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Abstract

This paper presents an application of online booking data, comprised of big data crawled from a hotel
booking website to hotel revenue management. It is important to build a quantitative revenue management
method for online hotel booking systems incorporating overbooking strategies, because of increasing numbers
of bookings through online booking websites and last-minute cancellations, which cause serious damage to
hotel management. We construct a quantitative overbooking model for online booking systems combined
with customers’ choice behaviors estimated from the data. Firstly, we present the overbooking model for
online booking systems. Secondly, we estimate the choice behaviors of the customers from the online booking
data by a discrete choice model. Thirdly, combining the estimated discrete choice model with the theoretical
overbooking model, we investigate the expected sales maximization problem where we numerically solve
the optimal overbooking level and room charge. Finally, we provide numerical examples of the optimal
overbooking strategies and room charges using online booking data of two major luxury hotels in Shinjuku
ward, Tokyo. This method, which utilizes online booking data available by crawling from booking websites,
helps hotels obtain an optimal room charge and overbooking level maximizing the expected sales.
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1. Introduction

In this paper, we present an application of online hotel booking data, which are big data crawled from
an online booking website, to revenue management of hotels by a quantitative overbooking model for online
booking systems. Firstly, we estimate the customers’ choice behaviors in the online booking system from the
online booking data by a discrete choice model. Secondly, we build a quantitative revenue management model
under overbooking that incorporates the last-minute cancellations and the overselling costs that hotels incur
when the number of customers appearing on the check-in date exceeds the hotels’ capacity. Then, combining
the choice behaviors estimated from the big data and the theoretical overbooking model, we investigate an
overbooking strategy that maximizes expected sales of a certain room type of a hotel in an online booking
system, where customers choose a hotel from a group comparing the room charge with those of the rival
hotels. Furthermore, we provide numerical examples using online booking data of two major luxury hotels
in Shinjuku, Tokyo, which are crawled from a Japanese online booking website. In addition, we investigate
a Nash equilibrium for the room charge and expected sales of the hotels. The revenue management model
under overbooking helps hotels determine the overbooking strategy, which maximizes the expected sales in
an online booking system.
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Owing to the advancement in information technologies, an increasing number of hotel customers are
booking rooms through online booking systems. They can conveniently reserve rooms by comparing prices
and conditions of other hotels. Under these circumstances, the hotel revenue management for online booking
systems, where hotels set the room charges at the optimal levels to maximize their expected revenues by
considering the room charges of the rival hotels, is becoming increasingly important.

As the share of the rooms booked through online booking systems increases, the number of last-minute
cancellations is also rising due to the convenience of the booking (Walls (2016), Delgado (2016), Horiguchi
(2015)). For example, a pattern of cancellation called ”juggling,” in which customers reserve rooms for
multiple hotels, then choose one room/hotel and cancel the others at the last minute, represents a critical
problem for hotels that sell rooms through online booking systems (Walls (2016), Mandelbaum (2016),
Takizawa (2017)). Such last-minute cancellations lead to revenue losses for hotels.

Although overbooking is practiced to cope with cancellations, it is done by rule of thumb due to the
following difficulties. If the number of cancellations and no-shows is more than expected and these generate
some vacant rooms, the hotel incurs some loss on sales. On the other hand, if the number of cancellations
and no-shows is less than expected, the hotel gets into a situation of over-sale. In such a case, the hotel
needs to displace the guests to other hotels by paying for the room charge and offering extra compensation if
necessary, which are additional costs for the hotel (Toh (1986), Toh and Dekay (2002)). To deal with such an
issue, we investigate the overbooking problem quantitatively together with the expected sales maximization
for online booking systems.

For studies related to overbooking, Toh (1986) and Toh and Dekay (2002) study practices of no-shows,
late cancellations, overbooking and over-sale. Dekay et al. (2004) examine penalties on hotel customers for
cancellations and no-shows as well as practices of upgrading and walks in the case of over-sale. Chen et al.
(2011) analyze the impact of cancellation fees on customer behaviors of searching for hotels by multinomial
logit model. Chen and Xie (2013) investigate the cancellation policies of U.S. hotels.

For quantitative studies on overbooking models, Rothstein (1974) deals with an overbooking problem to
determine an optimal booking policy using a Markovian sequential decision model. Liberman and Yechiali
(1978) deal with the overbooking problem using stochastic cancellations. Gallego and Ryzin (1994) investigate
formulations of revenue management including in cases of overbooking. Koide and Ishii (2005) consider a
model for an optimal room allocation for early discount considering cancellations and overbooking. Sierag et
al. (2015) consider an optimal choice of fare products to offer under overbooking. We summarize this study’s
contributions to the existing literature in Section 4.1.

As for applications of data on online hotel booking websites to hotel management and marketing, Ali
et al. (2016) propose a classification technique for feature review’s identification and opinion mining about
hotels and hotel features. Kardaras et al. (2013) investigate content presentation and media adaptation of
tourism websites. Korfiatis and Poulos (2013) examine the usage of online consumer reviews as a source
for demographic recommendation. Shuai and Wu (2011) analyze the impact of internet marketing on hotel
performance. Yu et al. (2017) design a mathematical model to select appropriate hotels on websites using
online reviews of hotels with linguistic distribution assessments. Bilgihan et al. (2015) examine the concepts
of online customer experiences and flow and their meditating roles in influencing customers’ loyalty to a
hotel booking website. Neirotti et al. (2016) analyze panel data on the value generation and appropriation
mechanisms related to Italian hotels’ online visibility on infomediary platforms. Xu et al. (2017) examine
customer satisfaction and dissatisfaction toward attributes of hotel products and services based on online
customer reviews. Hernandez-Ortega (2018) analyzes whether sociopsychological distance is the underlying
mechanism that mediates the effect of online customer review aspects on the receiver’s responses. Raguseo
et al. (2017) explore how hotels can drive value their way when they manage their visibility on infomediary
platforms. Huang et al. (2018) investigate the impact of customer reviews on customer evaluation under
an easy-to-read review font. Hu and Chen (2016) examine review helpfulness and its relationship with
other variables. Hu et al. (2017) analyze the theoretical foundation of review helpfulness and report how
the interactions among three user-controllable filters together with three groups of predictors affect review
helpfulness.

For other applications of hotel data to management, Cheng et al. (2010) apply context-dependent
data employment analysis in measuring the performance of international hotels in Taiwan. Tseng (2009)
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investigates hotel service quality perceptions based on fuzzy measures of 22 evaluation criteria. Ozturk
et al. (2016) test a research model that incorporates antecedents of mobile shopping loyalty in a hotel
booking context. Garrido-Moreno and Padilla-Melendez (2011) examine the relationship between knowledge
management and customer relationship management success using a structural equation model. Kim et al.
(2016) study the relationship between the hotel industry’s green practices and customer satisfaction.

The organization of this paper is as follows: Section 2 explains the mathematical setting of the overbook-
ing model; Section 3 presents numerical examples of the overbooking strategies and the price competition
with the actual online booking data of the hotels in Shinjuku ward in Tokyo; Section 4 concludes the study;
and Appendices A and B provide the proofs of the theorems in Sections 2 and 3.

2. Model

In this section, we introduce an overbooking model for online booking systems with an expected sales
maximization problem in which the optimal room charge and overbooking strategy are numerically obtained.
We consider the expected sales maximization of a hotel for a certain room type, which considers the room
charges of other hotels with similar characteristics, such as capacity, rating, and reviews, in the same area.

Additionally, we assume that the room charges of hotels are unchanged throughout the booking period,
and the hotel aims to maximize its expected sales by setting its room charge and the overbooking level by
taking into account room charges of the other hotels and its own capacity for the room type. Note that we
adopt consistent pricing during the booking period for the transparent booking systems, where the names
of the hotels to be booked are revealed to the customers. Consistency is important in a transparent pricing
policy to protect loyal customers, who book in advance through the direct booking channel at a regular high
price, from frequent discounting near the check-in date. This is in contrast to the dynamic pricing observed
in opaque pricing systems in the U.S., where the names of the hotels are not revealed to the customers until
the booking is completed (see Anderson and Xie (2012) for the dynamic pricing in opaque pricing systems).

