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Abstract

We propose a new methodology for the valuation problem of financial contin-

gent claims when the underlying asset prices follow a general class of continuous

Itô processes. Our method can be applied to a wide range of valuation problems

including complicated contingent claims associated with the term structure of

interest rates. We illustrate our method by giving two examples: the valuation

problems of swaptions and average (Asian) options for interest rates. Our method

gives some explicit formulae for solutions, which are suffciently numerically accu-

rate for practical purposes in most cases. The continuous stochastic processes for

spot interest rates and forward interest rates are not necessarily Markovian nor

diffusion processes in the usual sense; nevertheless our approach can be rigorously

justified by the Malliavin-Watanabe Calculus in stochastic analysis.
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1 Introduction

In the past decade various contingent claims have been introduced and actively

traded in financial markets. In particular, various types of interest rates based

contingent claims have appeared and attracted attention in financial markets.

This paper presents a new methodology which is applicable to the valuation

problem of financial contingent claims such as options, swaps, and other derivative

securities when the underlying asset prices follow the general class of continuous

Itô processes. Our method is especially useful for the pricing problem of interest

rate based derivatives when the underlying forward rates follow a general class of

continuous Itô processes.

In the valuation problem of financial contingent claims, it has been known

that we can rarely obtain explicit formulae on solutions when the underlying

assets follow the general class of continuous Itô processes. This is particularly

evident for contingent claims based on the term structure of interest rates because

their payoff functions are usually complicated functionals of the underlying asset

prices and the term structure of interest rates must satisfy the strong restrictions

implied by fundamental economic theory. In order to cope with these problems,

two methods, called the partial differential equation (PDE) approach and the

Monte Carlo (MC) approach have been widely known and used for practical

valuation problems. (See Duffie (1992) or Hull (1993) for the details of these

methods.) The asymptotic expansion approach we are proposing in this paper is

different from these conventional methods. As we shall show later, our method

has several advantages compared to those existing methods.

The asymptotic expansion approach is based on the key empirical observation

on many asset prices, including interest rates, that the observed and estimated

volatilities for financial asset prices may vary over time, but they are not very

large in comparison with the observed levels of asset prices. This observation

has even been true for the stock prices whose volatilities are relatively large in

comparison with other financial prices. It was using this key observation that

Kunitomo and Takahashi (1992) had developed the asymptotic theory called

Small Disturbance Asymptotics 1 for solving the valuation problem of average

(or Asian) options for foreign exchange rates when the volatility parameter goes

to zero. They have proposed to use the limiting distribution as the first order

approximation to the exact distribution of the payoff function of average options

1 The small disturbance asymptotic theory had originally been developed for the analysis
of simultaneous equation systems in econometrics. See Anderson (1977) or Kunitomo et. al.
(1983) for the details.

2



when the underlying asset prices follow geometric Brownian motion. Although

the approximations they proposed have given relatively accurate numerical val-

ues, they are not completely satisfactory in some cases for practical purposes. For

the same valuation problem in Kunitomo and Takahashi (1992), Yoshida (1992a)

has obtained further results on average options when the underlying asset prices

follow geometric Brownian motion by using an asymptotic expansion technique

originally developed for an application in statistics.

The main purpose of the present paper is to show that the asymptotic ex-

pansion method in small disturbance asymptotics can be effectively applicable to

various valuation problems of contingent claims appearing when the underlying

asset prices follow the general class of continuous Itô processes. In particular, we

shall show that the asymptotic expansion approach is very simple, yet gives a uni-

fied approach to the problem of interest rate based contingent claims valuation.

However, we shall point out that some economic considerations of theoretical re-

strictions on the structure of stochastic processes should be indispensable when

we apply the asymptotic expansion method. In the term structure of interest

rates, for instance, we require strong conditions on the form of their drift func-

tions because of no-arbitrage theory. This implies that the continuous stochastic

processes for spot interest rates and forward rates are not necessarily Markovian

nor diffusion processes in the usual sense.

In a companion of the present paper, Takahashi (1997) 2 has systematically

investigated the valuation problem of various contingent claims when the asset

price S(t) follows a diffusion process:

(1.1) S(t) = S(0) +
∫ t

0
µ(S(v), v)dv +

∫ t

0
σ∗(S(v), v)dB(v) ,

where µ(S(v), v) and σ∗(S(v), v) are the instantaneous mean and volatility func-

tions, and B(v) is the standard Brownian motion. It is evident that the Black-

Scholes economy and the Cox-Ingersol-Ross model on the spot interest rate are

special cases of this framework. In the simplest Black-Scholes economy, for in-

stance, let S(ϵ)(t) satisfy the integral equation of a diffusion process:

(1.2) S(ϵ)(t) = S(0) +
∫ t

0
rS(ϵ)(v)dv + ϵ

∫ t

0
σ(S(ϵ)(v), v)dB(v) ,

2 This is essentially based on Chapter 1 of an unpublished Ph.D. Dissertation (Takahashi
(1995)) at Berkeley. It gives many numerical examples and discusses the validity of the small dis-
turbance asymptotic expansion method when the asset price follows a general non-homogeneous
diffusion process.
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where σ(S(ϵ)(v), v) is the volatility term with 0 < ϵ ≤ 1 and r is the risk free

(constant) rate. Then a small disturbance asymptotic theory can be constructed

by considering the situation when ϵ→ 0 and we can develop the valuation method

of contingent claims based on {S(ϵ)(t)} with the no-arbitrage theory.

As we shall explain in the Appendix, our method is not an ad-hoc approxi-

mation method because it can be rigorously justified by the Malliavin-Watanabe

theory in stochastic analysis. The Malliavin-Watanabe Calculus has been devel-

oped as an infinite dimensional analysis of Wiener functional by several prob-

ablists in the last two decades. We intend to apply this powerful calculus on

continuous stochastic processes to the valuation problem of financial contingent

claims along the line developed by Watanabe (1987) and Yoshida (1992a). How-

ever, we should mention that the spot and forward interest rates in the term

structure model are not necessarily Markovian in the usual sense while the ex-

isting asymptotic expansion methods initiated by Watanabe (1987) and refined

by Yoshida (1992a) in stochastic analysis have been developed for the time ho-

mogeneous Markovian processes. Hence, we need to extend the existing results

on the validity of the asymptotic expansion approach to the solution of certain

stochastic integral equations for the interest rate processes. Since this extension

to a class of non-Markovian continuous processes is not a trivial task, the asymp-

totic expansion approach developed in this paper would be also interesting to

researchers in stochastic analysis.

Furthermore, as we shall illustrate in Section 4, the resulting formulae we

shall derive for complicated contingent claims are numerically accurate in many

practical situations. Thus the asymptotic expansion approach would be not only

theoretically interesting, but also quite useful for researchers in financial eco-

nomics and practitioners in financial markets.

In Section 2, we formulate the valuation problem of contingent claims based on

the term structure of interest rates. In Section 3, we shall explain the asymptotic

expansion approach for this problem and give some theoretical results. Then,

in Section 4, we shall show some numerical results on interest rate derivatives

as illustrative examples. Section 5 will summarize our results and provide con-

cluding comments. Some mathematical details including useful formulae and the

mathematical validity of our method via the Malliavin-Watanabe theory will be

presented in Section 6.
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2 The Valuation Problem of Interest Rate Based

Contingent Claims

We consider a continuous time economy with a trading interval [0, T̄ ], where

T̄ < +∞; it is also complete in the proper economic sense. Let P (t, T ) denote

the price of the discount bond at t with maturity date T (0 ≤ t ≤ T ≤ T̄ < +∞).

We use the notational convention that P (T, T ) = 1 at maturity date t = T for

normalization. Let also P (t, T ) be continuously differentiable with respect to T

and P (t, T ) > 0 for 0 ≤ t ≤ T ≤ T̄ . Then the instantaneous forward rate at s for

future date t (0 ≤ s ≤ t ≤ T ) is defined by

(2.1) f(s, t) = −∂ logP (s, t)

∂t
.

In the term structure model of interest rates we assume that a family of forward

rate processes 3 {f(s, t)} for 0 ≤ s ≤ t ≤ T follow the stochastic integral equation

(2.2)

f(s, t) = f(0, t) +
∫ s

0

[
n∑

i=1

σ∗
i (f(v, t), v, t)

∫ t

v
σ∗

i (f(v, y), v, y)dy

]
dv

+
∫ s

0

n∑
i=1

σ∗
i (f(v, t), v, t)dBi(v) ,

where f(0, t) are non-random initial forward rates, {Bi(v), i = 1, · · · , n} are n

independent Brownian motions, and {σ∗
i (f(v, t), v, t), i = 1, · · · , n} are the volatil-

ity functions. We assume that the initial forward rates are observable and fixed.

When f(s, t) is continuous at s = t for 0 ≤ s ≤ t ≤ T, the spot interest rate at t

can be defined by r(t) = f(t, t) .

Consider the contingent claims based on the term structure of interest rates.

