phi(X_T^x)\right\} \le M \left|\frac{X_T^{x+h} - X_T^x}{h}\right|,\tag{74}$$

と評価することができる. さらに,右辺は一様可積分である(例えば, Protter[2004], p.301の定理 37 を参照). よって,

$$u'(x) = E\left[\lim_{h \to 0} \frac{\phi(X_T^{x+h}) - \phi(X_T^x)}{h}\right] = E^x[\phi'(X_T)Y_T].$$
(75)

これで (26) 式が示された.

以下の証明は次のステップを踏んでいることに注意するとよい.

- (20) 式または (21) 式を代入して D_tX_T を作る.
- D_t (φ(X_T)) = φ'(X_T)D_tX_T より, 定義 1[スコロホッド積分] を用いてペイオフ 関数の微分を 1 回減らす.
- スコロホッド積分 $\delta(\dots)$ 内を適合過程の部分 $u \in \mathcal{F}_T$ 可測な部分 F に分けて, 性質 4 を用いる.

 $\delta(u)$ に相当する部分はuが適合過程なので伊藤積分に置き換わる. この方針は他の定理の証明においても同様である.

(20) 式を代入するとスコロホッド積分の定義より,

$$((75) 式の右辺) = E^x \left[\phi'(X_T) \frac{1}{T} \int_0^T D_t X_T \sigma(X_t)^{-1} Y_t dt \right]$$
(76)

$$= E^{x} \left[\phi(X_{T}) \frac{1}{T} \delta\left(\sigma(X_{t})^{-1} Y_{t}\right) \right].$$
(77)

 $\delta(\cdots)$ 内は適合過程であるので

$$((77) \vec{\mathbf{x}}) = E^{x} \left[\phi(X_{T}) \frac{1}{T} \int_{0}^{T} \sigma(X_{t})^{-1} Y_{t} dW_{t} \right].$$
(78)

これで (27) 式が示された. さらに , (21) 式を $E^{x}[\cdot]$ 内に入れれば

$$((78) \ \vec{\mathbf{x}}) = E^x \left[\phi(X_T) \frac{1}{T^2} \left\{ \int_0^T \sigma(X_t)^{-1} Y_t dW_t \right\} Y_T^{-1} \int_0^T D_t X_T \sigma(X_t)^{-1} Y_t dt \right].$$
(79)

スコロホッド積分の定義を用いれば,

$$((79) \ \vec{x}) = E^{x} \left[\Phi(X_{T}) \frac{1}{T^{2}} \delta \left\{ \left(\int_{0}^{T} \sigma(X_{t})^{-1} Y_{t} dW_{t} \right) \sigma(X_{t})^{-1} Y_{t} Y_{T}^{-1} \right\} \right].$$
(80)

性質4より,

$$\delta\{\cdots\} = \delta\left(\sigma(X_t)^{-1}Y_t\right) \left(\int_0^T \sigma(X_t)^{-1}Y_t dW_t\right) Y_T^{-1} - \int_0^T D_t \left(Y_T^{-1}\delta(\sigma(X_t)^{-1}Y_t)\right) \sigma(X_t)^{-1}Y_t dt$$
(81)
$$= \left(\int_0^T \sigma(X_t)^{-1}Y_t dW_t\right)^2 Y_T^{-1} - \int_0^T D_t \left(Y_T^{-1}\right) \delta\left(\sigma(X_t)^{-1}Y_t\right) \sigma(X_t)^{-1}Y_t dt - \int_0^T D_t \left(\delta(\sigma(X_t)^{-1}Y_t)\right) Y_T^{-1} \sigma(X_t)^{-1}Y_t dt.$$
(82)

2つめの等式は積の微分を用いた. さらに , $D_t \delta \left(\sigma(X_t)^{-1} Y_t \right) = \sigma(X_t)^{-1} Y_t + \int_t^T D_t \{ \sigma(X_u)^{-1} Y_u \} dW_u$ と

$$((82) \vec{\mathbf{x}}) = \left(\int_{0}^{T} \sigma(X_{t})^{-1} Y_{t} dW_{t} \right)^{2} Y_{T}^{-1} + \int_{0}^{T} Y_{T}^{-2} D_{t} Y_{T} \delta\left(\sigma(X_{t})^{-1} Y_{t}\right) \sigma(X_{t})^{-1} Y_{t} dt - \int_{0}^{T} Y_{T}^{-1} \left(\sigma(X_{t})^{-1} Y_{t}\right)^{2} dt + Y_{T}^{-1} \int_{0}^{T} \int_{t}^{T} \sigma(X_{u})^{-2} \sigma'(X_{u}) Y_{u}^{2} dW_{u} dt - Y_{T}^{-1} \int_{0}^{T} \sigma(X_{t})^{-1} Y_{t} \left(\int_{t}^{T} \sigma(X_{u})^{-1} D_{t} Y_{u} dW_{u} \right) dt.$$
(83)

