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Abstract. We develop new methodology for estimation of general class of term

structure models based on a Monte Carlo �ltering approach. We utilize the general-

ized state space model which can be naturally applied to the estimation of the term

structure models based on the Markov state processes. It is also possible to introduce

measurement errors in the general way without any bias. Moreover, the Monte Carlo

�lter can be applied to even to the models in which the zero-coupon bonds' prices

can not be analytically obtained. As an example, we apply the method to LIBORs

(London Inter Bank O�ered Rates) and interest rates swaps in the Japanese market

and show the usefulness of our approach.
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1. Introduction

We propose a new framework of the estimation of the term structure of interest

rates based on the state space model. In particular, we develop a Monte Carlo �ltering

approach for estimating the term structure models based on multi-dimensional Markov

state variables. For example, our method can be applied to the term structure models

based on the dynamic general equilibrium theory of Cox, Ingersoll and Ross (1985a,b)

which includes multi-factor CIR (Cox, Ingersoll and Ross) models used by Chen and

Scott (1993), Pearson and Sun (1994), Singh (1995) and Du�e and Singleton (1997),

and the stochastic volatility model developed by Longsta� and Schwartz (1992). It is

well-known that at least two state variables are necessary to explain the dynamics of

the term structure in the real world. Chen and Scott (1993), Pearson and Sun (1994),

Singh (1995), and Du�e and Singleton (1997) concluded that one-factor models are not

enough to describe the variation of the term structure by analyzing treasury or swap

markets in the United States. However, multi-factor models often tested in the analysis

are not necessarily the best among the candidates. For instance, in the multi-factor CIR

model where the spot interest rate is described by the sum of several state variables
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independently following square-root processes, the intuitive interpretation of the state

variables is not clear, and sometimes it seems di�cult to �nd admissible parameters for

which the state variables are non-negative over the entire sample period. (See Du�e and

Singleton (1997).) One of the reasons why the models which do not explain the data

very well are often employed in empirical analyses is that they allow analytic solutions

of zero coupon bonds' prices. It is mainly due to the limitation of the methods applied

to the estimation. In particular, Chen and Scott (1993), Pearson and Sun (1994) and

Du�e and Singleton (1997) apply the maximum likelihood method while Singh (1995),

and Longsta� and Schwartz (1992) employ the three-stage least square method with the

principal component analysis and the generalized moment method(GMM) with GARCH,

respectively. However, it is substantially di�cult to apply those methods without analytic

solutions of the zero-coupon bonds' prices. Moreover, existing researches tend to replace

unobservable state variables such as the spot rate and the volatility by some observable

variables (Chan et al. (1992), Longsta� and Schwartz (1992)), but they may substantially

su�er from the measurement errors. While some of them take the measurement errors

into account explicitly, the ways of the consideration are not natural and somewhat ad

hoc. (Chen and Scott (1993), Du�e and Singleton (1997))

We propose a Monte Carlo �ltering approach based on the generalized state space

model to overcome the problems of existing researches. The state space model consists of

the system model describing the processes of state variables and the observation model

representing the functional relation between the state variables and the observational

data in the real world, which implies that the method can be naturally applied to the

estimation of the term structure models based on the Markov state processes. It is also

possible to introduce measurement errors in the general way without any bias. More-

over, the Monte Carlo �lter can be applied to much broader class of the term structure

models, especially even to the models in which the zero-coupon bonds' prices can not be

analytically obtained.

The paper is organized as follows. In section two, we will �rst summarize the state

space model and the term structure models based on Markov state processes. Then, we

will clarify the relation between interest rate models as well as observational data and

the state space model. Next, we will give a concrete algorithm of the Monte Carlo �lter

applied to the empirical analysis. In section three, we will show the usefulness of the

Monte Carlo �lter by the analysis of LIBORs (London Inter Bank O�ered Rates) and

interest rate swaps in the Japanese market. In section four, we will give the conclusion.
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2. The Estimation of the Term Structure Based on the State Space Modeling

2.1 State Space Model for Term Structure

We explain in this section the estimation method for the common factors and the

parameters of term structure models based on the state space modeling.