We consider the booking behavior of online customers who randomly visit the website at a frequency
following a Poisson process and book a certain room type of a hotel by choosing among a group of hotels.
Let T be a check-in date and [0, T ] be the booking period for the check-in date, where 0 is the start date
of the booking period. Then, let J ∈ N be the number of hotels in the group from which customers choose
one to book, and {Nt}0≤t≤T be the Poisson process with intensity λ > 0, which represents the total number
of rooms booked for J hotels by date t. We fix the hotel that considers the expected sales maximization as
hotel i.

Let Lact
i , Lob

i with 0 < Lact
i ≤ Lob

i be the actual capacity of hotel i for the room type, and the overbooking
level, up to which hotel i accepts reservations for the room type in the online booking system, respectively.
Let x(1), . . . , x(J) ∈ (0,∞) be the room charges of hotels 1, . . . , J during the booking period.

2.1. The choice behavior of the customers

Firstly, let γj ∈ {0, 1} be the room availability of hotel j, where γj = 0, 1 indicates that the room is fully
occupied or still available, respectively. Let γ = (γ1, . . . , γJ) ∈ ΠJ

j=1{0, 1} be the state of room availability

of J hotels for the room type. We denote the set of availabilities of J hotels ΠJ
j=1{0, 1} by Γ. We assume

that γj ≡ 1 for all j ̸= i, implying that hotel i maximizes its expected sales, assuming the other hotels are
available for booking, and considering that hotel i does not have information about the capacity of the other
hotels.

Let τ = (i1, i2, . . . , ik′) ∈ Sk′ , i1, i2, . . . , ik′ ∈ {1, . . . , J} be a selection order when k′ rooms are booked in
total for the J hotels in the order of i1, i2, . . . , ik′ . Here, Sk′ is the set of all the selection orders when k′ rooms
are booked in total in the group. For the selection order τ = (i1, . . . , ik′) ∈ Sk′ and l, 0 ≤ l ≤ k′, we define

γl,τ ∈ Γ, the room availability of the J hotels after l customers booked in the order of τ , by γl,τ
j ≡ 1, j ̸= i,

γ0,τ
i = 1, and

γl,τ
i =

{
1, if

∑l
l′=1 1{il′=i} < Lob

i

0, otherwise
, 1 ≤ l ≤ k′,

3



which indicates that hotel i is available for choosing until the number of bookings for hotel i reaches its limit
Lob
j .

Moreover, let R
(j)
T , j = 1, . . . , J , be the number of rooms booked for hotel j by the check-in date T ,

which is defined by

R
(j)
T =

k′∑
l′=1

1{il′=j}, j = 1, . . . , J, (1)

when the total number of rooms booked in the group NT = k′ and the selection order τ = (i1, i2, . . . , ik′).
Note that since the number of rooms booked for hotel i by the check-in date T does not exceed the

overbooking level Lob
i ,

R
(i)
T ≤ Lob

i , (2)

and

J∑
i=1

R
(i)
T = NT (3)

hold.
Furthermore, let p

(γ)
i (i = 1, . . . , J) be the choice probability of hotel i, which is a function of x(1), . . . , x(J)

and dependent on the room availability γ ∈ Γ. For the choice probability of hotel i, p
(γl,τ )
i with room

availability γl,τ ∈ Γ, we assume either of the following:

• The multinomial logit model

p
(γl,τ )
i =

e−βx(i)+αi1{γl,τ
i =1}∑J

j=1 e
−βx(j)+αj1{γl,τ

j =1}

, (4)

where β > 0, αj ∈ R.

• The nested logit model

p
(γl,τ )
i =

(∑
j∈Cki

e
−βx(j)+αj

νki 1{γl,τ
i =1}

)νki

∑n
k=1

(∑
j∈Ck

e
−βx(j)+αj

νk 1{γl,τ
j =1}

)νk
·

e
−βx(i)+αi

νki 1{γl,τ
i =1}∑

j∈Cki
e

−βx(j)+αj
νki 1{γl,τ

j =1}

(5)

where β > 0, αj ∈ R, 0 < νk ≤ 1, k = 1, . . . , n.

• The mixed logit model

p
(γl,τ )
i =

∫ ∞

0

e−βx(i)+αi1{γl,τ
i =1}∑J

j=1 e
−βx(j)+αj1{γl,τ

j =1}

h(β)dβ, (6)

where αj ∈ R, 0 ≤ h(β),
∫∞
0

h(β)dβ = 1.

We remark that in the theory of random utility (e.g., See Train (2009)), the choice probabilities p
(γl,τ )
i , i =

1, . . . , J in the multinomial logit model (4) correspond to the situation in which customers choose the hotel
with the highest utility, and the customers’ utility of hotel j (j = 1, . . . , J) is given by Uj = −βx(j)+αj + ϵj .
Here, ϵj is a random variable where {ϵj}j=1,...,J are independent and identically distributed (IID) random
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variables following an extreme value distribution and the deterministic part of the random utility, −βx(j)+αj ,
is a decreasing function on the room charge x(j), which implies that the higher the room charge is, the lower
the utility is. The other characteristics of hotel j, which do not change over time such as reputation and
grade, are reflected in αj . The indicator function in (4) implies that if γl,τ

i = 0 (i.e., hotel i is fully booked
and not available for booking), then hotel i is excluded from the group for the choice.

Further, the nested logit model in (5) is interpreted in terms of the random utility theory as follows.
The J hotels are divided into n non-overlapping groups of the same kind {Ck}k=1,...,n, and the dissimilarities
within the small groups are represented by 0 ≤ νk ≤ 1, k = 1, . . . , n. The first term on the right-hand side
of (5) represents the probability for which group Cki

is selected among n small groups, and the second term
corresponds to the conditional probability for which hotel i is selected within the group Cki

. The model
agrees with the multinomial logit model when the dissimilarity parameters are νk = 1, k = 1, . . . , n, meaning
that the hotels in the small groups are all dissimilar.

The mixed logit model in (6) is another generalization of the multinomial logit model in (4), in which the
sensitivity of the utilities to change in the room charge β takes different values among customers with the
distribution h(β). We use this mixed logit model in (6) in the numerical examples and explain it in detail in
Section 3.2.

We assume that the customers’ choice behavior is independent of the total number of bookings for the
group by the check-in date T . Namely, the conditional probability for the choice order τ = (i1, i2, . . . , ik′)
when NT = k′ is given by

P (τ = (i1, i2 . . . , ik′)|NT = k′) = p
(γ0,τ )
i1

p
(γ1,τ )
i2

· · · p(γ
k′−1,τ )

ik′ , (7)

and the probability for the choice order τ = (i1, i2, . . . , ik′) is

P (τ = (i1, i2 . . . , ik′)) = p
(γ0,τ )
i1

p
(γ1,τ )
i2

· · · p(γ
k′−1,τ )

ik′

(λT )k
′

k′!
e−λT . (8)

Note that since the choice probability p
(γ)
i includes the room charges x(j), j = 1, . . . , J and the room

availability γ, P (τ = (i1, i2 . . . , ik′)|NT = k′) in (7) is a function of x(j), j = 1, . . . , J and Lob
i .

Remark 1. We assume that λ, the intensity of Nt which represents the total number of bookings for the
J hotels until t, is a constant and does not depend on x(1), . . . , x(J), the room charges of the hotels. In other
words, there is no increase or decrease in the total number of customers visiting the website to choose one
from the group of hotels when the overall level of the room charges decreases or increases. This corresponds
to the situation in which the customers visiting the booking website aim to choose a hotel from a selection of
hotels with similar prices in the same area. Extending the model to apply it to the case with the intensity of
λ dependent on the room charges will be one of our research topics.

2.2. Maximization of the expected sales

Next, we consider the expected sales of the hotel i.
Firstly, let ri be the last-minute cancellation rate of hotel i, which is a R-valued random variable. We

assume that the cancellation rate ri has a discrete probability distribution with a support [0, r̄i], 0 < r̄i < 1

and is independent of the total number of rooms booked for the group NT and that for hotel i, R
(i)
T . Then,

the number of rooms booked on the check-in date T after the last-minute cancellations is

(1− ri)R
(i)
T . (9)

Secondly, let ci be the over-sale cost per room of hotel i, which is a positive constant. Namely, hotel i
incurs the cost when the number of rooms booked after the cancellations exceeds the actual room capacity
Lact
i .