第2項で $\sigma(X_t)^{-1}Y_t$ が適合過程であるので $\delta(\sigma(X_t)^{-1}Y_t)$ は伊藤積分に置き換えられる. さらに,それは t に依らないので t での積分の外に出せる. また, (30) 式より

$$D_t Y_T = \sigma'(X_t) Y_T + Y_T Y_t^{-1} \sigma(X_t) \int_t^T \sigma''(X_s) Y_s dW_s$$
$$- Y_T Y_t^{-1} \sigma(X_t) \int_t^T \sigma'(X_s) \sigma''(X_s) Y_s ds$$

を用いれば,

$$((83) \mathbf{\vec{x}}) = \left(\int_{0}^{T} \sigma(X_{t})^{-1} Y_{t} dW_{t} \right)^{2} Y_{T}^{-1} - \left(\int_{0}^{T} \left(\sigma(X_{t})^{-1} Y_{t} \right)^{2} dt \right) Y_{T}^{-1} + \left(\int_{0}^{T} \sigma(X_{t})^{-1} Y_{t} dW_{t} \right) \left(\int_{0}^{T} \sigma(X_{t})^{-1} Y_{t} \sigma'(X_{t}) dt + \int_{0}^{T} s \sigma''(X_{s}) Y_{s} dW_{s} \right) Y_{T}^{-1} + Y_{T}^{-1} \int_{0}^{T} u \sigma(X_{u})^{-2} \sigma'(X_{u}) Y_{u}^{2} dW_{u} - Y_{T}^{-1} \int_{0}^{T} \sigma(X_{u})^{-1} Y_{u} \left(\int_{0}^{u} \sigma(X_{t})^{-1} Y_{t} \sigma'(X_{t}) dt \right) dW_{u} - Y_{T}^{-1} \int_{0}^{T} \sigma(X_{u})^{-1} Y_{u} \left(\int_{0}^{u} s \sigma''(X_{s}) Y_{s} dW_{s} \right) dW_{u} + Y_{T}^{-1} \int_{0}^{T} \sigma(X_{u})^{-1} Y_{u} \left(\int_{0}^{u} s \sigma'(X_{s}) \sigma''(X_{s}) Y_{s} ds \right) dW_{u}.$$

$$(84)$$

これを, (80) 式の $\delta(\dots)$ に代入すれば (28) 式を得る.

(ii) $\phi(X_T) \in L^2(\Omega)$ のとき

まず ϕ が連続で有限個の点を除いて微分可能なときに (26) 式が成立することを示す.

 $\{\phi_n\} \subset C_0^{\infty}$ を, $\phi_n(X_T) \to \phi(X_T)$ in $L^2(\Omega)$ となるようにとる. とくに ϕ' が有限個の点を除いて連続であるので, $|\phi'_n(x) - \phi'(x)| \downarrow 0 \forall x \in \mathbb{R} \setminus \{\phi' \text{O}$ 不連続点 $\}$ と単調に収束するようにとって $|\phi'_n(X_T) - \phi'(X_T)| \downarrow 0$ in $L^2(\Omega)$ とできる. $u_n(x) := E^x[\phi_n(X_T)]$ とすると (i) の議論から $u'_n(x) = E^x[\phi'_n(X_T)Y_T]$ である.

ここで $v(x) := E^x[\phi'(X_T)Y_T]$ とする. このとき, ϕ_n のとり方から $u_n(x) \to u(x)$ が成立 する. また, ϕ'_n は単調に収束するようにとっているため単調収束定理により $u'_n(x) \to v(x)$ が成立する.

また, コーシー・シュワルツの不等式により,

$$|u'_{n}(x) - v(x)|^{2} \leq E^{x} \left[\left\{ \phi'_{n}(X_{T}) - \phi'(X_{T}) \right\}^{2} \right] E^{x} \left[(Y_{T})^{2} \right],$$
(85)

とできる. $\epsilon_n(x) := E^x \left[\{ \phi'_n(X_T) - \phi'(X_T) \}^2 \right]$, $\psi(x) := E^x \left[(Y_T)^2 \right]$ とおく. $\psi(x)$ は明らか に n に依らないが, x に関する連続性から任意のコンパクト集合 $K \subset \mathbf{R}$ に対して, x に も依らないある定数 M で押えられる. $\epsilon_n(x)$ は \hat{x}_n が存在して $\sup_{x \in K} \epsilon_n(x) = \epsilon_n(\hat{x}_n)$ とす ることができるので, 結局,

$$\sup_{x \in K} \left| u'_n(x) - v(x) \right|^2 \le M \epsilon_n\left(\hat{x}_n\right),\tag{86}$$