First, we brie
y explain term structure models based on Markov state processes. (See

Bj�ork (1996), Du�e (1996) or Hull (1999) for the detail) Given the �ltered probability

space (
;F ; fFtg; P ) with the time horizon [0; T �] for some T � <1, we suppose that a

N -dimensional vector of state variables denoted by Yt follows a N -dimensional Markov

process:

dYt = �(Yt; t)dt+ S(Yt; t)dBt;(2.1)

where Bt is the d-dimensional standard Brownian motion under the �ltered probability

space, and �(Yt; t) and S(Yt; t) denote real-valued functions of RN � [0; T �] 7! RN and

RN � [0; T �] 7! RN�d, respectively. Suppose also that the instantaneous short-term

interest rate at time t denoted by r(Yt; t) and a zero coupon bond's price at t with

the maturity T denoted by P (Yt; t;T ) are some functions of Yt where t 2 [0; T �] and

T 2 [t; T �]. Here, a zero coupon bond with the maturity T means a bond with no

coupons and with the face value, 1 which is redeemed at time T . We note that the

set of the zero coupon bonds' prices fP (Yt; t;T )gT2[t;T �] represents the term structure of

interest rates at time t: The assumption re
ects the idea that the whole term structure

can be explained by relatively small number of factors, Yt while what the factors represent

depends on the speci�cation of a model.

Then, based on the arbitrage-free argument of �nancial economics P (Yt; t;T ) satis�es

a partial di�erential equation(PDE)

1

2
trace(SS

0

PY Y ) + [�� �]0PY + Pt � rP = 0;

with the terminal boundary condition, P (Yt; T ;T ) = 1, where PY Y � @2P
@Y @Y 0 ; PY � @P

@Y
:

Here, RN -valued vector, � denotes so called the risk premium which is a function of Yt

and t, �(Yt; t) and for instance, it can be determined by the general equilibrium asset

pricing theory of economics such as CIR(1985a). Moreover, it is well known that the

solution of this PDE is represented by the conditional expectation given information at

time t,

P (Yt; t;T ) = E
Q[e�

R
T

t
r(Yu;u)dujFt];(2.2)

where EQ[�jFt] denotes the conditional expectation operator given information at time

t under the risk-neutral probability measure Q. (See Bj�ork (1996).) It is also known

that under the measure Q, the vector of state variables Yt follows a stochastic di�erential

equation,

dYt = f�(Yt; t)� �(Yt; t)gdt+ S(Yt; t)dB
�

t(2.3)
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where B� denotes the d-dimensional standard Brownian motion under the measure Q.

(See Bj�ork(1996) and Chapter 7 and Appendix E of Du�e (1996).)

For application of these term structure models to observed data, we introduce the

general form of state space models. (See Kitagawa and Gersh(1996) for the detail.) A

state space model consists of the following system model and the observation model.

That is, 8><
>:
Yt = F (Yt��t; vt) system model

Zt = H(Yt; ut) observation model
(2.4)

where Yt, Zt and �t denote a N -dimensional state vector, a M -dimensional observation

vector at time t and the time interval of observational data respectively while vt and

ut denote the N -dimensional system noise and the M -dimensional observational noise

whose density functions are given respectively by q(v) and  (u). F (�; �) and H(�; �) are
generally non-linear functions, and the initial state vector Y0 is assumed to be a random

variable whose density function is given by p0(Y ).

Next, we clarify how the state space models can be applied to the estimation of term

structure models. When �t is su�ciently small, the Euler approximation to the equation

(2:1) can be used for the system model, Yt = F (Yt��t; vt). That is,

Yt = Yt��t + �(Yt��t; t��t)�t + S(Yt��t; t��t)vt
p
�t(2.5)

where the system noise vt follows the N -dimensional standard normal distribution. Of

course, the other approximation schemes could be applied to the discretization of (2:1).