Specifically, i) if the number of bookings after last-minute cancellations does not exceed the actual
capacity,

(1− ri)R
(i)
T ≤ Lact

i , (10)
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there is no over-sale cost.
ii) If the number of bookings after last-minute cancellations exceeds the actual capacity, namely,

(1− ri)R
(i)
T > Lact

i , (11)

then hotel i incurs (
(1− ri)R

(i)
T − Lact

i

)
ci (12)

as the over-sale cost. By combining the two cases, the sales for hotel i including the over-sale cost are

min
(
Lact
i , (1− ri)R

(i)
T

)
x(i) −max

(
(1− ri)R

(i)
T − Lact

i , 0
)
ci. (13)

Here, we remark that when hotel i has spare rooms in higher grade room types and they can be used for
upgrading, the over-sale cost per room ci is low. Otherwise, the hotel must displace the guests to other hotels
by paying for the room charges and may offer extra compensations, and the over-sale cost per room ci is
high.

Finally, the optimization problem of hotel i is defined as follows. Hotel i aims to maximize the expectation
of the sales including the over-sale cost by choosing the room charge x(i) ∈ (0,∞) and the overbooking
level Lob

i ∈ [Lact
i ,∞), given the room charges of the other hotels {x(j)}j ̸=i. Namely, we find the pair of

(x(i)∗, Lob∗
i ) ∈ (0,∞)× [Lact

i ,∞) that attains

max
(x(i),Lob

i )∈(0,∞)×[Lact
i ,∞)

E
[
min

(
Lact
i , (1− ri)R

(i)
T

)
x(i)
]
−E

[
max

(
(1− ri)R

(i)
T − Lact

i , 0
)
ci

]
. (14)

Remark 2. We remark that if ri is a constant, the optimal overbooking level is Lob
i = Lact

i /(1−ri) since
as long as Lob

i ≤ Lact
i /(1 − ri), overselling cannot not happen, and it is better for hotel i to accept as many

bookings as possible. For Lob
i > Lact

i /(1− ri), overselling occurs and the hotel incurs more over-sale cost as
it raises the overbooking level. Hence, it is optimal for hotel i to set Lob

i at this level if the cancellation rate
is a constant. The distribution of the cancellation rate ri as well as the over-sale cost per room ci can be
provided exogenously based on hotel i’s own empirical data.

The next theorem guarantees the existence of the optimal room charge and overbooking level for the
maximization problem of hotel i given {x(j)}j ̸=i,j∈{1,...,J} and Lact

i , the room charges of the other hotels

and the actual capacity of hotel i. The theorem indicates that we can find optimal (x(i)∗, Lob∗
i ) numerically

by taking a large enough bounded domain, dividing it into a mesh, calculating the values of the objective
function at all girds, and taking the maximum.

Theorem 1. Suppose that for all γ ∈ Γ and j = 1, . . . , J , p
(γ)
j is given either by the multinomial logit model

in (4), the nested logit model in (5), or the mixed logit model in (6) with∫ ∞

0

1

β
h(β)dβ < ∞. (15)

Then, there exists (x
(i)
∗ , Lob

i∗) in (0,∞)× [Lact
i ,∞), which attains the maximum of

E
[
min

(
Lact
i , (1− ri)R

(i)
T

)
x(i)
]
−E

[
max

(
(1− ri)R

(i)
T − Lact

i , 0
)
ci

]
(16)

Proof. See Appendix A.
Moreover, the proof in Appendix A shows that the objective function decreases to 0 when x(i) goes to

∞ because of the exponential decrease in the choice probability of hotel i. It is also shown that when the
overbooking level Lob

i goes to ∞, although hotel i can accept as many rooms as possible, the increase in the
expected over-sale cost (the second term of the objective function) outweighs the increase in the expected
sales (the first term), and the net amount is decreasing after some overbooking level.
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3. Numerical examples

This section presents numerical examples of the optimal room charge and overbooking level of a hotel
by using actual online booking data of nonsmoking standard twin rooms for two major luxury hotels in
Shinjuku ward in Tokyo, which are crawled from a Japanese online booking website. We also investigate
the maximization problem for four different scenarios of over-sale cost per room and distribution of the
cancellation rate of the hotel.

3.1. Data set

The original dataset includes prices of the accommodation plans and available numbers of accommodation
plans for booking for the nonsmoking standard twin rooms at Hotels A and B in Shinjuku ward in Tokyo.
The check-in dates and the booking dates of the accommodation plans in the dataset range from March 1st to
April 30th and 25th, 2017, respectively. We collected the data from a major Japanese hotel-booking website
by crawling the publicly available online booking information.

The crawling of the online booking data is performed using the following procedure.

• First, we access the website using 20 virtual servers, and specify the necessary inputs for the search
engine in the online booking website, such as the area and the district of the hotels (Shinjuku ward in
Tokyo for example) and the number of guests (1 or 2).

• Then, we search for available hotels, accommodation plans, the room charges, and number of available
plans, and we save the results in HTML format.

• We iterate the procedure automatically by running a program by changing the check-in date from the
booking date to 60 days after the booking date.

• We repeat running the program for the dates of March 1st to April 25th, 2017.

• We implement the crawling at a frequency so as not to disturb the online websites’ business.

For the check-in dates, we use the two-month data ranging from March 1st to April 30th, 2017 for the
check-in dates. This is because the hotel demand has a seasonality affected by tourism demand. Thus, before
starting the estimation of parameters in the revenue management model, we must investigate the seasonality
and carefully select an appropriate period with stable demand, which turns out to be a relatively short period
of one to two months or shorter. In addition, when we use publicly available data by crawling data from
online booking systems in research, we must work on the analysis within our limitation of the data available.
Unless we have a special relationship with a hotel, it is difficult to collect data over a long period. As for the
seasonality of tourism and hotel demand, see Goh and Law (2002), Duro (2016), and Sierag et al. (2017),
for example.

For studies on revenue management that consider the seasonality and publicly available data crawled from
online booking websites, Abrate and Viglia (2016) conducted an empirical analysis of the factors affecting
the setting of the room charges of hotels in Milan by using data from 16 days in October 2012. Furthermore,
Viglia et al. (2016) analyzed the impact of online reviews on occupancy rates of hotels in Rome using data
from the month of November 2014.

March and April in Japan form the busy tourist season due to spring vacation, graduation trips for
students, and cherry blossom viewing. We choose this season for its stable demand for hotels, following the
quiet winter season with fewer tourists and preceding the Golden Week holiday season in May, when the
number of tourists surges and the room charges soar.

Hotels A and B are competing in the same area and have similar characteristics as they are both luxury
hotels with large capacities, high ratings, and good customer reviews. Table 1 describes the basic information
of Hotels A and B (e.g., total number of guest rooms for all room types, ratings, and customer reviews).

Number of rooms Booking.com rating Michelin guide 2011 rating Booking.com review Rakuten review Jalan review

Hotel A 806 5 stars 4 pavilions 8.5/10.0 3.88/5.00 3.9/5.0
Hotel B 744 4 stars 3 pavilions 8.6/10.0 4.17/5.00 4.5/5.0

Table 1: Summary of Hotels A and B
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Secondly, we note that the original dataset does not explicitly contain the information on the room
charges or the numbers of rooms sold for this room type, while it includes the prices and the number of
plans available for booking for the multiple accommodation plans linked to this room type. Thus, to use this
model, we need to estimate the information from the original dataset.

Taking these points into consideration, we first define the representative room charge of this room type
of a hotel for each check-in date as follows. For each check-in date and accommodation plan, we calculate
the average price of the plan over the corresponding booking dates. Then, we take the minimum of the
average prices over the accommodation plans for each check-in date and designate it as the representative
room charge of the room type for the check-in date. We use the representative room charges as the room
charges in the model.