There have been many interest rate based contingent claims developed and traded

in financial markets. Most of those contingent claims can be regarded as function-

als of bond prices with different maturities. Let {cj, j = 1, · · · ,m} be a sequence

of non-negative coupon payments and {Tj, j = 1, · · · ,m} be a sequence of pay-

ment periods satisfying the condition 0 ≤ t ≤ T1 ≤ · · · ≤ Tm ≤ T̄ . Then the

price of the coupon bond with coupon payments {cj, j = 1, · · · ,m} at t should

be given by 4

3 The restrictions in (2.2) we are imposing in this arbitrage-free formulation have been derived
by Heath, Jarrow, and Morton (1992). There have been other approaches to the problem of
the term structure of interest rates as discussed by Duffie (1992) or Hull (1993).

4 We implicitly assume that there does not exist any default risk associated with bonds or
any transaction costs.

5



(2.3) Pm,{Tj},{cj}(t) =
m∑

j=1

cjP (t, Tj),

where {P (t, Tj), j = 1, · · · ,m} are the prices of zero-coupon bonds with different

maturities. For illustrations we give two examples of interest rate based contin-

gent claims, which are important for practice in financial markets.

Example 1 : The payoff functions of options on the coupon bond with coupon

payments {cj, j = 1, · · · ,m} at {Tj, j = 1, · · · ,m} and swaptions expiring on date

T (0 < T ≤ Tm) can be written as

(2.4) V (1)(T ) =
[
Pm,{Tj},{cj}(T ) −K

]+
,

and

(2.5) V (2)(T ) =
[
K − Pm,{Tj},{cj}(T )

]+
,

where K is a fixed strike price and the max function is defined by [X]+ =

max (X, 0). V (1)(T ) and V (2)(T ) are the payoffs of the call options and put

options on the coupon bond, respectively.

Example 2 : The yield of a zero coupon bond at t with time to maturity of

τ (0 < t < t+ τ < Tm) years is given by

(2.6) Lτ (t) =

[
1

P (t, t+ τ)
− 1

]
1

τ
.

The payoffs of the options on average interest rates can be written as

(2.7) V (3)(T ) =

[
1

T

∫ T

0
Lτ (t)dt−K

]+

and

(2.8) V (4)(T ) =

[
K − 1

T

∫ T

0
Lτ (t)dt

]+

,

where K is a fixed strike price. V (3)(T ) and V (4)(T ) are the payoffs of the call

options and put options of average options on interest rates, respectively. Note

that the options are on the average of Lτ , where Lτ is a constant duration, for

example 6 month LIBOR rates.

The valuation problem of a contingent claim in a complete market can be

simply defined as the determination of its “fair” value at financial markets. Let
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V (T ) be the payoff of a contingent claim at the terminal period T. Then the

standard martingale theory in financial economics predicts that the fair price of

V (T ) at time t (0 ≤ t < T ) should be given by

(2.9) Vt(T ) = Et

[
e−
∫ T

t
r(s)dsV (T )

]
,

where Et [·] stands for the conditional expectation operator given the information

available at t with respect to the equivalent martingale measure. When we do

not impose the drift restrictions given by (2.2) for forward rate processes, we

have to change the underlying probability measure into the equivalent martingale

measure by the no-arbitrage theory and we can obtain the same results reported

in this paper. Since this complicates our notations as well as explanations, we

have directly imposed the restrictions given by (2.2).

3 The Asymptotic Expansion Approach

There are mainly two difficulties in the valuation problem of interest rate based

contingent claims. First, the payoff functions and the discount factors are usually

non-linear functionals of bonds with different maturities and the spot interest

rate. More importantly, the coupon bond prices are also complicated functionals

of instantaneous forward rate processes. Therefore except some special cases

we cannot obtain explicit formulae for the solution in the valuation problems of

interest rate based contingent claims.

In order to develop a new asymptotic expansion approach, we first re-formulate

(2.2) and we assume that a family of instantaneous forward rate processes obey

the stochastic integral equation:

(3.1)

f (ε)(s, t) = f(0, t) + ε2
∫ s

0

[
n∑

i=1

σi(f
(ε)(v, t), v, t)

∫ t

v
σi(f

(ε)(v, y), v, y)dy

]
dv

+ ε
∫ s

0

n∑
i=1

σi(f
(ε)(v, t), v, t)dBi(v),

where 0 < ε ≤ 1 and 0 ≤ s ≤ t ≤ T ≤ T̄ . The volatility function σi(f
(ε)(s, t), s, t)

depends not only on s and t, but also on f (ε)(s, t) in the general case. Let f (ε)(s, t)

be continuous at s = t for 0 ≤ s ≤ t ≤ T ≤ T̄ . Then the spot interest rate process

can be defined by

(3.2) r(ε)(t) = f (ε)(t, t) .
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We note that these equations for {r(ε)(t)} and {f (ε)(s, t)} can be obtained simply

by substituting εσi(f
(ε)(v, t), v, t) for σ∗

i (f(v, t), v, t) in (2.2).

The asymptotic expansion approach we are proposing in this paper consists

of the following three steps. First, given the future forward rate process, we

consider, first, a functional of the entire forward rate process {f (ε)(s, t)} with a

parameter ε(0 < ε ≤ 1) as

(3.3) U
(ε)
T = U({f (ε)(s, t)}),

where U(·) is a smooth functional of the process {f (ε)(s, t)} as we shall illustrate

later in this section. Since we do not know the distribution of (3.3), we consider,

first, its stochastic expansion around the deterministic process

(3.4) U
(0)
T = U({f (0)(s, t)})

when the volatility parameter ε goes to zero. Second, the formal stochastic ex-

pansions of the discounted payoff function can be taken with respect to the poly-

nomial order of the volatility coefficients εk (k = 1, 2, · · ·). Then the asymptotic

expansion for the corresponding density function can be derived with respect to

the parameter ε. Finally, we truncate the resulting stochastic expansion and take

the expectation in (2.9) with respect to the density function given the information

available at time t.

In order to implement this procedure, we first need to obtain the stochastic

expansions of the stochastic processes {f (ε)(s, t)} and {r(ε)(t)}. We shall make

the following assumptions 5 :

Assumption I : (i) The volatility functions {σi(f
(ε)(s, t), s, t)} are non-

negative, bounded, and smooth in their first argument, where given ε (0 < ε ≤ 1)

{σi(f
(ε)(s, t), s, t)} is a real-valued function defined in {0 < s ≤ t ≤ T}. (ii) The

volatility functions and all derivatives in their first argument are bounded and

Lipschitz continuous. (iii) The initial (non-random) forward rates f(0, t) are

Lipschitz continuous with respect to t.

Assumption II : For any 0 < s ≤ t ≤ T,

(3.5) Σ(s, t) =
∫ s

0

n∑
i=1

σ
(0)
i (v, t)2dv > 0,

where {σ(0)
i (v, t)} are non-random functions given by

(3.6) σ
(0)
i (v, t) = σi(f

(ε)(v, t), v, t)|ε=0

5 We also implicitly assume the measurability conditions on functions in Assumption I, which
are necessary for rigorous mathematical arguments in Section 6.3.
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and {σi(f
(0)(s, t), s, t)} is a real-valued function defined in {0 < s ≤ t ≤ T}.

The conditions we have made in the first part of Assumption I exclude the

possible explosion of the solution for (3.1). They are quite strong and could be

relaxed considerably, which may be interesting from the view of stochastic analy-

sis. For practical purposes, however, we can often use the truncation argument as

in an example given by Heath, Jarrow, and Morton (1992). (See (4.1) in Section

4 for an example.) Assumption II and the second part of Assumption I ensure the

key conditions for the truncated version for the non-degeneracy of the Malliavin-

covariance in our problem; which, as we shall see in the following derivations,

is essential for the validity of the asymptotic expansion approach . Under these

assumptions, we can derive the stochastic expansions of the forward and spot

interest rate processes. The outline of these derivations and their mathematical

validity are given in Section 6.

Theorem 3.1 : Under Assumption I, the stochastic expansion of the instanta-

neous forward rate {f (ε)(s, t)} in (3.1) is given by

(3.7) f (ε)(s, t) = f(0, t) + εA(s, t) + ε2C(s, t) + op(ε
2)

as ε→ 0. In particular, the spot rate process can be expanded as

(3.8) r(ε)(t) = f(0, t) + εA(t, t) + ε2C(t, t) + op(ε
2).

The coefficients A(s, t) and C(s, t) in (3.7) and (3.8) are defined by

(3.9) A(s, t) =
∫ s

0

n∑
i=1

σ
(0)
i (v, t)dBi(v),

(3.10) C(s, t) =
∫ s

0
b(0)(v, t)dv +

∫ s

0

n∑
i=0

A(v, t)∂σ
(0)
i (v, t)dBi(v),

where

(3.11) b(0)(v, t) = b(f (ε)(v, t), v, t)|ε=0,

(3.12) ∂σ
(0)
i (v, t) =

∂σi(f
(ε)(v, t), v, t)

∂f (ε)(v, t)
|ε=0,

and

(3.13) b(f (ε)(v, t), v, t) =
n∑

i=1

σi(f
(ε)(v, t), v, t)

∫ t

v
σi(f

(ε)(v, y), v, y)dy .
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In the representations above, the first terms of (3.7) and (3.8) are deterministic

functions. The second term A(s, t) in (3.7) follows the Gaussian distribution with

zero mean and variance Σ(s, t), which corresponds to the limit of the Malliavin-

covariance for the normalized forward rate processes in the theory of Malliavin-

Watanabe calculus when ε → 0. The stochastic expansion method around the

Gaussian distribution is standard in statistical asymptotic theory.