(For instance, see section D and notes of chapter 11 in Du�e(1996).) Moreover, when Yt

is explicitly solved given Yt��t as in the case of a linear stochastic di�erential equation,

it is better to use that representation: Namely, suppose that in (2:1), Yt is represented

by a linear stochastic di�erential equation.

dYt = (AYt + ��(t))dt+ SdBt(2.6)

where ��(t) and A denote RN -valued functions of the time parameter t and N � N

matrix with constant elements respectively, and S denotes an N�d matrix with constant

elements so that � = SS
0

is positive de�nite. Then, given Yt��t, Yt can be expressed as

Yt = e�tAYt��t +
Z t

t��t
e(t�s)A��(s)ds+ v

(�t)
t :(2.7)

= FYt��t + �(t) + v
(�t)
t

where F � e�tA is anN�N matrix with constant elements and �(t) � R t
t��t e

(t�s)A��(s)ds

is an N � 1 vector function of time t. Here, v
(�t)
t follows the normal distribution with

the mean zero and the variance covariance matrix ��t de�ned by

��t �
Z �t

0
esA�esA

0

ds:(2.8)
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In this case, the system model is given by (2:7) and the density function q(v) of the

system noise vt is the normal distribution with the variance covariance matrix speci�ed

by (2.8).

In the observation model, the vector of the observation at time t denoted by Zt,

can be expressed as a function of k(� 1) units of zero-coupon bonds' prices and the

observation noise vector ut.

Zt = h(P (Yt; t; t+ T1); � � � ; P (Yt; t; t+ Tk)) + ut :(2.9)

That is, each element of Zt is an observed bond price or interest rate which is represented

by a function of zero coupon bonds with possibly di�erent maturities (Ti; i = 1; � � � ; k)

and a measurement error. Moreover, Zt can be also expressed as a function of Yt, because

each P (Yt; t;Ti) is a function of Yt.

Zt = H(Yt) + ut(2.10)

In h(�), P (Y; t; t + Ti) can be evaluated by the computation of the equation (2:2) under

the process (2:3). In addition, we assume hereafter that the density function  (u) of

the noise vector u is given by that of the multi-dimensional normal distribution with the

mean 0, and the variance-covariance matrix �u. Here, �u is assumed to be a M �M

diagonal matrix with positive diagonal elements where M is de�ned to be the dimension

of the observational data at each time.

LIBORs and interest rate swap rates at time t are the typical examples of the obser-

vation vector Zt. In this case, h(�) can be speci�ed by the theoretical relation between

LIBORs/interest rate swap rates and the zero-coupon bonds' prices. That is, LIBOR

with the term �n denoted by Lt(Yt; �n) and swap rates with the term �n denoted by

St(Yt; �n) are expressed by the zero-coupon bonds' prices as follows. (See for instance

Bj�ork(1996), Du�e(1996) and Du�e and Singleton(1997).)

Lt(Yt; �n) =

 
1

P (Yt; t; t+ �n)
� 1

!
1

�n
(2.11)

St(Yt; �n) =
1� P (Yt; t; t+ �n)

�
P�n=�

i=1 P (Yt; t; t+ i�)
;(2.12)

where � denotes the interval of cash 
ows. For example, � = 0:5 is standard in the swap

market of Japanese yen. We will explain actual data of LIBORs and swap rates used for

the empirical analysis in the next section.

From the discussion above, we show that a term structure model represented by (2.1)

{ (2.3) can be re-interpreted within the framework of the generalized state space form

(2.4). Hence we can obtain the estimates of Yt in a term structure model by estimating

states in the corresponding state space model.

5



2.2 Estimation of Term Structure by the Monte Carlo Filter

We discuss about our estimation method in detail. We note that the standard Kalman

�lter cannot be applied to the estimation because both the system model and the observa-

tion model described above are generally non-linear. Thus we utilize the Monte Carlo �l-

ter. While several approaches are proposed for the Monte Carlo �lter (see Doucet, Barat,

and Duvaut(1995), Durbin, and Koopman(1997), Gordon, Salmond, and Smith(1993),

Tanizaki(1993), for instance), we adopt the approach developed by Kitagawa(1996). In

the following, we describe the outline of the algorithm of the Monte Carlo �lter applied

to the empirical analysis in the next section. First, we summarize the notation following

Kitagawa(1996). p(YtjZt��t), called \one step ahead predictor" denotes the condition-

al density function of Yt given Zt��t where �t is the interval of time series. p(YtjZt),

called \�lter" denotes the conditional density function of Yt given Zt. fp
(1)
t ; � � � ; p

(m)
t g

and ff
(1)
t ; � � � ; f

(m)
t g represent the vectors of the realization of m trials of Monte Carlo

from p(YtjZt��t) and p(YtjZt), respectively. Then, if we set ff
(1)
0 ; � � � ; f

(m)
0 g as the real-

ization of random draws from p0(Y ), the density function of the initial state vector Y0,

the algorithm of the Monte Carlo �lter is as follows.