Next, we define the number of rooms booked for this room type of a hotel on a booking date for a check-in
date as follows. We first calculate the change of the available number of plans for an accommodation plan
from the previous to the current booking date. If the change is negative, we regard this as the number of
rooms booked on the booking date, and if this is positive, we consider that this number of new rooms were
supplied by the hotel to the booking systems. Note that the number of plans available for booking of an
accommodation plan changes in conjunction with all the other accommodation plans linked to the same room
type, and hence the numbers are the same among all the accommodation plans.

Finally, Table 2 summarizes the information on the dataset including the representative room charges
and the numbers of rooms booked for the nonsmoking standard twin rooms of Hotels A and B, which will
be used in the estimation of the model parameters in Section 3.2. Here, ”Number of check-in days” in
Table 2 indicates the number of check-in dates used in the estimation, which is 61 days from March 1st
to April 30th. The ”number of sold-out check-in days” expresses the number of check-in dates when the
room type analyzed has been fully occupied by the check-in date or by April 25th for the check-in dates
from April 26th to 30th. This dataset used for the analysis in Section 3.2 is available at Mendeley Data
(http://dx.doi.org/10.17632/9tkynnhj23.1).

Hotel A Hotel B
Number of check-in days 61 61

Number of check-in days, a day before a holiday 9 9
Number of sold out check-in days 30 35

Number of sold out check-in days, a day before a holiday 5 7
Number of booking days 1,876 1,876

Number of available booking days 976 682

Maximum representative room charge 62,911 59,400
Minimum representative room charge 26,922 20,925
Average representative room charge 40,799 31,917

Maximum representative room charge, a day before a holiday 55,719 59,400
Minimum representative room charge, a day before a holiday 36,355 30,645
Average representative room charge, a day before a holiday 43,447 33,950

Maximum representative room charge, a weekday 62,911 50,202
Minimum representative room charge, a weekday 26,922 20,925
Average representative room charge, a weekday 40,367 31,721

Maximum number of booked rooms per check-in day 20 21
Minimum number of booked rooms per check-in day 0 0
Average number of booked rooms per check-in day 3.97 4.93

Maximum number of booked rooms per check-in day, a day before a holiday 10 10
Minimum number of booked rooms per check-in day, a day before a holiday 0 0
Average number of booked rooms per check-in day, a day before a holiday 3.33 3.00

Maximum number of booked rooms per check-in day, a weekday 20 21
Minimum number of booked rooms per check-in day, a weekday 0 0
Average number of booked rooms per check-in day, a weekday 4.08 5.27

Table 2: Summary of the dataset used for the estimation

3.2. Estimation

Firstly, in the following numerical examples, we assume the mixed-logit model (6) with the log-normal
distribution for β, that is, β = eX where X is a random variable following the normal distribution with the

mean µ ∈ R and the standard deviation σ > 0, for p
(γ)
j , the choice probability of hotel j, j = 1, . . . , J , with

the room availability γ ∈ Γ. We remark that the integrability condition (15) on β of the mixed logit model
(6) in Theorem 1 holds for this lognormal distribution.

In addition, we assume that the intercept αj , j = 1, . . . , J in (6) takes the form αj = δjy + ᾱj , where y
is a dummy variable taking a value 0 or 1. Namely, y = 0 if the check-in date is a weekday and y = 1 if it
is a day before a holiday. Particularly, we label Hotels A and B as hotels 1 and 2, respectively, and consider
the case of J = 2.
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Then,

p
(γ)
j =

∫ ∞

0

e−βx(j)+δjy+ᾱj1{γj=1}∑2
j′=1 e

−βx(j′)+δj′y+ᾱj′1{γj′=1}
h(β)dβ,

=

∫ ∞

0

e−e(µ+σz)x(j)+δjy+ᾱj1{γj=1}∑2
j′=1 e

−e(µ+σz)x(j′)+δj′y+ᾱj′1{γj′=1}

1√
2π

e−
z2

2 dz (17)

for j = 1, 2. Noting that p
(γ)
j depends on the differences ᾱ2 − ᾱ1 and δ2 − δ1 for ᾱj and δj , we estimate the

parameters µ, σ, ᾱ2, and δ2 by fixing ᾱ1 = δ1 = 0.
Specifically, we can interpret the mixed logit model in (6), a generalization of the multinomial logit model

incorporating differences of the price sensitivity β among the customers, in the framework of the random
utility theory (e.g., Train (2009)) as follows. Suppose that the utility functions on Hotels A and B of person
m ∈ M , U1,m and U2,m, are Uj,m = −βmx(j) + δjy + ᾱj + ϵj,m, where ϵj,m is the random term of the utility
and {ϵj,m}j=1,2 are IID random variables following an extreme value distribution. βm is the price sensitivity
parameter of person m. Person m chooses Hotel A if U1,m > U2,m, and Hotel B otherwise. Then, it follows

that the choice probabilities of Hotels A and B, p
(γ)
1,m = E[U1,m > U2,m] and p

(γ)
2,m = E[U2,m > U1,m], by

person m under the room availability γ are given by

p
(γ)
j,m =

e−βmx(j)+δjy+ᾱj1{γj=1}∑2
j′=1 e

−βmx(j′)+δj′y+ᾱj′1{γj′=1}
. (18)

Assuming that βm is a sample of a lognormal random variable eX , X ∼ N(µ, σ) and taking average of the

choice probabilities p
(γ)
i (i = 1, 2) over all persons M , we have

p
(γ)
j =

∫ ∞

0

e−βx(j)+δjy+ᾱj1{γj=1}∑2
j′=1 e

−βx(j′)+δj′y+ᾱj′1{γj′=1}
h(β)dβ

=

∫ ∞

0

e−e(µ+σz)x(j)+δjy+ᾱj1{γj=1}∑2
j′=1 e

−e(µ+σz)x(j′)+δj′y+ᾱj′1{γj′=1}

1√
2π

e−
z2

2 dz. (19)

Finally, we estimate the parameters µ, σ, ᾱ2, and δ2 of the mixed-logit model (19) by the maximum
simulated likelihood method (See Train (2009) for instance), and Table 3 shows the estimation results.

Estimate Std. Error t-value p-value
µ -8.161672 0.087479 -93.2985 < 2.2e-16 ***
σ 1.053053 0.243032 4.333 1.471e-05 ***
ᾱ2 -2.094104 0.27978 -7.4848 7.172e-14 ***
δ2 0.849365 0.604821 1.4043 0.1602

Note: * - marginal significant at 0.10 level; ** - significant at 0.05 level; *** - significant at 0.01 level.

Table 3: Estimation results of the mixed-logit model.

In addition to the parameters related on the choice behaviors of the customers, we set the other parameters
as λ = 2.1429, T = 14, Lact

1 = 20, x(2) = 42,292, which correspond to the booking data of the check-in date
April 10th, 2017 when the nonsmoking standard twin rooms of Hotel A are fully booked after 20 rooms were
sold and 10 rooms are sold for Hotel B with the representative room charges JPY 46,680 and JPY 42,292 for
Hotels A and B, respectively. λ is also estimated by the maximum likelihood method.

3.3. Results of the expected sales maximization problem

Next, we calculate the optimal room charge and overbooking level of Hotel A in four scenarios of the
cancellation rate and the over-sale cost per room. We set the probability distributions of the cancellation rates
and the levels of the over-sale cost per room as follows: P(rH1 = 70%) = P(rH1 = 50%) = P(rH1 = 30%) = 1

3
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for the high cancellation rate rH1 , P(rL1 = 0%) = P(rL1 = 10%) = P(rL1 = 20%) = 1
3 for the low cancellation

rate rL1 , the high over-sale cost per room cH1 = 100,000, and the low over-sale cost per room cL1 = 100, where
the costs are expressed in JPY.

Firstly, Figures 1-4 show the graphs of the objective function on the room charge and overbooking level
in four cases, the high/low cancellation rate and the high/low over-sale cost per room. The maximum points
are numerically obtained by searching for the maximum point of the objective function in a bounded domain
(0, 75,000]× [20, 100] ⊂ (0,∞)× [Lact

1 ,∞), which is broad enough as shown in the four graphs below.

1. The low cancellation rate and the low over-sale cost per room: JPY 824,200 when (x
(1)
∗ , Lob

1∗) =
(43,000, 25).