The next step in the asymptotic expansion approach is to obtain the stochastic

expansions of the bond price process and the discount factor. For this purpose,

we utilize the relationship between the zero-coupon bond price and the forward

rates:

(3.14) P (ε)(t, T ) = exp

[
−
∫ T

t
f (ε)(t, u)du

]
.

Using (3.7), we immediately have a stochastic expansion of the bond price process

{P (ε)(t, T )} as

(3.15) P (ε)(t, T ) =
P (0, T )

P (0, t)
exp

[
−ε

∫ T

t
A(t, u)du− ε2

∫ T

t
C(t, u)du+ op(ε

2)

]
,

where P (0, T ) and P (0, t) are the observable initial discount bond prices. Because

the coupon bond price {P (ε)
m,{Tj},{cj}} defined by using (2.3) from P (ε)(t, T ) with a

parameter ε is a linear combination of zero-coupon bond prices, it has a stochastic

expansion given by

(3.16)

P
(ε)
m,{Tj},{cj}(t) =

m∑
j=1

cj
P (0, Tj)

P (0, t)
exp

[
−ε

∫ Tj

t
A(t, u)du− ε2

∫ Tj

t
C(t, u)du+ op(ε

2)

]

=
m∑

j=1

cj
P (0, Tj)

P (0, t)

[
1 − ε

∫ Tj

t
A(t, u)du− ε2

∫ Tj

t
C(t, u)du

+ε2 1

2

(∫ Tj

t
A(t, u)du

)2

+ op(ε
2)

 .

By using a Fubini-type result 6 , we can write

(3.17)

∫ T

t
A(t, u)du =

∫ T

t

[∫ t

0

n∑
i=1

σ
(0)
i (v, u)dBi(v)

]
du

=
∫ t

0
σ

(0)
tT (v)dB(v),

6 We can use Lemma 4.1 of Ikeda and Watanabe (1989) under Assumption I as a generalized
Fubini-type theorem.
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where B(v) = (Bi(v)) is an n×1 vector of standard (i.e. mutually independent)

Brownian motions and σ
(0)
tT is a 1 × n vector

(3.18) σ
(0)
tT (v) =

[∫ T

t
σ

(0)
i (v, u)du

]
.

Since (3.17) is a linear combinations of {Bi(v)} with deterministic coefficients, it

follows a Gaussian distribution. Also we have

(3.19)∫ T

t
C(t, u)du = k1(t, T ) +

∫ T

t

[∫ t

0

[∫ s

0
σ(0)(v, u)dB(v)

]
∂σ(0)(s, u)dB(s)

]
du,

where σ(0)(v, u) = (σ
(0)
i (v, u)) and ∂σ(0)(s, u) = (∂σ

(0)
i (s, u)) are 1 × n vectors of

deterministic functions, and

(3.20) k1(t, T ) =
∫ t

0

[∫ T

t
b(0)(v, u)du

]
dv.

Hence we notice that (3.19) is a quadratic functional of n standard Brownian mo-

tions. Similarly, by making use of (3.8), the stochastic expansion of the discount

factor process is given by

(3.21)

e−
∫ T

0
r(ε)(s)ds = P (0, T ) exp

[
−ε

∫ T

0
A(s, s)ds− ε2

∫ T

0
C(s, s)ds+ op(ε

2)

]

= P (0, T )

[
1 − ε

∫ T

0
A(s, s)ds− ε2

∫ T

0
C(s, s)ds

+ε2 1

2

(∫ T

0
A(s, s)ds

)2
+ op(ε

2) .

The second term of the discount factor process in (3.21) can be expressed as

(3.22)

∫ T

0
A(t, t)dt =

∫ T

0

∫ T

v
σ

(0)
i (v, t)dtdBi(v),

=
∫ T

0
σ

(0)
T (v)dB(v),

where σ
(0)
T (v) is a 1 × n vector

(3.23) σ
(0)
T (v) =

[∫ T

v
σ

(0)
i (v, t)dt

]
.
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Since (3.22) is also a linear combination of {Bi(v)} with deterministic coefficients,

the second term of (3.21) follows a Gaussian distribution. The third term of (3.21)

can be expressed as

(3.24)
∫ T

0
C(t, t)dt = k2(T ) +

∫ T

0

[∫ t

0

[∫ s

0
σ(0)(v, t)dB(v)

]
∂σ(0)(s, t)dB(s)

]
dt,

where

(3.25) k2(T ) =
∫ T

0

[∫ T

v
b(0)(v, t)dt

]
dv.

The third step in our approach is to obtain the asymptotic expansion of the

discounted payoff functional on the expiration date. We shall illustrate this pro-

cedure by using the two examples we have mentioned in Section 2. By using

(3.16) and (3.21), the asymptotic expansion of the discounted coupon bond price

minus the strike price is given by

(3.26)
g(ε) = e−

∫ T

0
r(ε)(s)ds

[
Pm,{Tj},{cj}(T ) −K

]
= g0 + εg1 + ε2g2 + op(ε

2),

where the coefficients gi (i = 0, 1, 2) are given by

(3.27) g0 =
m∑

j=1

cjP (0, Tj) −KP (0, T ),

(3.28) g1 =
∫ T

0
σ∗

g1
(v)dB(v),

(3.29) σ∗
g1

(v) = −g0σ
(0)
T (v) −

m∑
i=1

cjP (0, Tj)σ
(0)
T,Tj

(v)

and

(3.30)

g2 = 1
2
g0{

∫ T
0 A(s, s)ds}2 + {

∫ T
0 A(s, s)ds}

m∑
j=1

cjP (0, Tj){
∫ Tj

T
A(T, u)du}

+ 1
2

m∑
j=1

cjP (0, Tj){
∫ Tj

T
A(T, u)du}2 − g0

∫ T

0
C(s, s)ds

−
m∑

j=1

cjP (0, Tj){
∫ Tj

T
C(T, u)du}.
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What we really need is not to derive the stochastic expansion of the random

variable g(ε), but to obtain the asymptotic expansion of its density function. We

note that g(ε) → g0 as ε → 0 in the sense of probability. Thus we consider the

normalized random variable :

(3.31) X
(ε)
T =

1

ε
(g(ε) − g0).

The leading term of (3.31) is g1 in (3.28) which is a simple function of Brownian

motions. Hence the random variable (g(ε) − g0)/ε = g1 + εg2 + op(ε) converges

to g1, which has a non-degenerate Gaussian distribution, as ε → 0. Notice that

Assumption II is sufficient for the non-degeneracy for the limiting distribution

of (3.31). We expect that the exact distribution of (3.31) can be represented

as the limiting Gaussian distribution plus some adjustment terms with smaller

orders with respect to ε when ε is small. In order to find the explicit formula of

its asymptotic expansion, we formally expand the characteristic function of X
(ε)
T

with respect to ε as

(3.32)
φX(t) = E

[
eitX

(ε)
T

]
= E [eitg1(1 + εitE[g2|g1])] + o(ε),

where E[g2|g1] is the conditional expectation operator.

Here it is possible to show the existence of p−th order moments for (3.31) for any

p > 1 under Assumption I by using Lemma 6.4 and a similar argument used in

Lemma 6.3 in Section 6. Then by applying the conditional expectation formulae

in Lemma 6.1 in Section 6 with k = 1 and g1 = x to each term of g2 in (3.30), we

can evaluate E[g2|g1 = x] and find that it is a quadratic function of x by using

Lemma 6.1. Applying the inversion formula for the characteristic function given

in Lemma 6.2 for the second term of the second equation in (3.32), and noting

g(x) is a quadratic function of x with h(−it) = εit, we obtain the next result.

Theorem 3.2 : Under Assumptions I and II, the density function of X
(ε)
T for

(3.26) as ε→ 0 can be expressed as

(3.33) f
(ε)
X (x) = ϕΣ(x) + ε

[
c

Σ
x3 + (

f

Σ
− 2c)x

]
ϕΣ(x) +O(ε2),

where ϕΣ(x) stands for the Gaussian density function with zero mean and variance

(3.34) Σ =
∫ T

0
σ∗

g1
(t)σ∗′

g1
(t)dt ,

13



provided that Σ > 0. The coefficients c and f in (3.33) are determined by the

integral equation

(3.35) E [g2|g1 = x] = cx2 + f.