[The algorithm of the Monte Carlo �lter]

(i) Generate the initial state vector ff
(1)
0 ; � � � ; f

(m)
0 g.

(ii) Apply the following steps (a)�(d) to each time t = 0;�t; 2�t; � � � ; (T� � �t); T�

where T� denotes the �nal time point of the data.

� (a) Generate the system noise v
(j)
t , j = 1; � � � ; m according to the density func-

tion q(v).

� (b) Compute for each j = 1; � � � ; m, p
(j)
t = F (f

(j)
t��t; v

(j)
t ).

� (c) Evaluate �
(j)
t = n[xt; 0;�u], where n[xt; 0;�u] the density function ofN(0;�u)

at xt = Zt � H(p
(j)
t ), for j = 1; � � � ; m. Here, H(�) represent for instance, the

equation (2:11) and (2:12) which are regarded as functions of the state vector Y .

The prices of zero-coupon bonds in those equations are computed through the

equation (2:2) by using the process (2:3), and if it is not evaluated analytically,

some numerical method such as Monte Carlo simulation is implemented.

� (d) Implement resampling of ff
(1)
t ; � � � ; f

(m)
t g from fp

(1)
t ; � � � ; p

(m)
t g. More pre-

cisely, obtain f
(i)
t , i = 1; � � � ; m by the sampling with replacement from fp

(1)
t ; � � � ; p

(m)
t g

with the probability

Prob.(f
(i)
t = p

(j)
t jZt) =

�
(j)
tPm

k=1 �
(k)
t

; j = 1; � � � ; m; i = 1; � � � ; m:
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The estimation of unknown parameters is based on the maximum likelihood method.

If � denotes the vector representing all unknown parameters, the log-likelihood l(�) is

given by

l(�) = log p(Z�t; � � � ; ZT�j�) =

T�

�tX
k=1

log p(Zk�tjZ�t; � � � ; Z(k�1)�t; �)

where p(Z�tjZ0) = p0(Z�t). Since each term in the log-likelihood can be approximated

as

p(Zk�tjZ�t; � � � ; Z(k�1)�t; �) '
1

m

mX
j=1

�
(j)
k�t ;

the log-likelihood l(�) is computed within the framework of the Monte Carlo �lter by

l(�) '

T�

�tX
k=1

0
@log mX

j=1

�
(j)
k�t

1
A�

T�
�t

logm:

Then, The maximum likelihood estimator �̂ is obtained by maximizing l(�) with respect

to �. For maximization, grid search or a self-organizing method is applied. (See Kita-

gawa(1998) for details of a self-organizing state-space model.) Finally, we utilize AIC

(Akaike Information Criterion) as a criterion to select the term structure model if there

are several candidates. That is, the model with the smaller AIC can be regarded as the

better model (Akaike (1973) ).

3. Analysis of the Term Structures in the Japanese Market

In this section, we examine the validity of our method using the time series of interest

rates in the Japanese market. The data used for the analysis is summarized as follows.

� The period and the frequency of the data: daily data of 1997/1/1 -1999/7/22 (662

observations).

� Japanese yen LIBORs: six-month, twelve-month.

� Japanese yen swap rates: two-year, three-year, four-year, �ve-year, seven-year, ten-

year.

Figures 1(1)�(3) show the observational data for the period of the analysis; (1) and (2)

show the series of LIBORs and those of swap rates respectively while (3) shows the spread

between ten-year and two-year.