となる. $\{\hat{x}_n\}$ はコンパクト集合 K内の点列なのでその部分列は収束する.そこで,その部 分列を新しく $\{\hat{x}_n\}$ とし,その収束先を \hat{x} で表す.このとき, $\phi'_n \rightarrow \phi'$ in $L^2(\Omega)$ より,任意 の $\varepsilon > 0$ に対して $n_0(\hat{x})$ が存在して

$$n \ge n_0(\hat{x}) \Rightarrow E\left[\left\{\phi'_n(X_T^{\hat{x}}) - \phi'(X_T^{\hat{x}})\right\}^2\right] < \varepsilon,$$
(87)

とすることができる. \hat{x} は \sup となるようにとったので

$$\epsilon_n(x) \le E\left[\{\phi'_n(X_T^{\hat{x}_n}) - \phi'(X_T^{\hat{x}_n})\}^2\right]$$
(88)

また,有限個の点を除いて $|\phi_n'(x)-\phi'(x)|\downarrow 0$ となるようにとったので, $n\geq n_0(\hat{x})$ のとき,

$$((88) 式の右辺) \le E\left[\{\phi_{n_0(\hat{x})}'(X_T^{\hat{x}_n}) - \phi'(X_T^{\hat{x}_n})\}^2\right]$$
(89)

{*x*_n} は収束するように部分列をとり直しているので

$$((89) 式の右辺) \to E\left[\{\phi'_{n_0(\hat{x})}(X_T^{\hat{x}}) - \phi'(X_T^{\hat{x}})\}^2\right]$$
(90)

$$< \varepsilon.$$
 (91)

よって0に収束する.

以上より,任意のコンパクト集合K に対して

•
$$u_n(x) \to u(x) \quad \forall x \in K \ (n \to \infty)$$

• $u'_n(x) \to v(x) \ (n \to \infty)$ が K上一様収束

が言えた. よって K 上で u'(x) が存在して u'(x) = v(x) が成立する. K は任意であったの で,結局 $x \in \mathbf{R}$ で u'(x) が存在して $u'(x) = v(x) = E^x[\phi'(X_T)Y_T]$ となる.

(27) 式については $\phi(x) = \phi^+(x) - \phi^-(x)$ と正負に分け , $\{\phi_n^+\} \subset C_0^\infty$, $\{\phi_n^-\} \subset C_0^\infty$ を $\phi_n^+ \uparrow \phi^+$, $\phi_n^- \uparrow \phi^-$ となるようにとれば同様の議論を行うことができる. (28) 式につい ても $\Phi(X_T) \in L^2(\Omega)$ のとき $\Phi(x) = \Phi^+(x) - \Phi^-(x)$ と正負に分け , $\phi_n \to \phi$, $\Phi_n^+ \uparrow \Phi^+$, $\Phi_n^- \uparrow \Phi^-$ ととればよい.

A.2 定理2(プレーンバニラ・オプション,デジタル・オプションのガンマ)の証明

 $(i)\phi \in C_0^\infty$ のとき

定理1と同様に微分と期待値の順序交換が可能であるので,

$$u''(x) = E^{x} \left[\phi''(X_{T})Y_{T}^{2} \right] + E^{x} \left[\phi'(X_{T})Z_{T} \right]$$
(92)

$$= E^{x} \left[\phi''(X_{T}) Y_{T} \frac{1}{T} \int_{0}^{T} D_{t} X_{T} \sigma(X_{t})^{-1} Y_{t} dt \right] + E^{x} \left[\phi'(X_{T}) Z_{T} \right]$$
(93)

$$= E^{x} \left[\phi'(X_T) \frac{1}{T} \delta \left(Y_T \sigma(X_t)^{-1} Y_t \right) \right] + E^{x} \left[\phi'(X_T) Z_T \right], \tag{94}$$

性質4より,

$$\delta(\cdots) = \delta\left(\sigma(X_t)^{-1}Y_t\right)Y_T - \int_0^T D_t Y_T \sigma(X_t)^{-1}Y_t dt$$
(95)

$$= Y_T \int_0^T \sigma(X_t)^{-1} Y_t dW_t - \int_0^T D_t Y_T \sigma(X_t)^{-1} Y_t dt.$$
(96)