Figure 1: The expected sales in the case of the low cancellation rate and the low over-sale cost per room

2. The low cancellation rate and the high over-sale cost per room: JPY 763,244 when (x
(1)
∗ , Lob

1∗) =
(43,500, 20).

Figure 2: The expected sales in the case of the low cancellation rate and the high over-sale cost per room

3. The high cancellation rate and the low over-sale cost per room: JPY 555,221 when (x
(1)
∗ , Lob

1∗) =
(41,500, 51).
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Figure 3: The expected sales in the case of the high cancellation rate and the low over-sale cost per room

4. The high cancellation rate and the high over-sale cost per room: JPY 536,454 when (x
(1)
∗ , Lob

1∗) =
(42,000, 29).

Figure 4: The expected sales in the case of the high cancellation rate and the high over-sale cost per room

In detail, Figure 5 illustrates the expected sales for different room charges in the case of the high
cancellation rate rH1 and the high over-sale cost per room cH1 in the third case above, when the overbooking
level is set at the optimal level, Lob

1∗ = 29.
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Figure 5: The expected sales for different room charges

Then, we observe that the expected sales have a peak of JPY 536,454 at a room charge of JPY 42,000.
At first, as the room charge increases, the expected sales also increase because of the higher unit price. After
the optimal room charge, the expected sales decline, since the decrease in choice probability outweighs the
increase in unit price.

Moreover, Figures 6 and 7 show the optimal expected sales for different overbooking levels in the four
cases, where the expected sales are maximized over the room charge. Then, we observe the following.

Figure 6: The optimal expected sales less over-sale cost for different overbooking levels, low cancellation rate cases

• Firstly, with the low cancellation rate, in the case of the low over-sale cost per room, as the blue line
indicates, overbooking compensates the sales loss by the last-minute cancellations and this compensation
outweighs the cost by the over-sale up to 25 rooms of the overbooking level. After that, there is no
more sales compensation by raising the overbooking level, and the expect sales only slightly decrease
because of the over-sale cost. In the case where the over-sale cost per room is high, as the yellow line
illustrates, the expected sales only decrease. Due to the low cancellation rate, there is not large sales
loss by the cancellations, and because the over-sale cost per room is high, over-sale cost outweighs the
sales compensation from 20 rooms of the overbooking level.
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Figure 7: The optimal expected sales less over-sale cost for different overbooking levels, high cancellation rate cases

• Secondly, with the high cancellation rate, as the orange and gray lines indicate, in the case of the low
over-sale cost, up to 51 rooms of the overbooking level, the compensation effect outweighs the over-sale
cost and the orange line is almost flat due to the low over-sale cost per room and the small chance for
the rooms to be booked up to this level. However, when the over-sale cost per room is high, as the gray
line shows, after 29 rooms of the overbooking level, overbooking results in high over-sale cost and the
expected sales start to decline.

As we have observed, the results in the four cases not only describe the trade-offs on the room charge
and the overbooking level but also provides concrete quantitative levels of the optimal overbooking and room
charge.

3.4. Equilibrium room charges

This section presents equilibrium room charges of Hotels A and B by investigating how the room charges
shift and where they converge if each hotel revises its room charge in response to the optimization of the
counterpart.

Firstly, in a particular case of the multinomial logit model in (4) with γ ≡ (1, 1) for the choice probability,
implying that there is no restriction on the room availability for the hotels, the next theorem indicates that
a unique Nash equilibrium exists and the room charges converge to the equilibrium levels by the iterative
maximizations of the hotels.

Theorem 2. Suppose that the choice probabilities of hotels 1 and 2 are given by the multinomial logit model

p1 =
1

1 + eβ(x(1)−x(2))+α2−α1
,

p2 =
1

1 + eβ(x(2)−x(1))+α1−α2
, (20)

and hotels 1 and 2 maximize their expected sales E[x(1)R
(1)
T ] and E[x(2)R

(2)
T ], respectively, given the room

charge of the counterpart. Then, a unique Nash equilibrium (x
(1)
∗ , x

(2)
∗ ) ∈ ( 1β ,∞)2 exists. Moreover, if hotels

1 and 2 maximize their expected sales iteratively starting from the room charges (x
(1)
0 , x

(2)
0 ) ∈ (0,∞)2, the

room charges converge to the Nash equilibrium.
Here, we call (x∗

1, x
∗
2) a Nash equilibrium for the room charges if they satisfy

x
(1)
∗ = argmaxx(1)∈(0,∞)f(x

(1)|x(2)
∗ ), (21)

x
(2)
∗ = argmaxx(2)∈(0,∞)g(x

(2)|x(1)
∗ ), (22)
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where f(x(1)|x(2)) and g(x(2)|x(1)) are the expected sales of hotels 1 and 2 given the room charge of the
counterpart.

Proof. See Appendix B.
Taking these into consideration, we numerically investigate the equilibrium for the room charges by

calculating the transition of the optimal room charges in the case of the high cancellation rate and the over-
sale cost per room in Section 3.3, which is a generalized case of Theorem 2, in the following manner. Firstly,
we calculate the optimal room charge and overbooking level of Hotel A maximizing its expected sales given
the initial room charge of Hotel B. Then, we calculate the optimal room charge of Hotel B given the optimal
room charge of Hotel A. We iterate this optimization process 10 times in total.

Firstly, Figure 8 illustrates the transition of the optimal room charges of Hotels A and B by the iterative
optimizations. Starting from the initial room charge of JPY 46,680 and JPY 42,292 for Hotels A and B,
Hotel A optimizes its room charge given the initial room charge of Hotel B, and Hotel B optimizes given
the optimized room charge of Hotel A. The room charges obtained, JPY 42,000 and JPY 30,000 for Hotels
A and B, respectively, are shown as the optimal room charges in the first iteration. In the second iteration,
Hotel A optimizes its room charge given the optimized room charge of Hotel B after the first iteration, and
then Hotel B optimizes given the optimized room charge of Hotel A. They iterate this process 10 times in
total. We observe that the optimal room charges decline by the iterative optimizations and converge to the
room charges, JPY 10,500 and JPY 6,500, which are at lower levels than the original room charges.

Figure 8: Convergence of the optimal room charges

Secondly, Figure 9 describes the corresponding expected sales. In accordance with the declines in the
room charges, the expected sales also decrease for both hotels. Specifically, the expected sales start from the
initial room charges of JPY 407,992 and JPY 528,751 and then increase to JPY 536,454 and JPY 620,827
in the first optimization for Hotels A and B, respectively. However, thereafter they decrease to JPY 99,654
and JPY 77,084, respectively.
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Figure 9: Transition of the expected sales by the iterative optimizations

Finally, to better understand how the optimal room charges converge, Figure 10 displays the best
responses of the hotels, that is, the correspondence between the optimal room charge and the given room
charge of the counterpart. Starting from the first optimization of Hotel A, which is the optimal room charge
JPY 42,000 in response to the initial room charge JPY 42,292 of Hotel B, the room charges converge to the
crossing point of the two graphs, JPY 10,500 and JPY 6,500 for Hotels A and B, respectively.

Figure 10: Optimal room charges of Hotels A and B in response to the counterpart’s room charge

Particularly, these results imply that the revenues of the hotels may decrease once they are in a price
competition repetitively optimizing their overbooking levels and room charges to maximize their expected
sales.

4. Discussion

In this study, we have presented an application of online hotel booking data, which are big data publicly
available on online booking websites, to a quantitative revenue management model for online hotel booking
systems. Additionally, we have proposed a methodology to calculate the room charge and overbooking level
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that maximizes a hotel’s expected sales with this model. The model incorporates room charges of rival hotels
and their booking status estimated from the crawled online booking data of hotels.