For an interest rate model, we use Hull and White(1994) in which the dynamics of

a state vector Y can be represented by a linear stochastic di�erential equation (2:6),

where Yt = (Yit); i = 1; 2 is a two dimensional state vector and ��(t) is a R2-valued

function of the time parameter t. They also assume that the spot rate r is expressed as
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a function of Y1t, r = g(Y1t) where g(�) is some real-valued function. For a functional

form of r = g(Y1t), if we take g(Y1t) = Y1t, we allow negative interest rates because of the

normality of the spot rate while we can obtain an analytic solution of P (Yt; t;T ), which

substantially reduce the computational burden. In particular, the model implies relatively

high probability of the negative interest rates in such low interest rates environment of

recent Japan and this seems inappropriate. Hence, we specify g(Y1t) based on Hull and

White(1997) (chapter 21, pp.588) such that g(Y1t) = Y1t for Y1t � ", and g(Y1t) = "e
(Y1t�")

"

for Y1t < ", where " is some predetermined positive constant. Clearly, g(�) is positive,

monotonically increasing, and limy!�1 g(y) = 0. We note that from above speci�cation,

Y1t can be considered to be a factor which has a large impact on the short-term sector of

the term structure. On the other hand, Y2t will be characterized after the �tting of the

model to the data.

We next determine the observation model as the equation (2:9) with the equations

(2:11) and (2:12). Moreover, the zero-coupon bonds' prices in h(�) of (2:9) are computed

by the equation,

P (Yt; t;T ) = EQ[e�
R
T

t
g(Y1u)dujYt]:(3.1)

We note that (3.1) should be computed by some numerical method such as Monte Carlo

simulations because it can not be evaluated analytically. We apply the algorithm of the

Monte Carlo �lter described in the previous section to the estimation. The state space

model applied to this empirical analysis is described by

(The system model)

Yt = FYt��t + �(t) + v
(�t)
t ;(3.2)

with Yt = (Y1t; Y2t)
0 and

(The observational model)

Zt = (Z1;t; � � � ; Z8;t)
0(3.3)

with

Zn;t =

8><
>:
Lt(Yt; �n) + un;t (for n = 1; 2, with �n = 0:5; 1)

St(Yt; �n) + un;t (for n = 3; � � � ; 8 , with �n = 2; 3; 4; 5; 7; 10)
;(3.4)

where the dimension of the observational data is M = 8.

In the computation of P (Yt; t; T ) in Lt(Yt; Tn) and St(Yt; Tn), we apply a numerical

integration for the integral,
R T
t g(Y1u)du in (3.1) and a Monte Carlo integration for the

conditional expectation: Namely,

P (Y
(i)
t ; t : T ) '

1

J

JX
j=1

exp

0
@� T=�tX

l=0

g(Y
(i;j)
1;t+l�t�t

1
A ;(3.5)
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where Y
(i)
t denotes the value of Y1t for the i-th particle of the state vector in the Monte

Carlo �lter, and Y
(i;j)
1;t+l�t denotes the value of Y1;t+l�t in the j-th path of the state vector

starting from Y
(i)
t , which are generated from

Y
(i;j)
t+l�t = FY

(i;j)
t+(l�1)�t + �(t+ l�t) + v(i;j)(t + l�t);

Y
(i;j)
t = Y

(i)
t :

In the Monte Carlo integration, J = 300, the random numbers are generated by ran2 in

Numerical Recipes (Second Edition) by Press et. al.(1992) and the method of antithetic

variates (Kalos and Whitlock (1986) ) is utilized, in which we set v
(i;j)
t+l�t = �v

(i;j�1)
t+l�t ; l =

1; 2; :::; (T=�t) for even j (i.e. j = 2; 4; ::::; 300).

Moreover, the number of particles in the Monte Carlo �lter is m = 5000 and we use

80 parallel computer for this computation (SGI 2800 system).

In estimation, it is hard to implement standard numerical optimization methods such

as quasi-Newton method because computational di�culty arises due to the nonlinearity

and large number of parameters in the model. Hence, for " in g(�) we set " = 0:0005

which is smaller than the lowest level of six-month LIBOR observed during the sample

period so that the choice of " does not have large impact on the shape of the yield curve,

and for the other parameters we adopt the following estimation method.

� (Step1) Apply Kalman-Filter as if the interest rate function were g(r) = r.

� (Step2) Apply the self-organizing method using the estimates obtained in (Step1)

as initial values.

� (Step2') Implement the self-organizing method again setting the average of each

parameter over the sample period as the initial value. The procedure is iterated

until the log-likelihood is not signi�cantly improved because slight improvement is

not reliable due to the random nature of the estimated log-likelihood function.

� (Step3) Apply a grid search around the estimates obtained in (Step2') until the

log-likelihood is not signi�cantly improved.