これを, (94) 式の $\delta(\cdots)$ に代入し, さらに (30) 式より

$$D_t Y_T = \sigma'(X_t) Y_T + Y_T Y_t^{-1} \sigma(X_t) \int_t^T \sigma''(X_s) Y_s dW_s$$
$$- Y_T Y_t^{-1} \sigma(X_t) \int_t^T \sigma'(X_s) \sigma''(X_s) Y_s ds$$

を用いれば,(37)式を得る. 定理1の(27)式の結果を用いれば⁸,

$$u''(x) = \frac{d}{dx} E^{x} \left[\phi(X_{T}) \frac{1}{T} \int_{0}^{T} \sigma(X_{t})^{-1} Y_{t} dW_{t} \right]$$

$$= E^{x} \left[\phi'(X_{T}) Y_{T} \frac{1}{T} \int_{0}^{T} \sigma(X_{t})^{-1} Y_{t} dW_{t} \right]$$

$$+ E^{x} \left[\phi(X_{T}) \frac{1}{T} \int_{0}^{T} \left(-\sigma(X_{t})^{-2} \sigma'(X_{t}) Y_{t}^{2} + \sigma(X_{t})^{-1} Z_{t} \right) dW_{t} \right].$$
(97)
(97)
(97)

第1項の $E^x[\phi'(X_T)\cdots]$ は(20)式を代入してスコロホッド積分の定義を用いれば,

$$E^{x}[\phi'(X_{T})\cdots] = E^{x}\left[\phi'(X_{T})\frac{1}{T}\int_{0}^{T}D_{t}X_{T}\sigma(X_{t})^{-1}Y_{t}dt\cdot\frac{1}{T}\int_{0}^{T}\sigma(X_{t})^{-1}Y_{t}dW_{t}\right] (99)$$

$$= E^{x}\left[\phi(X_{T})\frac{1}{T^{2}}\delta\left(\sigma(X_{t})^{-1}Y_{t}\int_{0}^{T}\sigma(X_{t})^{-1}Y_{t}dW_{t}\right)\right] (100)$$

$$= E^{x} \left[\phi(X_{T}) \frac{1}{T^{2}} \left\{ \delta \left(\sigma(X_{t})^{-1} Y_{t} \right) \int_{0}^{T} \sigma(X_{t})^{-1} Y_{t} dW_{t} - \int_{0}^{T} D_{t} \left(\int_{0}^{T} \sigma(X_{t})^{-1} Y_{t} dW_{t} \right) \sigma(X_{t})^{-1} Y_{t} dt \right\} \right].$$
(101)

 $\sigma(X_t)^{-1}Y_t$ は適合過程であるので, $\delta(\sigma(X_t)^{-1}Y_t)$ は伊藤積分に置き換えられる. また, $D_t\delta\left(\sigma(X_t)^{-1}Y_t\right) = \sigma(X_t)^{-1}Y_t + \int_t^T D_t\{\sigma(X_u)^{-1}Y_u\}dW_u$ なので, これと (30) 式より

$$D_t Y_u = \sigma'(X_t) Y_u + Y_u Y_t^{-1} \sigma(X_t) \int_t^u \sigma''(X_s) Y_s dW_s$$
$$- Y_u Y_t^{-1} \sigma(X_t) \int_t^u \sigma'(X_s) \sigma''(X_s) Y_s ds$$

を用いれば,

$$((101) \vec{\pi}) = E^x \left[\phi(X_T) \frac{1}{T^2} \left\{ \left(\int_0^T \sigma(X_t)^{-1} Y_t dW_t \right)^2 - \int_0^T (\sigma(X_t)^{-1} Y_t)^2 dt \right\} \right]$$

⁸(97) 式から (98) 式へ変形する際, $\frac{d}{dx} \int_0^T \cdots dW_t = \int_0^T \frac{d}{dx} \cdots dW_t$ といった確率積分に対する微分と積分の順序交換を行っている点に注意. ここでは $r(\cdot)$ が時刻だけに依存する連続な確定的関数であること, $\sigma(\cdot)$ が 2 回連続微分可能であること, $\sigma'(\cdot)$ が有界であること, $\sigma''(\cdot)$ が有界であること, $\sigma''(\cdot)$ が有界で、リプシッツ条件を満たすこと, および, 仮定により $\sigma^{-1}(\cdot)$ が有界であること, から順序交換が可能であることを示すことができる. 詳しくは Ikeda and Watanabe[1989] pp.254-263 命題 2.2, Protter[2004] pp.301-310 定理 39 などが参考になる.