4.1. Contributions to existing theory and literature

Existing literatures, such as Rothstein (1974), Liberman and Yechiali (1978), Gallego and Ryzin (1994),
Koide and Ishii (2005), and Sierag et al. (2015), propose revenue management models for a single hotel,
which calculate either the room charge or the overbooking level that maximizes the expected sales based
on their own booking data. In contrast, Rothstein (1974), Liberman and Yechiali (1978), Koide and Ishii
(2005), Gallego and Ryzin (1994), and Sierag et al. (2015) deal with maximization of expected revenue on
a single variable—the overbooking level for Rothstein (1974), Liberman and Yechiali (1978), Koide and Ishii
(2005); the room charge for Gallego and Ryzin (1994); or a set of products to sell for Sierag et al. (2015).
Our study deals with the revenue maximization on the two variables, the room charge and overbooking level,
simultaneously. Moreover, our study deals with revenue management under overbooking in online booking
systems—where the customers choose a hotel from a group taking the room charges of the rival hotels into
account—and investigates the equilibrium room charges. As for the practices in hotel revenue management,
Gehrels and Blanar (2013) analyze the cases of a Hilton chain hotel, Ferguson and Smith (2014) study the
history of the roles of the hotel revenue managers, and El Haddad (2015) and Ivanov and Ayas (2017)
investigate the practices of the revenue managers. As those studies explain, revenue management is generally
done by their rule of thumb or by the revenue management system they introduce from vendors. By adopting
our methodology, the hotel revenue managers can observe expected sales which account for room charges of
rival hotels in a transparent manner and that also can quantitatively monitor the changes in the expected
sales for different overbooking levels.

To the best of our knowledge, this is the first attempt to calculate the optimal overbooking level and room
charge for a certain room type of a hotel with the actual data crawled from an online booking website. In
addition, with this model, booking patterns—including arrival rates and a price sensitivity of the customers
to the choice probabilities—are estimated from the big data in the online booking system. In combination
with the empirical data of the cancellation rate and the over-sale cost per room hotels own, hotels can
quantitatively obtain the optimal room charge and overbooking level that maximize their expected sales.
In other words, our methodology effectively utilizes further information on rival hotels by crawling publicly
available big data from an online booking website and conducts expected sales maximization of the hotel
by constructing the new quantitative revenue management model, which elaborates the existing revenue
management models.

4.2. Implications for practice

This study has the following practical implications. With the methodology, a hotel can accumulate
information on rival hotels’ accommodation plans and prices along with booking status by crawling online
booking websites. Combining the crawled data with the hotel’s own data, which include cancellation status
and over-sale costs, the hotel can calculate the room charge and overbooking level that can maximize the
expected sales.

Hotels usually set room charges and overbooking levels based on their own data or by revenue management
systems, which they introduce from a vendor and whose algorithms they do not know. Specifically, the
two hotels in the numerical examples in Section 3 have a revenue management team and own a revenue
management system. They set room charges and overbook rooms by checking the status of their inventories
and how their rooms are booked. Both hotels introduce a revenue management system produced by a
Japanese revenue management system vendor. The revenue managers use the system to determine the room
charges and the overbooking levels by accounting for the sales predictions indicated by the system. In the
revenue management system of the vendor, the revenue managers can see the sales prediction for different
room charges and monitor the room charges of the rival hotels listed in online booking websites. However,
in the system, both the historical booking status and the room charges of the rival hotels are not taken into
consideration in the sales prediction. The room charges of the rival hotels are shown only as reference prices.
Moreover, the system does not suggest any quantitative overbooking levels.
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If they introduce our methodology, the hotel revenue managers can observe the expected sales that
account for room charges of the rival hotels and can also monitor the changes in the expected sales for
different overbooking levels. Namely, this use of the revenue management model offers more sophisticated
insight into room charges, overbooking levels, and expected sales. This is expected to contribute to the
hotel’s revenue growth.

Remark 3. We find that even if the hotels change their pricing algorithm, it would not affect the way we
estimate the relation between the room charges and the booking probabilities of the hotels in our methodology
since we estimate it by the mixed logit model, given the numbers of rooms booked and the room charges set
by the hotels. Naturally, if the hotels change their pricing algorithm, the room charges they set and how the
rooms are booked would change. However, since we estimate the model parameters given the data after the
change in the algorithm, the hotels can improve their pricing by considering factors not incorporated into
their algorithm.

4.2.1. Implications for hotels

In addition to the implications mentioned in Section 4.1, hotels can take some internal measures to run
the revenue management model effectively.

Firstly, the revenue management department can provide detailed information on how to set room charges
by the revenue management model to the management and the sales & marketing department. The revenue
management department can also make daily reports on the price analysis as well as the sales of the hotel and
the rival hotels, and the total demand from the online customers in the area. Then, it can explain those to the
management as well as the sales & marketing department to search for business opportunities. Additionally,
by analyzing the data on room charges and status of booking of other areas obtained by crawling, hotels
can identify the revenue and the competitiveness in the areas and utilize the data to search for new business
opportunities.

Secondly, by giving an overview of the revenue management that hotels adopt to set room charges and
overbooking levels, the hotels can make their employees feel secure about the organization they work for,
allowing them to focus on their roles.

Thirdly, since good customers’ reviews enhance hotels’ probability of being booked, it is important for
hotels to obtain better online reviews in cooperation with relevant internal departments. For example,
by internally sharing information on customers who booked through an online booking system with the
operations department, which directly faces the customers during their stay, hotels can provide the customers
with special treatment that makes them comfortable and can lead to garnering good reviews and gaining
loyalty from the customers. For studies on the relations between online reviews of hotels and revenues,
ratings, and customer relationship management, see Neirotti et al. (2016), Xu et al. (2017), Kim et al.
(2016), Hu et al. (2016), and Chang et al. (2017).

Furthermore, hotels can analyze reviews that customers previously posted for other hotels to know in
advance what they care about and what makes them feel uncomfortable and, in this way, a hotel can build
and maintain customer relationships. Additionally, the revenue management department should work with
the employees for smooth operations in case they get feedbacks from the customers on the room charges or
in case the hotels displace the customers due to over-sale and try to minimize the damage on the customer
relationship management.

Finally, to gain customer loyalty, the revenue management department coordinates with the sales &
marketing department and conducts social media marketing to the customers. By marketing to individual
customers, such as sending sales campaign information and writing e-mail letters of thanks based on their
attributes and their feedback on their last stay, the hotels gain customer loyalty.

4.2.2. Implications for stakeholders of hotels

Finally, our study has implications not only for hotels themselves but also for other stakeholders, namely
shareholders, customers, suppliers, and media. Since supports from the relevant stakeholders on implementa-
tion of the revenue management model enhance revenues of the hotels and create a positive beneficial cycle for
both parties, we provide some recommendations on how they can back up the hotels’ revenue management.
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• Shareholders: Shareholders should understand the hotel’s efforts in revenue management by introducing
the up-to-date revenue management model, which contribute to increase the hotel’s firm value and the
stock price. Then, the shareholders support the hotel’s businesses by holding stocks, which also leads
to the increase in the stock price and benefits both the shareholders and the hotel.

• Customers: The customers should pay close attention to the prices, reviews, and ratings of hotels in
the online booking systems when they book a room. Additionally, they become keen to hotels’ social
media marketing, and build loyalty to the hotels that make efforts in revenue management and social
media marketing. As a result, the revenues of such hotels grow, and in turn, these hotels are then able
to provide the customers better services, which leads to a mutually beneficial relationship.

• Suppliers: Suppliers, such as housekeeping agencies and restaurants, should obtain the information
of the expected number of customers from the hotels. Then, they can reduce food waste or surplus
workforces, which increases the revenues of the suppliers, and they can then provide better services to
the customers. As a result, the hotel gets more positive reviews from the customers, which creates a
growth cycle.

Online travel agencies should preferentially display the hotels, which make efforts in revenue manage-
ment and social media marketing, on the top of their list in their website, and share helpful information
on the customers to the hotels. Then, the booking probability of the hotels increases, which leads to
revenue growth of the hotels and a fee increase of the online travel agencies.

• Media: Social media companies should ask hotels, which make efforts in revenue management and
social media marketing, to place advertisements on their media. They display content depending on
the attributes of the customers. Then, social media-induced bookings increase and the hotels have more
incentive to place advertisements on social media. Similarly, internet television providers should also
approach the hotels, which are keen on revenue management and social media marketing, and broadcast
commercials and similar contents highlighting such features as visually impressive foods and facilities
that can be spread by word of mouth or via social media. Then, the advertising effect increases, which
leads to revenue growth of the hotels, and the hotels invest more into internet commercials and social
media marketing.