We note that the characteristic function method 7 we have used above is a

formal one from a rigorous mathematical view because we need the regularity

conditions to ensure the inversion procedure for the characteristic function of the

random variable X
(ε)
T . It is not easy to show these conditions directly since X

(ε)
T

is a complicated functional of the solution of the stochastic differential equation

given by (3.1). However, we can rigorously prove the validity of the procedure

along the lines developed by Watanabe (1987) and Yoshida (1992a,b) using the

Malliavin Calculus, which will be discussed at the end of Section 6.3. (See Ku-

nitomo and Takahashi (1998) also on the related technical issues.)

The asymptotic variance Σ is the limit of the Malliavin-covariance when ε→ 0

for the call options of the coupon bond and the swaptions whose payoff function

is given by (2.4). The explicit formulae of the coefficients in (3.35) are quite

complicated in this problem. By using Lemma 6.1 from Section 6 with k = 1

and x = g1, we can show that c and f for the call options of the coupon bond

and swaptions in Example 1 are given by

(3.36)

c =
1

2

g0

Σ2

[∫ T

0
σ

(0)
T (v)σ∗

g1
(v)

′
dv

]2

+
1

Σ2

[∫ T

0
σ

(0)
T (v)σ∗

g1
(v)

′
dv

]
m∑

j=1

cjP (0, Tj)

[∫ T

0
σ

(0)
T,Tj

(v)σ∗
g1

(v)
′
dv

]

+
1

2

1

Σ2

m∑
j=1

cjP (0, Tj)

[∫ T

0
σ

(0)
T,Tj

(v)σ∗
g1

(v)
′
dv

]2

− g0

Σ2

[∫ T

0

[∫ t

0
σ∗

g1
(s)∂σ(0)(s, t)

′
(
∫ s

0
σ(0)(v, t)σ∗

g1
(v)

′
dv)ds

]
dt

]

− 1

Σ2

m∑
j=1

cjP (0, Tj)

[∫ Tj

T

[∫ T

0
σ∗

g1
(s)∂σ(0)(s, u)

′
(
∫ s

0
σ(0)(v, u)σ∗

g1
(v)

′
dv)ds

]
du

]

7 See Bhattacharya and Rao (1976) on the related mathematical problems and techniques of
the standard characteristic function approach for the simple discrete i.i.d. case, for instance.
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and

(3.37)

f = −g0k2(T ) −
m∑

j=1

cjP (0, Tj)k1(T, Tj)

− 1

2

g0

Σ

[∫ T

0
σ

(0)
T (v)σ∗

g1
(v)

′
dv

]2

+
g0

2

[∫ T

0
σ

(0)
T (v)σ

(0)
T (v)

′
dv

]

+
m∑

j=1

cjP (0, Tj)
∫ T

0
σ

(0)
T (v)σ

(0)
T,Tj

(v)
′
dv

− 1

Σ

[∫ T

0
σ

(0)
T (v)σ∗

g1
(v)

′
dv

]
m∑

j=1

cjP (0, Tj)

[∫ T

0
σ

(0)
T,Tj

(v)σ∗
g1

(v)
′
dv

]

− 1

2

1

Σ

m∑
j=1

cjP (0, Tj)

[∫ T

0
σ

(0)
T,Tj

(v)σ∗
g1

(v)
′
dv

]2

+
1

2

m∑
j=1

cjP (0, Tj)

[∫ T

0
σ

(0)
T,Tj

(v)σ
(0)
T,Tj

(v)
′
dv

]

+
g0

Σ

[∫ T

0

[∫ t

0
σ∗

g1
(s)∂σ(0)(s, t)

′
(
∫ s

0
σ(0)(v, t)σ∗

g1
(v)

′
dv)ds

]
dt

]

+
1

Σ

m∑
j=1

cjP (0, Tj)

[∫ Tj

T

[∫ T

0
σ∗

g1
(s)∂σ(0)(s, u)

′
(
∫ s

0
σ(0)(v, u)σ∗

g1
(v)

′
dv)ds

]
du

]
.

We can also treat Example 2 in Section 2 using the same method. After some

tedious calculations for the call options of the average interest rates whose payoff

function is given by (2.7), we can determine the stochastic expansion;

(3.38)
g(ε) = e−

∫ T

0
r(ε)(s)ds( 1

Tτ
)
[∫ T

0
1

P (t,t+τ)
dt− k

]
= g0 + εg1 + ε2g2 + op(ε

2),

where we use the notation k = (1 + Kτ)T. In this expression, the coefficients

gi (i = 0, 1, 2) are given by

(3.39) g0 =
P (0, T )

Tτ

[∫ T

0

P (0, t)

P (0, t+ τ)
dt− k

]
,

(3.40) g1 =
∫ T

0
σ∗

g1
(v)dB(v),
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and

(3.41)

g2 =
1

2

P (0, T )

Tτ

∫ T

0

P (0, t)

P (0, t+ τ)

[∫ t

0
σ

(0)
t,t+τ (v)dB(v)

]2
dt

− P (0, T )

Tτ

∫ T

0

P (0, t)

P (0, t+ τ)

[∫ t

0
σ

(0)
t,t+τ (v)dB(v)

] [∫ T

0
σ

(0)
T (v)dB(v)

]
dt

+
1

2
g0

[∫ T

0
σ

(0)
T (v)dB(v)

]2

+
P (0, T )

Tτ

∫ T

0

P (0, t)

P (0, t+ τ)

[∫ t+τ

t
B(t, u)du

]
dt− g0

[∫ T

0
B(t, t)dt

]
,

where we use the notations

(3.42)

σ∗
g1

(v) =
P (0, T )

Tτ

∫ T

v

P (0, t)

P (0, t+ τ)
σ

(0)
t,t+τ (v)dt−

P (0, T )

Tτ

[∫ T

0

P (0, t)

P (0, t+ τ)
dt− k

]
σ

(0)
T (v) ,

σ
(0)
t,t+τ (v) =

[∫ t+τ

t
σ

(0)
i (v, u)du

]
i
,

and

σ
(0)
T (v) =

[∫ T

v
σ

(0)
i (v, u)du

]
i

.

Then, the asymptotic variance Σ in (3.33) is given by the formula of (3.34) for Ex-

ample 2, where we use (3.42) instead of (3.29). By a tedious but straightforward

calculation in present case, we arrive at

(3.43)

c =
1

2

1

Σ2

P (0, T )

Tτ

∫ T

0

P (0, t)

P (0, t+ τ)

[∫ t

0
σ

(0)
t,t+τ (v)σ

∗
g1

(v)
′
dv
]2
dt

− P (0, T )

Tτ

1

Σ2

[∫ T

0

P (0, t)

P (0, t+ τ)
(
∫ t

0
σ

(0)
t,t+τ (v)σ

∗
g1

(v)
′
dv)dt

] [∫ T

0
σ

(0)
T (v)σ∗

g1
(v)

′
dv

]

+
1

2

1

Σ2
g0

[∫ T

0
σ

(0)
T (v)σ∗

g1
(v)

′
dv

]2

+
P (0, T )

TτΣ2

∫ T

0

P (0, t)

P (0, t+ τ)

[∫ t+τ

t

[∫ t

0
σ∗

g1
(s)∂σ(0)(s, u)

′
(
∫ s

0
σ(0)(v, u)σ∗

g1
(v)

′
dv)ds

]
du
]
dt

− g0

Σ2

∫ T

0

[∫ t

0
σ∗

g1
(s)∂σ(0)(s, t)

′
(
∫ s

0
σ(0)(v, t)σ∗

g1
(v)

′
dv)ds

]
dt,
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and

(3.44)

f = −1

2

P (0, T )

Tτ

1

Σ

∫ T

0

P (0, t)

P (0, t+ τ)

[∫ t

0
σ

(0)
t,t+τ (v)σ

∗
g1

(v)
′
dv
]2
dt

+
1

2

P (0, T )

Tτ

∫ T

0

P (0, t)

P (0, t+ τ)

[∫ t

0
σ

(0)
t,t+τ (v)σ

(0)
t,t+τ (v)

′
dv
]
dt

+
P (0, T )

Tτ

1

Σ

∫ T

0

P (0, t)

P (0, t+ τ)

[∫ t

0
σ

(0)
t,t+τ (v)σ

∗
g1

(v)
′
dv
]
dt

[∫ T

0
σ

(0)
T (v)σ∗

g1
(v)

′
dv

]

− P (0, T )

Tτ

∫ T

0

P (0, t)

P (0, t+ τ)

[∫ t

0
σ

(0)
t,t+τ (v)σ

(0)
T (v)

′
dv
]
dt

− 1

2

1

Σ
g0

[∫ T

0
σ

(0)
T (v)σ∗

g1
(v)

′
dv

]2

+
1

2
g0

[∫ T

0
σ

(0)
T (v)σ

(0)
T (v)

′
dv

]

+
P (0, T )

Tτ

[∫ T

0
k1(t, t+ τ)

P (0, t)

P (0, t+ τ)
dt

]
− g0k2(T )

− P (0, T )

TτΣ

∫ T

0

P (0, t)

P (0, t+ τ)

∫ t+τ

t

[∫ t

0

[
σ∗

g1
(s)∂σ(0)(s, u)

′
(
∫ s

0
σ(0)(v, u)σ∗

g1
(v)

′
dv)ds

]
du
]
dt

+
g0

Σ

∫ T

0

[∫ t

0
σ∗

g1
(s)∂σ(0)(s, t)

′
(
∫ s

0
σ(0)(v, t)σ∗

g1
(v)

′
dv)ds

]
dt.