$$-\int_{0}^{T} \sigma(X_{u})^{-1}Y_{u} \Big(\int_{0}^{u} \sigma'(X_{t})\sigma(X_{t})^{-1}Y_{t}dt\Big)dW_{u}$$

$$-\int_{0}^{T} \sigma(X_{u})^{-1}Y_{u} \Big(\int_{0}^{u} s\sigma''(X_{s})Y_{s}dW_{s}\Big)dW_{u} + \int_{0}^{T} u\sigma(X_{u})^{-2}\sigma'(X_{u})Y_{u}^{2}dW_{u}$$

$$+\int_{0}^{T} \sigma(X_{u})^{-1}Y_{u} \Big(\int_{0}^{u} s\sigma'(X_{s})\sigma''(X_{s})Y_{s}ds\Big)dW_{u}\Big\}\Big].$$
(102)

これを (98) 式の第1項に代入すれば (38) 式を得る.

 $(ii)\phi(X_T) \in L^2(\Omega)$ のとき

(36) 式は ϕ が C^1 級で有限個の点を除いて 2 回微分可能であるとき, $\{\phi_n\} \subset C_0^{\infty}$ を $\phi_n(X_T) \to \phi(X_T)$, $\phi''_n(X_T) \to \phi''(X_T)$ in $L^2(\Omega)$, $|\phi''_n(x) - \phi''(x)| \downarrow 0 \forall x \in \mathbb{R} \setminus \{\phi'' \otimes \mathbb{R} \in \mathbb{R} \}$ 続点 $\}$ となるようにとれば定理 1 の (ii) と同様の議論ができる. (37) 式, (38) 式はそれぞ れ定理 1 の (26) 式, (27) 式と同じである.

系2の証明

(39) 式, (40) 式, (41) 式はそれぞれ (36) 式, (37) 式, (38) 式にr(t) = r, $\sigma(X_t) = \sigma X_t$ を代入すれば得られる.

次に,BSモデルの場合に限定して直接 (42) 式を導出する((42) 式に相当する表現の一般型の導出は煩雑であることから定理 2 では省略している). (21) 式はBSモデルのとき $1 = \frac{1}{\sigma T} \cdot \frac{1}{X_T} \int_0^T D_t X_T dt$ となるので,(41) 式の $E^x[\cdot]$ の中に代入すれば,

$$u''(x) = E^{x} \left[\phi(X_{T}) \frac{1}{x^{2} \sigma^{3} T^{3}} \cdot \frac{1}{X_{T}} \int_{0}^{T} D_{t} X_{T} dt (W_{T}^{2} - \sigma T W_{T} - T) \right]$$
(103)

$$= E^{x} \left[\Phi(X_T) \frac{1}{x^2 \sigma^3 T^3} \cdot \delta \left(\frac{1}{X_T} (W_T^2 - \sigma T W_T - T) \right) \right], \tag{104}$$

$$\delta(\dots) = \delta(W_T^2 - \sigma T W_T - T) \frac{1}{X_T} - \int_0^T D_t \left(\frac{1}{X_T}\right) (W_T^2 - \sigma T W_T - T) dt.$$
(105)

ここで, $\delta(W_T^2) = W_T^3 - 2TW_T$, $\delta(W_T) = W_T^2 - T$, $\delta(1) = W_T$, $D_t\left(\frac{1}{X_T}\right) = -\frac{D_t X_T}{X_T^2} = -\frac{\sigma}{X_T}$ を代入すれば 9 ,

$$((105) 式の右辺) = \frac{1}{X_T} (W_T^3 - (3T + \sigma^2 T^2) W_T),$$
(106)

となり (42) 式を得る. 🔒

⁹性質 4 を用いると, $\delta(W_T^2) = W_T^2\delta(1) - \int_0^T D_t(W_T^2) \cdot 1dt = W_T^3 - 2W_T \int_0^T D_t W_T dt = W_T^3 - 2TW_T$. 同様にして $\delta(W_T) = W_T\delta(1) - \int_0^T D_t(W_T) dt = W_T^2 - T$. なお, $\delta(1) = W_T$, $D_t W_T = 1$ ($0 \le t \le T$) については, たとえば Oksendal[1997] を参照.

A.3 定理3(アジア型オプションのデルタ)の証明

前の定理の証明と同じ方針で証明したいが , $\tilde{X}_T = \int_0^T X_s ds$ であるため (19) 式や (20) 式は使うことができない. そこで , 定理 3 の証明をする前に次の補題を示す.