5. Concluding Remarks

In this study, we have presented an application of online booking data, which are big data crawled from
a hotel booking website, to hotel revenue management. Combining the choice behaviors of the customers
estimated from the data by a discrete choice model and a quantitative overbooking model for online booking
systems, we have investigated the optimal room charge and overbooking level that maximize the expected sales
of the hotel. A revenue management for online booking systems that considers overbooking is particularly
important since increasing last-minute cancellations can cause serious damage to revenues.

Moreover, we have provided the numerical examples of the optimal room charges and overbooking levels
by using actual online booking data crawled from a Japanese booking website for two major luxury hotels
in Shinjuku ward in Tokyo. We have obtained concrete optimal room charges and overbooking levels along
with the maximized expected sales in the four different cases of the cancellation rate and over-sale cost per
room.

Specifically, the results indicate concrete levels for the room charge and the overbooking, which cannot be
obtained from the qualitative observation. For instance, when the over-sale cost per room and the cancellation
rate are both high, the result exhibits the explicit trade-off between the over-sale cost and the compensation
for the sales loss by the overbooking. In such a case, the model largely helps determine the overbooking level
and the room charge.

Furthermore, in the numerical example of the equilibrium room charges of the two hotels, we have
investigated the transition of the room charges when the hotels iteratively optimize them in turns. We have
observed that the prices converge to lower levels compared to the original room charges and the expected
sales accordingly drop.
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5.1. Limitations and future research directions

As we mentioned in Remark 1 in Section 2.1, one limitation of our study is that the intensity of the total
demand is independent of the overall levels of the room charges of the hotels in the area. Extending the
model to the case where the intensity depends on the room charges will be one of our research topics.

Another limitation of our study is that the static factors related to social media and social media mar-
keting, which the online booking customers consider when they book a room, are reflected only as a constant
term of the preferences of hotels, but not as individual terms in the mixed logit model. Incorporating these
factors into our modeling will further strengthen our model.

Online booking customers take into consideration not only room charges but also ratings and online
reviews of hotels on social media after guests have booked a room. Additionally, social media marketing,
such as advertisement and sales information individually displayed on the social media, affects the choice
behaviors of the customers. For instance, Kapoor et al. (2018), Shiau et al. (2017), Shiau et al. (2018),
Alalwan et al. (2017), and Dwivedi et al. (2015), summarize the studies on social media, social networks,
and social media marketing. Shiau et al. (2017) conduct co-citation analysis for articles on social networks
published between 1996 and 2014. Shiau et al. (2018) identify six points of core knowledge, including the
behavioral analysis of users and the social impact and strategies of social networks, by the citation analysis
for the studies on Facebook. Alalwan et al. (2017) review studies on the social media marketing, whose
topics include the roles of social media on advertising, electronic word of mouth, and customer relationship
management. Dwivedi et al. (2015) present a review of 71 articles on social media marketing, which connects
the various aspects of the rapidly growing media marketing form. Kapoor et al. (2018) identify multiple
emerging themes in the existing studies on social media and social networking from 1997 to 2017.

Although those factors are reflected in the constant term of the preference to the hotels in the mixed logit
model in our model, it is not decomposed into individual factors. For example, it is possible to collect concrete
information from online booking customers by conducting questionnaires on how social media or social media
marketing affected them in their decision-making process. Together with the data on social media and social
media marketing, it may be possible to construct a quantitative revenue management model that incorporates
the effects of them on the choice behaviors of the customers. Namely, it would be possible to know how much
expected sales increase by when considering the factors of social media and social media marketing, including
online ratings and reviews as well as advertisements and social media (e.g., Twitter, Facebook, Instagram)
reputations.

Consequently, advancement of studies on social media, social media marketing, and social media networks
clarified by Kapoor et al. (2018), Shiau et al. (2017), Shiau et al. (2018), Alalwan et al. (2017), and Dwivedi
et al. (2015) enables us to construct a revenue management model that incorporates social media and social
media marketing factors into the model developed in this paper. This will be one of our main next research
topics.
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Appendix A. Proof of Theorem 1

Let

f(x(i)) = E
[
min

(
Lact
i , (1− ri)R

(i)
T

)
x(i)
]
−E

[
max

(
(1− ri)R

(i)
T − Lact

i , 0
)
ci

]
. (A.1)

First, we show that for a fixed Lob
i ≥ Lact

i , the maximum point with respect to x(i) ∈ (0,∞) exists. To
show this, it suffices to prove the following.

1.

lim
x(i)→0

f(x(i)) ≤ 0, (A.2)

2.

lim
x(i)→+∞

f(x(i)) = 0, (A.3)

3. There exists x̄(i) ∈ (0,∞) such that

f(x̄(i)) > 0, (A.4)

4. f(x(i)) is a continuous function with respect to x(i).
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Let γ∗ = (1, 1, . . . , 1) ∈ Γ and γ# ∈ Γ be

γ#
j =

{
1, j = i, J

0, otherwise,
j = 1, · · · , J.

1. limx(i)→0 f(x
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= −ci limx(i)→0 E
[
max

(
(1− ri)R

(i)
T − Lact

i , 0
)]

, we have limx(i)→0 f(x
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2. limx(i)→+∞ f(x(i)) = 0

For the second term of f(x(i)) in (A.1), since
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Hence,

lim
x(i)→+∞

E
[
max

(
(1− ri)R

(i)
T − Lact

i , 0
)]

= 0. (A.8)

Similarly, for the first term of f(x(i)) in (A.1), since

0 ≤ E
[
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(
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i , (1− ri)R

(i)
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)
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]
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(A.9)
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and

lim
x(i)→∞

E
[
R

(i)
T x(i)

]
≤ lim

x(i)→∞
λTx(i)p

(γ#)
i = 0, (A.10)

where the last equation will be shown later in the case of the mixed logit model (6), we have

lim
x(i)→∞

E
[
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(i)
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)
x(i)
]
= 0. (A.11)

Hence

lim
x(i)→+∞

f(x(i)) = 0. (A.12)

To show (A.10) in the case of the mixed logit model in (6), noting that

p
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j∈{i,J} e
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and for β > 0, setting

x(∗) = x(J), C ≡ e(αJ−αi) > 0, (A.14)

we have
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we have

lim
x(i)→∞

p
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i x(i) = 0 (A.17)

by the dominated convergence theorem.
3. The existence of x̄(i) ∈ (0,∞) such that f(x̄(i)) > 0
To prove (A.4), it suffices to show that
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and
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which is shown particularly in the case of the mixed logit model in (6) as follows.
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For the first term on the right-hand side of (A.21), for 0 ≤ β ≤ β̄,
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For the second term in the right hand side of (A.21), for β ≥ β̄ and x(i) > maxj ̸=i x
(j), since
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Since
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we have ∫∞
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Therefore,
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4. The continuity of f(x(i))

We first show the continuity of the first term of f(x(i)) in (A.1).
Set
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Then,

lim
N→∞
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since
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→ 0, (N → ∞). (A.34)

Hence, g(x(i)) is a continuous function, since the continuous function gN (x(i)) converges to g(x(i)) uniformly
in x(i) ∈ (0,∞), and the continuity of x(i)g(x(i)) follows.

In the same manner, it follows that the second term of f(x(i)) in (A.1),

E
[
−max((1− ri)R

(i)
T − Lact

i , 0)ci

]
(A.35)

is a continuous function with respect to x(i). Hence, f(x(i)) is continuous on (0,∞).
Finally, for fixed x(i) ∈ (0,∞),

E
[
min

(
Lact
i , (1− ri)R

(i)
T

)
x(i)
]
−E

[
max

(
(1− ri)R

(i)
T − Lact

i , 0
)
ci

]
; ri ∈ [0, r̄i] ⊂ [0, 1) (A.36)

is strictly decreasing for Lob
i ≥ Lact

i

1−r̄i
.

In fact, for Lob
i ≥ Lact

i

1−r̄i
, if Lob

i increases from L̄ob
i to L̄ob

i + 1, only the probabilities of R
(i)
T = L̄ob

i and

R
(i)
T = L̄ob

i + 1 change. That is, for selection orders τ that contain L̄ob
i + 1 of i, the value of R

(i)
T changes

from L̄ob
i to L̄ob

i +1, and the probability for such selection orders changes from 0 to some positive value. For

the first term E
[
min

(
Lact
i , (1− ri)R

(i)
T

)
x(i)
]
, since min

(
Lact
i , (1− ri)R

(i)
T

)
x(i) = Lact

i x(i), it is unchanged.