The last step is to derive the asymptotic expansion of the conditional expec-

tation of the discounted terminal payoff based on the asymptotic expansion of

the exact density function we obtained in Theorem 3.2. By taking the mathe-

matical expectaion of (2.9) for (3.26) and (3.38) with respect to the asymptotic

expansions of the density functions given in Theorem 3.2, we have

(3.45)

E[g0 + εX
(ε)
T ]+

=
∫
g0+εx≥0(g0 + εx)f

(ε)
X (x)dx

=
∫
g0+εx≥0(g0 + εx)ϕΣ(x){1 + ε[ c

Σ
x3 + ( f

Σ
− 2c)x] + ε2h(x) + o(ε2)}dx ,

where h(x) is a function of the polynomial order.

Then by applying the integration-by-parts formula, we immediately obtain the

following result.

Theorem 3.3 : In addition to Assumptions I and II, we assume that Σ > 0 .

Then the asymptotic expansions of V0(T ) in (2.9) for (2.4) and (2.7) as ε → 0
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are given by

(3.46)

V0(T ) = g0

∫ +∞

−yε

ϕΣ(x)dx+ ε
∫ +∞

−yε

xϕΣ(x)dx

+ε2
∫ +∞

−yε

(cx2 + f)ϕΣ(x)dx+ o(ε2) ,

where yε = (1/ε)g0 . The coefficients c and f are given as the same as in

Theorem 3.2.

Note that each term of the right-hand side of (3.46) depends on yε with the

parameter ε, but such expression can be rigorously justified. The mathematical

validity of our method in this section will be discussed in Section 6.3 and also

Kunitomo and Takahashi (1998) in the details. It is also possible to obtain

an asymptotic expansion with respect to polynomials of ε under an additional

assumption 8 . All terms on the right hand side of (3.46) are known functions of

the distribution function and the density function of N(0,Σ). For instance, take

the relation

(3.47)
∫ ∞

−y
x2ϕΣ(x)dx = ΣΦ(Σ−1/2y) − yΣϕΣ(y),

where Φ(·) is the distribution function of the standard normal distribution. This

and similar formulae are useful for the numerical implementation of our proce-

dure.

4 Numerical Examples

In this section, we will present some numerical results to illustrate the method

introduced in Section 3. For this purpose, we use the pricing problem of swaptions

and average options of interest rates in the term structure model explained in

Section 2. For the simplicity of exposition, we assume that the instantaneous

forward rate processes {f (ε)(s, t)} have a one factor volatility function 9 with

n = 1. For 0 ≤ β ≤ 1, we take

(4.1) σ1(ξ(s, t), s, t) = ξ(s, t)βh1(ξ(s, t),M) + (M + 1)βh2(ξ(s, t),M) ,

8 Originally Kunitomo and Takahashi (1995) have presented such expression. However, the
resulting approximations are the same as (3.46).

9 This case has been used by Amin and Bodurtha (1995) as a numerical example on the
forward interest rates.
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where M = 10, 000 . The smooth functions are taken as h1(ξ,M) = h(M + 1 −
ξ)/[h(ξ −M) + h(M + 1− ξ)], h2(ξ,M) = h(ξ −M)/[h(ξ −M) + h(M + 1− ξ)],

and

h(ξ) =

{
e−

1
ξ if ξ > 0
0 if ξ ≤ 0

When β = 1, (4.1) corresponds to the geometric Brownian motion case for the

forward rates approximately and we have used its truncated version with smooth-

ness because there can be some explosive solutions as we discussed on Assumption

I in Section 3. When β = 0, σ1(ξ(s, t), s, t) = 1 in (4.1) and it corresponds to a

continuous analogue of the discrete model by Ho and Lee (1986).

For the first example, Tables 1 and 2 show the numerical values of call options

on average interest rates for the case when β = 0 and T is .25 year or 1 year.

The time to maturity of the underlying interest rates is one year and the average

is taken over interest rates whose maturity are one year (τ = 1) . For simplicity,

the present term structure at t = 0 is assumed to be a flat 5% per year and

the volatility parameter is assumed to be 150 basis points per year (ϵ = 0.015).

We can use the approximations based on the asymptotic expansions in Section

3 and measuring their accuracy by the Monte Carlo results. We have given the

results for the out-of-the money case (K = 5.5% or 6%), the at-the-money case

(K = 5%), and the in-the-money case (K = 4.5% or 4%).

For comparative purposes, the numerical values obtained by Monte Carlo

simulations and by the finite difference method via the PDE approach have been

calculated. The number of simulations in our Monte Calro calculations is 500,000

and we expect that the results obtained by this method are very accurate. The

finite difference values in Tables 1 and 2 are based on a numerical solution of

the PDE for the average options of interest rate processes under the assumption

that they follow (4.1) when β = 0. This method has been recently developed by

He and Takahashi (1996). Since the number of Monte Carlo simulations is large,

we expect that this method provides the benchmark values for this study. From

Tables 1-2 we can find that the differences between the option values obtained

by the asymptotic expansion approach and the Monte Carlo approach are very

small - less than 1 percent of the underlying price levels.

Table 3 shows the results for the call options of a swap contract (the swaption)

in the case when β = 0 and ϵ = .01(100 basis points). Tables 4-6 contains the

numerical values for the case when β = 1 and ϵ = .2 (20%). In Tables 3 and 4 the

term of the underlying interest rate swap is 5 years and the time to expiration,

T, is also 5 years; T is 3 years in Table 5 and 1 year in Table 6. We set τ =

1 year, T1 = T + 1, · · · , T5 = T + 5, m = 5, and the present term structure

19



at t = 0 is assumed to be a flat 5% per year. Because in this case we have

cj = Sτ (j = 1, · · · ,m− 1), cm = 1 + Sτ, K = 1, and

(4.2) g0 = Sτ
m∑

j=1

P (0, Tj) + P (0, Tm) − P (0, T ) ,

we have set

(4.3) S =
P (0, T ) − P (0, T5)

τ
∑5

j=1 P (0, Tj)
= 0.051271

for the at-the-money case. We have computed the results for the out-of-the money

case (S = 5.1271% × .8, 5.1271% × .6, and 5.1271% × .4), the at-the-money case

(S = 5.1271%), and the in-the-money case (S = 5.1271% × 1.2, 5.1271% × 1.4,

and 5.1271%× 1.6). The approximations based on the asymptotic expansions in

Section 3 are presented versus the Monte Carlo results for the cases when β = 0

and β = 1.

From Table 3 we also find that the differences in the swaption values between

the two approaches using Gaussian forward rates are very small and negligible

in most cases. From Tables 4-6 we can see that the differences in the option

values become larger under the geometric Brownian forward rates case relative

to Table 3; this is due to the non-Gaussianity of the underlying forward rates

and the spot rate. By examining these results with respect to different terms

to expiration, we note that the approximations become more accurate when T

is shorter. For practical purposes, the difference percentage rate can be ignored

if it is large when the option value is quite close to zero. On the whole, in the

swaption example, the approximations are sufficiently accurate in absolute terms

and the differences between the approximations and the corresponding Monte

Carlo results are within 3 bp.

As these two examples show, the values of our approximations are reliable to

at least two digits. Thus, we can tentatively conclude that the approximation

formulae we have obtained in Section 3 are accurate and useful for practical

purposes.

5 Concluding Remarks

This paper proposes a new methodology for the valuation problem of financial

contingent claims when the underlying forward rates follow a general class of

continuous Itô processes, which are not necessarily in a class of continuous dif-

fusion processes. Our method, called the small disturbance asymptotic expansion
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approach, can be applicable to a wide range of valuation problems including com-

plicated contingent claims associated with the term structure of interest rates.

We have illustrated our methdology by deriving some useful formulae for swap-

tions and average (or Asian) options for interest rates. We have also given some

evidence that the resulting formulae are numerically accurate enough for practical

applications. Since the asymptotic expansion approach can be rigorously justi-

fied by the Malliavin-Watanabe calculus in stochastic analysis, it is not an ad-hoc

method to give numerical approximations. The asymptotic expansions explained

in Section 3 can be made up to any order of precision O(εk)(k = 1, 2, · · ·) , in

principle.

There are several advantage in our method over the PDE and the Monte

Carlo methods, which have been extensively used in practical applications. First,

our method is applicable in an unified manner to the pricing problem of various

types of functionals of asset prices in the economy governed by the general class of

continuous Itô processes, which are not necessarily Markovian in the usual sense.

This problem has been known to be difficult using the existing methods. Second,

our method is computationally efficient in comparison with other methods since it

is very fast to obtain numerical results with a computer. Third, the distributions

of the underlying assets and their functionals at any date can be evaluated by our

method. This aspect is quite useful in various kinds of simulations. For instance,

the pricing formulae derived by our method can be used as control variates to

improve the efficiency of Monte Carlo simulations and the PDE method. The

PDE method, on the other hand, is difficult to implement, especially when the

underlying assets or term structure of interest rates follow multi-factor processes.