Here, the self-organizing method was proposed by Kitagawa (1998); in this method,

the original state vector, Yt is augmented with the unknown parameter vector, � as

Y �t = (Yt; �)
0, and we assume � is time-varying such that �t = �t��t + v

(�)
t where v

(�)
t is

normally distributed. (For example, see Higuchi and Kitagawa (2000) or Kitagawa and

Sato (2000).)

Finally, we brie
y explain the result of this analysis. First we investigate the time

series of the estimated factors. Figures 2(1)�(2) show the relation between the esti-

mated factors Yit, i = 1; 2 obtained by averaging all the samples of �lters and the for-

ward rates computed from observed LIBORs and swaps. The sample correlation be-

tween the level of each factor and the corresponding forward rate is also listed below
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of each �gure. From the graphical observation and the sample correlation, there seems

to be strong relation between Y2t and ten-year forward rate which is de�ned to be the

rates with the term 0.5 year starting from 9.5 years forward, and the variation of Y1t

is similar to that of six-month LIBOR. Next, we examine the �tting of the model to

the data. The time series of each observation and corresponding estimate are shown

in Figures 3(1)�(8), and the explanation power of each estimate which is de�ned by

max
��
1� the variance of residuals

the variance of observations

�
; 0
�
(%) is listed above corresponding �gure. We

note that the estimates of LIBORs and swap rates are based on estimated parameters

and estimated factors. They show that the model �ts very well to the swap rates while it

does not to LIBORs: The explanation powers are more than 98.5% for all the swap rates

while they are 39.4% and 77.3% for six-month and twelve-month LIBORs respectively.

In the two-factor model, estimated term structures are generally �tted well to the

real ones except to LIBORs. In Figures 4(1)�(4), we show the examples in which the

�tting to LIBORs are good (9/30/98), average (6/24/97), and bad (12/4/97, 5/14/99).

Hence, we can conclude that the model explains the variations of the swap rates very

well while it does not explain those of LIBORs.

The result of the two-factor case implies that another factor may be necessary to

improve the �tting to LIBORs. Hence, we next implement the case in which the state

vector Yt = (Yit), i = 1; 2; 3 is three dimensional, and has the same form of (3:2).

We report that the explanation powers are more than 97.5% for all the rates and

more than 99% except for twelve-month LIBOR and two-year swap rate. Especially,

we note that the model remarkably improves the �tting to LIBORs. (See Figure 5)

Figures 6(1)�(4) show the observations and estimates of the term structures at four

dates(97/6/24, 97/12/4, 98/9/30, 99/5/14, which are same as the two-factor case.),

which implies that the model can replicates the real term structures including LIBORs

very closely. Moreover we note that AIC in this case(AIC=-72921.23) is substantial-

ly improved by more than 7000. However, when we implement more subtle method of

model diagnostics described in Kim, Shephard and Chib (1998), it turns out that there

are some problems for the innovation of the model. Especially, the independence of the

innovations and the normality of the transformed innovations are rejected by using Box-

Ljung statistic and Bowman and Shenton (1975) normality statistic. We show the results

for six-month LIBOR and �ve-year swap rate in Figure 7. Thus it seems necessary to

investigate the broader class of interest rate models.

4. Conclusion

We develop a new framework for the empirical analysis of the term structure of

interest rates based on the generalized state space model. Our approach is useful for the

estimation and the model diagnostics of various types of interest rate models, which are

10



usually considered tough task. As an example, we apply the Monte Carlo �lter to the

time series of LIBORs and of interest rate swaps in the Japanese market, and con�rm

the validity of our method.

Furthermore, we will utilize this approach to analyze more complicated models.
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Fig. 7. The Result of model diagnostics for three-factor case (We show the result-

s for only six month LIBOR and �ve year Swap), where innovations are computed by

uMt+1 = Pr(Zk;t+1 � Zo
k;t+1jZt) '

1
M

PM

i=1 Pr(Zk;t+1 � Zo
k;t+1jY

(i)
t+1), normalized innovations are

nMt = 
�1(uMt ) (the inverse of the normal distribution), Zo
k;t+1 means observed value, and BL(30)

and B-S is denoted as Box-Ljung statistic with 30 lags and Bowman and Shenton (1975) normality

statistic (� �2(2)), respectively. (See Kim, Shephard and Chib (1998).)
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