For the second term E
[
−max

(
(1− ri)R

(i)
T − Lact

i , 0
)
ci

]
, since only for such selection orders τ ,

−max
(
(1− ri)R

(i)
T − Lact

i , 0
)
ci decreases from

−
(
(1− ri)L̄

ob
i − Lact

i

)
ci to −

(
(1− ri)(L̄

ob
i + 1)− Lact

i

)
ci, and the probability changes from 0 to some posi-

tive value, it is strictly decreasing, and hence (A.36) is strictly decreasing for Lob
i ≥ Lact

i

1−r̄i
. Hence, (A.36) has

a maximum at some Lob
i ∈ [Lact

i ,∞), namely, Lob
i ∈ [Lact

i , Lact
i /(1− r̄i)].

Therefore,

max
Lob

i ≥Lact
i

max
x(i)∈(0,∞)

E[min
(
Lact
i , (1− ri)R

(i)
T

)
x(i) −max

(
(1− ri)R

(i)
T − Lact

i , 0
)
ci]. (A.37)

is attained at some (x
(i)
∗ , Lob

i∗) in (0,∞)× [Lact
i ,∞), which is also a maximum point for the objective function

in (16). 2

Appendix B. Proof of Theorem 2

Let

f(x1) = x1p1 =
x1

1 + eβ(x1−x2)+α2−α1
, (B.1)

g(x2) = x2p2 =
x2

1 + eβ(x2−x1)+α1−α2
. (B.2)
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Since limx1→0 f(x1) = 0, limx1→∞ f(x1) = 0 and f(x1) ≥ 0 on (0,∞), f(x1) attains its maximum at some
x1 that satisfies f ′(x1) = 0.

Noting that

f ′(x1) =
1 + eβ(x1−x2)+α2−α1 − βx1e

β(x1−x2)+α2−α1(
1 + eβ(x1−x2)+α2−α1

)2 , (B.3)

we have

eβx2 = (βx1 − 1)eβx1+α2−α1 , (B.4)

and

x2 =
1

β
log(βx1 − 1) + x1 +

α2 − α1

β
= h(x1). (B.5)

Since h : ( 1β ,∞) → (−∞,∞) is strictly increasing and hence bijective, there exists h−1 : (−∞,∞) → ( 1β ,∞)
such that

x1 = h−1(x2). (B.6)

Similarly, g(x2) attains its maximum at x2 satisfying

eβx1 = (βx2 − 1)eβx2+α1−α2 (B.7)

or equivalently

x1 =
1

β
log(βx2 − 1) + x2 +

α1 − α2

β
= i(x2), (B.8)

and i : ( 1β ,∞) → (−∞,∞) has the inverse i−1 : (−∞,∞) → ( 1β ,∞) such that

x2 = i−1(x1). (B.9)

A Nash equilibrium is a solution of the simultaneous equations,

eβx2 = (βx1 − 1)eβx1+α2−α1 (B.10)

eβx1 = (βx2 − 1)eβx2+α1−α2 . (B.11)

Substituting (B.10) for (B.11), we have

1 = (βx2 − 1)(βx1 − 1), (B.12)

and

1 = (log(βx1 − 1) + βx1 + α2 − α1 − 1) (βx1 − 1). (B.13)

Setting βx1 − 1 = v and βx2 − 1 = w, we have v, w > 0,

w =
1

v
, (B.14)

and

1 = (log v + v + α2 − α1) v. (B.15)

Since the right hand side of (B.15) is strictly increasing, the simultaneous equations (B.10) and (B.11)

have a unique solution (x
(1)
∗ , x

(2)
∗ ) ∈ ( 1β ,∞)2.
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Finally, we show that for any (x
(1)
0 , x

(2)
0 ) ∈ [0,∞)2 and F : [0,∞)2 → [0,∞)2 such that F (x1, x2) =

(h−1(x2), i
−1(x1)), {(x(1)

n , x
(2)
n )}n∈N defined by

(x
(1)
n+1, x

(2)
n+1) = F (x

(1)
n , x

(2)
n ) converges to (x

(1)
∗ , x

(2)
∗ ) as n → ∞.

Since for h : ( 1β ,∞) → (−∞,∞),

dh(x1)

dx1
=

β

β(βx1 − 1)
+ 1 =

βx1

βx1 − 1
̸= 0, (B.16)

we have for h−1 : (−∞,∞) → ( 1β ,∞),

dh−1(x2)

dx2
=

βx1 − 1

βx1
=

βh−1(x2)− 1

βh−1(x2)
, (B.17)

and

0 <
dh−1(x2)

dx2
< 1. (B.18)

Consider a ball BR = {(x1, x2)||(x1, x2) − (x
(1)
∗ , x

(2)
∗ )| ≤ R} with the radius R > 0 and the center

(x
(1)
∗ , x

(2)
∗ ). Here, we take R > 0 so that (x

(1)
0 , x

(2)
0 ) ∈ BR. We show that F restricted on BR is a contraction

map from BR ∩ [0,∞)2 to BR ∩ [0,∞)2.
For any (x1, x2) ∈ BR ∩ [0,∞)2, F (x1, x2) = (h−1(x2), i

−1(x1)) and

|h−1(x2)− x
(1)
∗ | = |h−1(x2)− h−1(x

(2)
∗ )|

≤
∣∣∣∣∫ x2

x
(2)
∗

dh−1(x2)

dx2
dx2

∣∣∣∣ ≤ |x2 − x
(2)
∗ |. (B.19)

Similarly,

|i−1(x1)− x
(2)
∗ | = |i−1(x1)− i−1(x

(1)
∗ )|

≤
∣∣∣∣∫ x1

x
(1)
∗

di−1(x1)

dx1
dx1

∣∣∣∣ ≤ |x1 − x
(1)
∗ |. (B.20)

Hence, F (x1, x2) ∈ BR ∩ [0,∞)2.

Next, noting that |(x1, x2)| ≤ R+ |(x(1)
∗ , x

(2)
∗ )| for all (x1, x2) ∈ BR ∩ [0,∞)2, from (B.17), we have

0 <
dh−1(x2)

dx2
< 1− 1

β(R+ |(x(1)
∗ , x

(2)
∗ )|)

, (B.21)

and similarly

0 <
di−1(x1)

dx1
< 1− 1

β(R+ |(x(1)
∗ , x

(2)
∗ )|)

. (B.22)

Hence, taking 0 < rR = 1− 1

β(R+|(x(1)
∗ ,x

(2)
∗ )|)

< 1, we have |F (x1, x2)−F (x̄1, x̄2)| ≤ rR|(x1, x2)−(x̄1, x̄2)|,∀(x1, x2), (x̄1, x̄2) ∈
BR ∩ [0,∞)2, which implies that F is a contraction map from BR ∩ [0,∞)2 to BR ∩ [0,∞)2.

For (x
(1)
0 , x

(2)
0 ) ∈ BR ∩ [0,∞)2, define {(x(1)

n , x
(2)
n )}n∈N by

(x
(1)
n+1, x

(2)
n+1) = F (x(1)

n , x(2)
n ). (B.23)

Since F is a contraction map, there exists (x
(1)
∞ , x

(2)
∞ ) ∈ BR ∩ [0,∞)2 such that

lim
n→∞

(x(1)
n , x(2)

n ) = (x(1)
∞ , x(2)

∞ ). (B.24)
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Noting that F is a continuous map, taking the limit n → ∞ on

(x
(1)
n+1, x

(2)
n+1) = F (x(1)

n , x(2)
n ), (B.25)

we have

(x(1)
∞ , x(2)

∞ ) = F (x(1)
∞ , x(2)

∞ ), (B.26)

which implies that (x
(1)
∞ , x

(2)
∞ ) is the Nash equilibrium, and therefore (x

(1)
∞ x

(2)
∞ ) = (x

(1)
∗ , x

(2)
∗ ). 2

30