Monte Carlo simulations are often quite time consuming in this case. Takahashi

(1995) has discussed some extensions of our method to the pricing problem of

derivatives in more complicated multi-country and multi-factor situations when

the forward rate processes are not necessarily Markovian in the usual sense.

Finally, we should mention that the asymptotic expansion approach in this

paper can give a powerful and useful tool not only to the valuation problem of

contingent claims associated with the term structure of interest rates, but also

to other problems in financial economics. ( See Kim and Kunitomo (1999), for

instance. ) Our method usually gives some explicit formulae which may shed

some new light on the solution of the problem under consideration when the

underlying asset prices follow a general class of continuous Itô processes. Hence,

we do not need to use simple stochastic processes among the class of diffusion

or Markovian processes in the usual sense only because the resulting solutions
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are manageable. We suspect that there has been some work on interest rates,

which have used simple but unreasonable stochastic processes mainly because the

resulting analyses are mathematically convenient.

6 Mathematical Appendix

In this appendix, we gather some mathematical details which we have omitted in

the previous sections. We also briefly discuss the validity of our method by the

use of the Malliavin-Watanabe theory in stochastic analysis.

6.1 Two Useful Lemmas

We first give some formulae on the conditional expectation operations as Lemma

6.1, which is a slight generalization of Lemma 5.7 of Yoshida (1992a). The proof

is a direct result of calculations by making use of the Gaussianity of continuous

processes involved.

Lemma 6.1 : Let B(t) be an n × 1 vector of independent Brownian motions

and x be a k dimensional vector. Let also q1(t) be an R1 7→ Rk×n non-stochastic

function and

(6.1) Σ =
∫ T

0
q1(t)q

′

1(t)dt

is a positive definite matrix. (i) Suppose q2(u) and q3(u) are R1 7→ Rm×n non-

stochastic functions. Then for 0 ≤ s ≤ t ≤ T

(6.2)

E

[∫ t

0

[∫ s

0
q2(u)dB(u)

]′
q3(s)dB(s)|

∫ T

0
q1(u)dB(u) = x

]

= trace
∫ t

0
q1(s)q3(s)

′
(
∫ s

0
q2(u)q1(u)

′
du)dsΣ−1

[
xx

′ − Σ
]
Σ−1 .

(ii) Suppose q2(u) and q3(u) are R1 7→ Rn non-stochastic functions. Then for

0 ≤ s ≤ t ≤ T

(6.3)

E

[[∫ s

0
q2(u)dB(u)

] [∫ t

0
q3(v)dB(v)

]
|
∫ T

0
q1(u)dB(u) = x

]

=
∫ s

0
q2(u)q3(u)

′
du+

[∫ s

0
q2(u)q1(u)

′
du
]
Σ−1

[
xx

′ − Σ
]
Σ−1

[∫ t

0
q1(v)q3(v)

′
dv
]
.
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The second lemma is on the inversion formulae of the characteristic functions

of some random variables. The proof is also a direct result of a calculation, which

has been given in Fujikoshi et.al. (1982).

Lemma 6.2 (Fujikoshi et.al. (1982)) : Suppose that x follows an n-dimensional

Gaussian distribution with mean 0 and variance-covariance matrix Σ. The den-

sity function of x is denoted by ϕΣ(·). Then for any polynomial functions g(·) and

h(·) ,

(6.4) F−1
[
h(−it)E

[
g(x)eit

′
x
]]

<ξ>
= h

[
∂

∂ξ

]
g(ξ)ϕΣ(ξ),

where i =
√
−1,

(6.5) F−1
[
h(−it)E

[
g(x)eit

′
x
]]

<ξ>
= (

1

2π
)n
∫

Rn
e−it

′
ξh(−it)E

[
g(x)eit

′
x
]
dt,

and the expectation opelation E [·] is taken over x = (xi) ∈ Rn. Also F−1 [·]
<ξ>

denotes the n−dimensional Fourier inversion F−1 [·] being evaluated at ξ and

t
′
x =

∑n
i=1 tixi for t = (ti) ∈ Rn.

6.2 A Sketch of Derivations of Asymptotic Expansions

We give a brief sketch on our derivations of the stochastic expansions of some

random variables used in Section 3. The following derivations are purely formal,

but the mathematical validity of our method will be discussed in the next sub-

section. From (3.1), the deterministic process of {f (ε)(s, t)} follows when ε → 0

is given by

(6.6) f (0)(s, t) = lim
ε→0

f (ε)(s, t) = f(0, t) .

Then we define the random variables A(s, t) and C(s, t) by

(6.7) A(s, t) =
∂f (ε)(s, t)

∂ε
|ε=0,

and

(6.8) C(s, t) =
1

2

∂2f (ε)(s, t)

∂2ε
|ε=0 .

By a direct calculation of differentiation, we have

23



(6.9)

A(s, t) =
∫ s

0

[
2εb(f (ε)(v, t), v, t) + ε2∂b(f

(ε)(v, t), v, t)

∂ε

]
ε=0

dv

+
∫ s

0

n∑
i=1

[
σi(f

(ε)(v, t), v, t) + ε
∂σi(f

ε(v, t), v, t)

∂ε

]
ε=0

dBi(v)

=
∫ s

0

n∑
i=1

σ
(0)
i (v, t)dBi(v) .

Similarly, we have

(6.10)

C(s, t) =
∫ s

0

[
b(f (ε)(v, t), v, t) + 2ε

∂b(f (ε)(v, t), v, t)

∂ε
+
ε2

2

∂2b(f (ε)(v, t), v, t)

∂∂2ε

]
ε=0

dv

+
∫ s

0

n∑
i=1

[
∂σi(f

(ε)(v, t), v, t)

∂ε
+

1

2
ε
∂2σi(f

(ε)(v, t), v, t)

∂2ε

]
ε=0

dBi(v)

=
∫ s

0
b(0)(v, t)dv +

∫ s

0

n∑
i=1

∂σ
(0)
i (v, t)A(v, t)dBi(v) .

Hence we have obtained the stochastic differential equations which {A(s, t)} and

{C(s, t)} must satisfy.

Next, we substitute {f (ε)(t, u)} in (3.14) and use the fact that {P (ε)(s, t)}
are non-stochastic functions at s = 0, which lead to (3.15) and (3.16). The

stochastic expansion of the discount factor can be obtained by using {r(ε)(t)}
instead of {f (ε)(s, t)}. In (3.17), (3.19), (3.22), and (3.24), we can utilize the

Fubini-type theorem on the exchanges of integration operations. By expanding

the exponential functions, we have

(6.11)

P (ε)(t, T ) =
P (0, T )

P (0, t)
[1 − ε

∫ T

t
A(t, u)du− ε2

∫ T

t
C(t, u)du

+ ε2 1

2
{
∫ T

t
A(t, u)du}2

]
+ op(ε

2) ,

and

(6.12)

e−
∫ T

0
r(ε)(s)ds = P (0, T ) [1 − ε

∫ T

0
A(t, t)dt− ε2

∫ T

0
C(t, t)dt

+ ε2 1

2
{
∫ T

0
A(t, t)dt}2

]
+ op(ε

2) ,
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respectively.

Finally, we multiply the stochastic expansions of the discount factor and the

terminal payoff function. Then by rearranging each term in the resulting stochas-

tic expansions, we can obtain the form of (3.26) and (3.38) in Example 1 and

Example 2.

6.3 Validity of the Asymptotic Expansion Approach

The mathematical validity of the asymptotic expansion approach in this paper

can be given along the line based on the remarkable work by Watanabe (1987)

on the Malliavin calculus in stochastic analysis. Yoshida (1992a,b) have utilized

the results and method originally developed by Watanabe (1987) and given some

useful results on the validity of the asymptotic expansions of some functionals

on continuous time homogenous diffusion processes. The validity of our method

can be obtained by similar arguments to those used by Yoshida (1992a,b) and

Chapter V of Ikeda and Watanabe (1989), but with substantial modifications.

This is mainly because the continuous stochastic processes defined by (3.1) for

the spot interest rate and forward rates are not necessarily Markovian in the usual

sense.

Since the rigorous proofs of our claims in this section can be quite lengthy, but

for the most part, are quite straightforward extensions of the existing results in

stochastic analysis, we shall only give a rough sketch below. Our arguments on the

validity of the asymptotic expansion approach for interest rate based contingent

claims consist of four steps. The main aim in the following steps will be to

check the truncated version of the non-degeneracy condition for the Malliavin-

covariance in our situation.

[Step 1] : First, we shall prepare some notations. For this purpose, we shall

freely use the notations of Ikeda and Watanabe (1989) as a standard textbook.