補題 5

$$D_t \tilde{X}_T = \sigma(X_t) Y_t^{-1} (\tilde{Y}_T - \tilde{Y}_t), \qquad (107)$$

$$\tilde{Y}_T^2 = 2 \int_0^T D_t \tilde{X}_T \sigma(X_t)^{-1} Y_t^2 dt.$$
(108)

補題の証明

$$D_t X_s = \sigma(X_t) Y_t^{-1} Y_s \mathbb{1}_{\{t \le s\}},$$
(109)

であるので,両辺の $\int_0^T \cdot ds$ をとると

$$D_t\left(\int_0^T X_s ds\right) = \sigma(X_t) Y_t^{-1} \int_t^T Y_s ds.$$
(110)

 \tilde{X} , \tilde{Y} を用いて表せば

$$D_t \tilde{X}_T = \sigma(X_t) Y_t^{-1} (\tilde{Y}_T - \tilde{Y}_t).$$
(111)

これは , (107) 式に一致する. これを (108) 式の右辺の $D_t \tilde{X}_T$ に代入すれば

$$((108) 式の右辺) = 2 \int_0^T \sigma(X_t) Y_t^{-1} (\tilde{Y}_T - \tilde{Y}_t) \sigma(X_t)^{-1} Y_t^2 dt$$
(112)

$$= 2\int_0^T (\tilde{Y}_T - \tilde{Y}_t) Y_t dt \tag{113}$$

$$= 2\tilde{Y}_{T} \int_{0}^{T} Y_{t} dt - 2 \int_{0}^{T} \tilde{Y}_{t} Y_{t} dt \qquad (114)$$
$$= 2\tilde{Y}_{T}^{2} - 2 \cdot \frac{1}{2} \tilde{Y}_{T}^{2} = \tilde{Y}_{T}^{2}.$$

定理3の証明

 $\phi \in C_0^\infty$ で示す. 一般の $\phi(\tilde{X}_T) \in L^2(\Omega)$ のときは定理 1 での議論と同じである.

 $\phi \in C_0^{\infty}$ のときは $\frac{\partial}{\partial x}$ を E^x の中に入れられるので, (43) 式が成立する. (44) 式は,補題 5,スコロホッド積分の定義より以下のとおり得られる:

$$u'(x) = E^x[\phi'(\tilde{X}_T)\tilde{Y}_T]$$
(115)

$$= E^{x} \left[\phi'(\tilde{X}_{T}) \tilde{Y}_{T}^{-1} \cdot 2 \int_{0}^{1} D_{t} \tilde{X}_{T} \sigma(X_{t})^{-1} Y_{t}^{2} dt \right]$$
(116)

$$= E^{x} \left[\phi(\tilde{X}_{T}) \cdot 2\delta \left(\tilde{Y}_{T}^{-1} \sigma(X_{t})^{-1} Y_{t}^{2} \right) \right].$$
(117)

性質4を用いると,

$$\delta(\cdots) = \tilde{Y}_T^{-1} \int_0^T \sigma(X_t)^{-1} Y_t^2 dW_t - \int_0^T \sigma(X_t)^{-1} Y_t^2 D_t \tilde{Y}_T^{-1} dt$$
(118)

$$= \tilde{Y}_T^{-1} \int_0^1 \sigma(X_t)^{-1} Y_t^2 dW_t + \int_0^1 \sigma(X_t)^{-1} Y_t^2 \tilde{Y}_T^{-2} \left(\int_t^1 D_t Y_s ds \right) dt.$$
(119)

これと, (30) 式より

$$D_t Y_s = \sigma'(X_t) Y_s + Y_s Y_t^{-1} \sigma(X_t) \int_t^s \sigma''(X_u) Y_u dW_u$$

- $Y_s Y_t^{-1} \sigma(X_t) \int_t^s \sigma'(X_u) \sigma''(X_u) Y_u du$

を (117) 式に代入すれば (45) 式を得る. B S モデルでは $\sigma(X_t) = \sigma X_t$, $Y_t = X_t/x$, $\tilde{Y}_T = \tilde{X}_T/x$ を (117) 式に代入すれば,

$$u'(x) = E^{x} \left[\phi(\tilde{X}_{T}) \frac{1}{x\sigma} \delta\left(2X_{t} \tilde{X}_{T}^{-1}\right) \right].$$
(120)

を得る. δ(···) 内は性質 4 を用いると

$$\delta(\cdots) = 2\delta(X_t)\tilde{X}_T^{-1} - 2\int_0^T X_t D_t\left(\frac{1}{\tilde{X}_T}\right)dt$$
(121)

$$= 2\tilde{X}_{T}^{-1} \int_{0}^{T} X_{t} dW_{t} + 2 \int_{0}^{T} X_{t} \tilde{X}_{T}^{-2} D_{t} \tilde{X}_{T} dt.$$
(122)