We shall only discuss the validity of the asymptotic expansion approach based on

a one-dimensional Wiener space without loss of generality. We only need more

complicated notations in the general case. (See Ikeda and Watanabe (1989) for

the details.) Let (W,P ) be the 1−dimensional Wiener space and let H be the

Cameron-Martin subspace of W endowed with the norm

(6.13) |h|2H =
∫ T

0
|ḣ(t)|2dt

for h ∈ H . The norm of R−valued Wiener functional g for any s ∈ R, and

p ∈ (1,∞) is defined by
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(6.14) ∥g∥p,s = ∥(I − L)s/2g∥p ,

where L is the Ornstein-Uhlenbeck operator and ∥ · ∥p is the Lp-norm in the

standard stochastic analysis. An R−valued function g : W 7→ R is called

an R−valued polynomial functional if g = p([h1](B), · · · , [hn](B)), where n ∈
Z+, hi ∈ H , p(x1, · · · , xn) is a polynomial, and

[h](B) =
∫ T

0
ḣ(t)dB(t)

for h ∈ H are defined in the sense of stochastic integrals.

Let P (R) denote the totality of R−valued polynomials on the Wiener space

(W,P ). Then P (R) is dense in Lp(R). The Banach space Ds
p(R) is the completion

of P (R) with respect to ∥ · ∥p,s. The dual space of Ds
p(R) is D−s

q (R), where

s ∈ R, p > 1, and 1/p + 1/q = 1. The space D∞(R) = ∩s>0 ∩1<p<+∞ Ds
p(R) is

the set of Wiener functionals and D̃
−∞

(R) = ∪s>0 ∩1<p<+∞ D−s
p (R) is a space

of generalized Wiener functionals. For F ∈ P (R) and h ∈ H , the derivative of

F in the direction of h is defined by

(6.15) DhF (B) = lim
ε→0

1

ε
{F (B + εh) − F (B)} .

Then for F ∈ P (R) and h ∈ H there exists DF ∈ P (H ⊗ R) such that

DhF (B) =< DF (B), h >H , where < · >H is the inner product of H and DF is

called the H−derivative of F. It is known that the norm ∥ · ∥p,s is equivalent to

the norm
∑s

k=0 ∥Dk · ∥p. For F ∈ D∞(R), we can define the Malliavin-covariance

by

(6.16) σ(F ) =< DF (B), DF (B) >H ,

where < · >H is the inner product of H . It is known that the operator D can be

well-defined in D∞(R). (See Chapter V of Ikeda and Watanabe (1989) for the

details.)

[Step 2] : We set n = 1 and σ(f (ε)(v, t), v, t) = σ1(f
(ε)(v, t), v, t) in (3.1)

without the loss of generality. We further set ε = 1 in Step 2. The starting point

of our discussion is the result by Morton (1989) on the existence and uniqueness

of the solution of the stochastic integral equation (3.1) for forward rate processes.
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Theorem 6.1 : Assume the conditions in Assumption I, except those on the

smoothness and derivatives. Then there exists a jointly continuous process {f (ε)(s, t),

0 ≤ s ≤ t ≤ T} satisfying (3.1) with ε = 1. There is at most one solution of (3.1)

with ε = 1.

We shall consider the H−derivatives of the forward rate processes {f (1)(s, t)}.
For any h ∈ H, we successively define a sequence of random variables {ξ(n)(s, t)}
using the integral equation:

(6.17)

ξ(n+1)(s, t) =
∫ s

0

[
∂σ(f (1)(v, t), v, t)

∫ t

v
σ(f (1)(v, y), v, y)dyξ(n)(v, t)

]
dv

+
∫ s

0

[
σ(f (1)(v, t), v, t)

∫ t

v
∂σ(f (1)(v, y), v, y)ξ(n)(v, y)dy

]
dv

+
∫ s

0
∂σ(f (1)(v, t), v, t)ξ(n)(v, t)dB(v)

+
∫ s

0
σ(f (1)(v, t), v, t)ḣ(v)dv ,

where the initial condition is given by ξ(0)(s, t) = 0. Then we have the next result

by using the standard method in stochastic analysis.

Lemma 6.3 : For any p > 1 and 0 ≤ s ≤ t ≤ T,

(6.18) E[|ξ(n)(s, t)|p] <∞ ,

and as n→ ∞

(6.19) sup
0≤s≤t≤T

E[ sup
0≤u≤s

|ξ(n+1)(u, t) − ξ(n)(u, t)|2] → 0 .

Proof of Lemma 6.3: [i] We use the induction argument for n. We have

(6.18) when n = 1 because σ(·) is bounded and ḣ(v) is a square-integrable function

in (6.17). Suppose (6.18) hold for n = m. Then there exist positive constants

Mi(i = 1, · · · , 4) such that

(6.20)

|ξ(m+1)(s, t)|p ≤ M1

∫ s

0
|ξ(m)(v, t)|pdv +M2[ sup

0≤u≤s
|
∫ u

0
ξ(m)(v, t)dB(v)|]p

+M3

∫ s

0

∫ t

v
|ξ(m)(v, y)|pdydv +M4[

∫ s

0
|ḣ(v)|2dv]p/2 .

By a martingale inequality (Theorem III-3.1 of Ikeda and Watanabe (1989)), the

expectation of the second term on the right hand side of (6.20) is less than
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(6.21) M
′

2E[(
∫ s

0
|ξ(m)(v, t)|2dv)p/2] ≤M

′′

2

∫ s

0
E[|ξ(m)(v, t)|p]dv ,

where M
′
2 and M

′′
2 are positive constants. Because ḣ(v) is square-integrable, we

have (6.18) when n = m+ 1.

[ii] From (6.17), there exist positive constants Mi(i = 5, 6, 7) such that for

0 ≤ s ≤ t,

(6.22)

|ξ(n+1)(s, t) − ξ(n)(s, t)|2 ≤ M5[
∫ s

0
|ξ(n)(v, t) − ξ(n−1)(v, t)|dv]2

+ M6[
∫ s

0

∫ t

v
|ξ(n)(v, y) − ξ(n−1)(v, y)|dydv]2

+ M7[
∫ s

0
∂σ(f (1)(v, t), v, t)|ξ(n)(v, t) − ξ(n−1)(v, t)|dB(v)]2

≡
3∑

i=1

I
(n)
i (s, t) ,

where we have defined I
(n)
i (s, t) by the last equality. Using the Cauchy-Schwartz

inequality,

(6.23) E[ sup
0≤u≤s

I
(n)
1 (u, t)] ≤M5s

∫ s

0
E[|ξ(n)(v, t) − ξ(n−1)(v, t)|2]dv .

By repeating the above argument to the second term of (6.22), we have

(6.24)

I
(n)
2 (u, t) ≤ M6u

∫ u

0
[
∫ t

v
|ξ(n)(v, y) − ξ(n−1)(v, y)|dy]2dv

≤ M6ut
∫ u

0

∫ t

v
|ξ(n)(v, y) − ξ(n−1)(v, y)|2dydv .

Then

(6.25) E[ sup
0≤u≤s

I
(n)
2 (u, t)] ≤M6st

∫ s

0

∫ t

v
E[|ξ(n)(v, y) − ξ(n−1)(v, y)|2]dydv .

For the third term of (6.22), we have

(6.26) E[ sup
0≤u≤s

I
(n)
3 (u, t)] ≤M

′

7

∫ s

0
E[|ξ(n)(v, t) − ξ(n−1)(v, t)|2]dv

because of the boundedness of ∂σ(·), where M
′
7 is a positive constant. By using

(6.24), (6.25), and (6.26), we have
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(6.27)

E[ sup
0≤u≤s

|ξ(n+1)(u, t) − ξ(n)(u, t)|2] ≤ M8

(∫ s

0
E[ sup

0≤v≤u
|ξ(n)(v, t) − ξ(n−1)(v, t)|2]du

+
∫ s

0

∫ t

u
E[ sup

0≤v≤u
|ξ(n)(v, y) − ξ(n−1)(v, y)|2]dydu

)
,

where M8 is a positive constant. By defining a sequence of {u(n)(s, t)} as

u(n+1)(s, t) = E[ sup
0≤u≤s

|ξ(n+1)(u, t) − ξ(n)(u, t)|2] ,

we have the relation

(6.28) u(n+1)(s, t) ≤M8

∫ s

0
[
∫ t

u
u(n)(u, y)dy + u(n)(u, t)]du .

If we have an inequality

(6.29) u(n+1)(s, t) ≤ 1

(n+ 1)!
[M8(t+ 1)s]n+1 ,

we can show (6.19) as n→ +∞. We use the induction argument for n ≥ 1. When

n = 1, there exists a positive constant M9 such that

(6.30)

u(1)(s, t) = E[ sup
0≤u≤s

|ξ(1)(u, t) − ξ(0)(u, t)|2]

= E[ sup
0≤u≤s

|
∫ u

0
σ(f (1)(v, t), v, t)ḣ(v)dv|2]

≤ M8(1 + t)s

because ξ(0)(s, t) = 0, σ(·) is bounded, and ḣ(v) is square−integrable. Suppose

(6.29) holds for m = n+ 1. Then

(6.31)

u(m+1)(s, t) ≤ M8

∫ s

0
[
∫ t

u
u(m)(u, y)dy + u(m)(u, t)]du

≤ M8

∫ s

0
[
∫ t

u
Mm

8 (t+ 1)m s
m

m!
dy +Mm

8 (t+ 1)m s
m

m!
]du

≤ Mm+1
8 (t+ 1)m+1 sm+1

(m+ 1)!
.