補題 $5 \, \mathbf{O} \, (107) \, \mathbf{J}$ を用いて $\sigma(X_t) = \sigma X_t$, $\tilde{Y}_t = \tilde{X}_t / x$, $\tilde{Y}_T = \tilde{X}_T / x \, \mathbf{e}$ 代入すれば

$$((122) 式の第2項) = 2 \int_0^T X_t \tilde{X}_T^{-2} (\tilde{Y}_T - \tilde{Y}_t) Y_t^{-1} \sigma(X_t) dt$$
(123)

$$= 2 \int_{0}^{T} X_{t} \tilde{X}_{T}^{-2} (\tilde{X}_{T} - \tilde{X}_{t}) X_{t}^{-1} \sigma X_{t} dt \qquad (124)$$

$$= 2\sigma \left\{ \tilde{X}_{T}^{-1} \int_{0}^{T} X_{t} dt - X_{T}^{-2} \int_{0}^{T} \tilde{X}_{t} X_{t} dt \right\}$$
(125)

$$= 2\sigma \left\{ \tilde{X}_T^{-1} \cdot \tilde{X}_T + \tilde{X}_T^{-2} \cdot \frac{1}{2} \tilde{X}_T^2 \right\} = 2\sigma (1 - \frac{1}{2}) = \sigma.$$
 (126)

これを (122) 式に代入すれば (47) 式を得る.

A.4 定理4(アジア型オプションのガンマ)の証明

 $\phi \in C_0^{\infty}$ で示す. 一般の $\phi(\tilde{X}_T) \in L^2(\Omega)$ のときは定理 2 での議論と同じである.

 $\phi \in C_0^{\infty}$ のときは $\frac{\partial}{\partial x}$ と E^x の順序を交換できるので,(49)式が成立する.(49)式に補題 5の(108)式を代入するとスコロホッド積分の定義より

$$u''(x) = E^{x} \left[\phi''(\tilde{X}_{T}) \cdot 2 \int_{0}^{T} D_{t} \tilde{X}_{T} \sigma(X_{t})^{-1} Y_{t}^{2} dt \right] + E^{x} \left[\phi'(\tilde{X}_{T}) \tilde{Z}_{T} \right]$$
(127)

$$= E^{x} \left[\phi'(\tilde{X}_{T}) \left\{ \delta \left(2\sigma(X_{t})^{-1}Y_{t}^{2} \right) + \tilde{Z}_{T} \right\} \right].$$
(128)

$\delta(\cdots)$ 内は適合過程であるので,スコロホッド積分は伊藤積分に置き換えられ

$$((128) \mathbf{\vec{x}}) = E^x \left[\phi'(\tilde{X}_T) \left\{ 2 \int_0^T \sigma(X_t)^{-1} Y_t^2 dW_t + \tilde{Z}_T \right\} \right].$$
(129)

BSモデルでは,これに $ilde{Z}_T=0$, $\sigma(X_t)=\sigma X_t$, $Y_t=X_t/x$ を代入すれば

$$((129) \vec{\mathbf{x}}) = E^x \left[\phi'(\tilde{X}_T) \cdot \frac{2}{x^2 \sigma} \int_0^T X_t dW_t \right].$$
(130)

参考文献

- [1] 国友直人,高橋明彦, 数理ファイナンスの基礎 マリアバン解析と漸近展開の応用 』,東洋経済新報社,2003年
- [2] 重川一郎,『確率解析』,岩波書店,1999年
- [3] Fournié, Eric, Jean-Michel Lasry, Jérôme Lebuchoux, Pierre-Louis Lions and Nizar Touzi, "Application of Malliavin calculus to Monte Carlo Method in Finance," *Finance and Stochastics* 3, 1999, pp.391-412.
- [4] Ikeda, Nobuyuki and Shinzo Watanabe, Stochastic Differential Equaitons and Diffusion Processes, 2nd ed., 1989, Kodansha/North-Holland.
- [5] Nualart, David, The Malliavin Calculus and Related Topics, 1995, Springer-Verlag.
- [6] Bernt Øksendal(1997), AN INTRODUCTION TO MALLIAVIN CALCULUS WITH APPLICATION TO ECONOMICS.
- [7] Protter, Philip E., Stochastic Integration and Differential Equations 2nd ed., 2004, Springer-Verlag.

図表 1: $\phi(x) = (x - K)^+$ の分解

図表 2: B S モデルでの比較

	プレーンバニラ・オプション		デジタル		アジア型	
	デルタ	ガンマ	デルタ	ガンマ	デルタ	ガンマ
真値	0.72575	0.016660	-0.0013350	-0.00038870	0.65168	0.029189
差分法	0.72561	0.016139	-0.0004071	0.0280500	0.65206	0.032063
$\varepsilon = 0.1$	(0.746)	(18.61)	(290.1)	(19930)	(0.753)	(15.02)
$E[\phi'\cdots]$	0.72563	0.016693	-	-	0.65211	0.029212
	(0.747)	(2.364)	1	1	(0.753)	(2.423)
$E[\phi\cdots]$	0.72735	0.016744	-0.0013457	-0.00038879	0.65193	-
	(2.187)	(8.823)	(2.887)	(2.099)	(2.291)	2
$E[\Phi\cdots]$	0.72670	0.016584	-0.0012956	-0.00038812	-	-
	(5.646)	(27.15)	(12.34)	(2.897)	2	2
組み合せ	0.72642	0.016659	-0.0013438	-0.00038854	0.65207	0.029140
	(0.292)	(0.566)	(2.876)	(1.509)	(0.410)	(0.713)
	$\delta = 65$	$\delta = 45$	$\alpha = 0.96$	$\alpha = 0.63$	$\delta = 30$	$\delta = 20$

真値はプレーンバニラとデジタルの各オプションに関しては解析値,アジア型オプションに対しては 「組み合わせ」による100万回の試行結果の平均値を用いた.

上段は 10 万回の試行結果の平均値 (真値の推定とは異なる乱数を用いた).

下段()は10万回の試行における各試行結果の誤差率の標準偏差.

組み合わせの δ , α は用いたパラメータの値.

1 ペイオフ関数が微分不可能であるため空欄.

2 プレーンバニラ・オプションの結果から不要であると類推されるため省略.

	プレーンバニラ・オプション		デジタル		アジア型	
	デルタ	ガンマ	デルタ	ガンマ	デルタ	ガンマ
真値	0.70885	0.017527	-0.0017810	-0.00040292	0.64313	0.029741
差分法	0.70844	0.017800	-0.0014025	-0.0244306	0.64393	0.030851
$\varepsilon = 0.1$	(0.700)	(19.23)	(225.0)	(19896)	(0.726)	(14.81)
$E[\phi'\cdots]$	0.70847	0.017540	-	-	0.64393	0.029738
	(0.701)	(2.034)	1	1	(0.727)	(2.343)
$E[\phi\cdots]$	0.71043	0.017633	-0.0017844	-0.00040296	-	-
	(2.089)	(8.155)	(2.630)	(2.116)	3	2
$E[\Phi\cdots]$	0.71052	-	-0.0017304	-	-	-
	(5.923)	4	(10.88)	4	2	2
組み合せ	0.70946	0.017524	-	-	-	0.029669
	(0.238)	(0.549)				(0.745)
	$\delta = 65$	$\delta = 45$				$\delta = 20$

図表 3: CEVモデルでの比較

真値は、収束の一番速い計算法(表で下線を付けたもの)による100万回の試行結果の平均値を用いた

の試行結果の平均値を用いた.

上段は10万回の試行結果の平均値(真値の推定とは異なる乱数を用いた).

下段()は10万回の試行における各試行結果の誤差率の標準偏差.

組み合わせの δ は用いたパラメータの値

1 ペイオフ関数が微分不可能であるため空欄.

2 プレーンバニラ・オプションの結果から不要であると類推されるため省略.

3 第5節5「アジア型オプションのデルタ」参照.

4 第3節定理2の注意参照.

図表 4: プレーンバニラ・オプションのデルタ (BSモデル)

図表 5: プレーンバニラ・オプションのデルタ (CEVモデル)

図表 6: 局所化の比較

図表 7: プレーンバニラ・オプションのガンマ (BSモデル)

図表 8: プレーンバニラ・オプションのガンマ (CEVモデル)

図表 9: デジタル・オプションのデルタ (BSモデル)

図表 10: デジタル・オプションのデルタ (CEVモデル)

図表 11: デジタル・オプションのガンマ (BSモデル)

図表 12: デジタル・オプションのガンマ (CEVモデル)

図表 13: アジア型オプションのデルタ (BSモデル)

図表 14: アジア型オプションのデルタ (CEVモデル)

図表 15: アジア型オプションのガンマ (BSモデル)

図表 16: アジア型オプションのガンマ (CEVモデル)

図表 18: 時間分割数と収束-プレーンバニラ・オプションのガンマ (CEV モデル)

図表 19: 時間分割数と収束-アジア型オプションのガンマ (BSモデル)

図表 20: 時間分割数と収束-アジア型オプションのガンマ (CEV モデル)