Q.E.D.
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By using (6.29) and the Chebyshev’s inequality, we have

(6.32)

∞∑
n=1

P{ sup
0≤u≤s≤t

|ξ(n+1)(u, t) − ξ(n)(u, t)| > 1

2n
}

≤
∞∑

n=1

1

n!
[4M8(T + 1)T ]n < +∞

uniformly for any 0 ≤ s ≤ t ≤ T. Then by the Borel-Cantelli lemma, the sequence

of random variables {ξ(n)(u, t)} converges uniformly on 0 ≤ u ≤ s ≤ t (≤ T ).

Hence we can establish the existence of the H−derivative of f (1)(s, t), which is

given by the solution of the stochastic integral equation:

(6.33)

Dhf
(1)(s, t) =

∫ s

0

[
∂σ(f (1)(v, t), v, t)

∫ t

v
σ(f (1)(v, y), v, y)dyDhf

(1)(v, t)
]
dv

+
∫ s

0

[
σ(f (1)(v, t), v, t)

∫ t

v
∂σ(f (1)(v, y), v, y)Dhf

(1)(v, y)dy
]
dv

+
∫ s

0
∂σ(f (1)(v, t), v, t)Dhf

(1)(v, t)dB(v)

+
∫ s

0
σ(f (1)(v, t), v, t)ḣ(v)dv .

We note that for the spot rate process the H-derivative can be well-defined by

(6.34) Dhr
(1)(t) = lim

s→t
Dhf

(1)(s, t) .

Now we define the random variables {ξs,t(u)} for 0 ≤ u ≤ s ≤ t by

(6.35)

ξs,t(u) =
∫ s

u

[
∂σ(f (1)(v, t), v, t)

∫ t

v
σ(f (1)(v, y), v, y)dyξv,t(u)

]
dv

+
∫ s

u

[
σ(f (1)(v, t), v, t)

∫ t

v
∂σ(f (1)(v, y), v, y)ξv,y(u)dy

]
dv

+
∫ s

u
∂σ(f (1)(v, t), v, t)ξv,t(u)dB(v)

+ σ(f (1)(u, t), u, t) .

Then we can show that

(6.36)
∫ s

0
ξs,t(u)ḣ(u)du = Dhf

(1)(s, t) .

The rigorous proof for the existence of random variables {Dhf
(1)(s, t)} and {ξs,t(u)}

can be given by extending the recursive method used in the proof of Proposition
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10.1 in Ikeda and Watanabe (1989). Here we need to approximate the solution of

the stochastic integral equations (6.33) and (6.35) in two arguments s and t by a

sequence of solutions with step coefficients. Since it is straightforward to do this

but quite lengthy, we omit the details.

Next, we examine the existence of higher order moments of {ξs,t(u)} satisfying

(6.35). To do this, we prepare the following inequality.

Lemma 6.4 : Suppose for k0 ≥ 0, k1 > 0, AN > 0 and 0 < u ≤ s ≤ t ≤ T, a

function wN(u, s, t) satisfies (i) 0 ≤ wN(u, s, t) ≤ AN and (ii)

(6.37) wN(u, s, t) ≤ k0 + k1

[∫ s

u
wN(u, v, t)dv +

∫ s

u

∫ t

v
wN(u, v, y)dydv

]
.

Then

(6.38) wN(u, s, t) ≤ k0e
k1(1+t)s .

Proof of Lemma 6.4: By substituting (i) into the right hand side of (6.37),

we have

(6.39)
wN(u, s, t) ≤ k0 + ANk1

[∫ s

u
ds+

∫ s

u

∫ t

v
dydv

]
≤ k0 + ANk1(1 + t)s .

By repeating the substitution of (6.39) into the right hand side of (6.37), we have

(6.40) wN(u, s, t) ≤ k0

n∑
k=0

1

k!
[k1(1 + t)s]k +

1

(n+ 1)!
AN [k1(1 + t)s]n+1 .

Then we have (6.38) by taking n→ +∞. Q.E.D.

In order to use Lemma 6.4, we consider the truncated random variable

(6.41) ζN
s,t(u) = [ξs,t(u)] IN(s, t) ,

where IN(s, t) = 1 if

sup0≤u≤v≤s,v≤y≤t,s≤t|ξv,y(u)| ≤ N

and IN(s, t) = 0 otherwise. By using the boundedness conditions in Assumption

I and the fact that ḣ(s) is square-integrable, we can show that there exist positive

constants Mi(i = 9, · · · , 12) such that for any p > 1

31



(6.42)

|ζN
s,t(u)|p ≤ M9

∫ s

u
|ζN

v,t(u)|pdv +M10|
∫ s

u
ζN
v,t(u)dB(v)|p

+ M11

∫ s

u

∫ t

v
|ζN

v,y(u)|pdydv +M12|σ(f (1)(u, t), u, t)|p .

≡
4∑

i=1

JN
i (u, s, t) ,

where we have defined JN
i (u, s, t)(i = 1, · · · , 4) by the last equality. By using a

martingale inequality (Theorem III-3.1 of Ikeda and Watanabe (1989)), we have

(6.43)

E[JN
2 (u, s, t)] ≤ M

′
10E[

∫ s

u
|ζN

v,t(u)|2dv]p/2

≤ M
′′
10E[

∫ s

u
|ζN

v,t(u)|pdv] ,

where M
′
10 and M

′′
10 are positive constants. Also JN

4 (u, s, t) is bounded because

σ(·) is bounded. If we set wN(u, s, t) = E[|ζN
s,t(u)|p], then we can directly apply

Lemma 6.4. By taking the limit of the expectation function wN(u, s, t) as N → ∞,

we have the following result.

Lemma 6.5 : For any p > 1 and 0 ≤ u ≤ s ≤ t ≤ T,

(6.44) E[|ξs,t(u)|p] < +∞ .

Through this lemma and the equivalence of two norms stated in Step 1, we

can establish that

(6.45) f (1)(s, t) ∈ ∩1<p<+∞D1
p(R) .

Then by repeating the above procedure 10 , we can derive the higher order

H−derivatives of f (1)(s, t). Hence we can obtain the following result.

Theorem 6.2 : Suppose Assumption I in Section 3 hold for the forward rate

processes. Then for 0 < s ≤ t ≤ T,

(6.46) f (1)(s, t) ∈ D∞(R) .

10 To be more rigorous mathematically, we have to use Lemma 2.1 of Kusuoka and Strook
(1982) and Lemma 7 of Yoshida (1997) for obtaining higher order derivatives. See Kunitomo
and Takahashi (1998) for the details.
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Obviously, by a similar method as (6.33) and (6.34) we can establish the ex-

istence of the H−derivative of {f (ε)(s, t)} and {r(ε)(t)} with 0 < ε ≤ 1. Then we

have the corresponding results on {f (ε)(s, t)}. By using the simple but lengthy

arguments as Theorem V.10.4 of Ikeda and Watanabe (1989), we have the math-

ematical validity on our formal derivation of Theorem 3.1 in Section 3.

[Step 3] : Let a stochastic process {Y (ε)(s, t), 0 ≤ s ≤ t ≤ T} be the solution

of the stochastic integral equation:

(6.47)

Y (ϵ)(s, t) = 1 + ε2
∫ s

0

[
∂σ(f (ε)(v, t), v, t)

∫ t

v
σ(f (ε)(v, y), v, y)dy

]
Y (ε)(v, t)dv

+ ε
∫ s

0
∂σ(f (ε)(v, t), v, t)Y (ε)(v, t)dB(v) .

Since the coefficients of Y (ε)(s, t) on the right hand side of (6.47) are bounded by

Assumption I, we can obtain the following.

Lemma 6.6 : For any 1 < p < +∞, 0 < ε ≤ 1, and 0 < s ≤ t ≤ T,

(6.48) E[|Y (ε)(s, t)|p] + E[|Y (ε)−1(s, t)|p] < +∞ .

Proof of Lemma 6.6: We define a sequence of random variables {Y (ε)
n (s, t)}

as

(6.49)

Y
(ϵ)
n+1(s, t) = 1 + ε2

∫ s

0

[
∂σ(f (ε)(v, t), v, t)

∫ t

v
σ(f (ε)(v, y), v, y)dy

]
Y (ε)

n (v, t)dv

+ ε
∫ s

0
∂σ(f (ε)(v, t), v, t)Y (ε)

n (v, t)dB(v) ,

where the initial condition is given by Y
(ε)
0 (s, t) = 1. Then by the same argument

used in the proof of Lemma 6.3, we have

(6.50) E[|Y (ε)
n (s, t)|p] <∞ ,

and as n→ ∞

(6.51) sup
0≤s≤t≤T

E[ sup
0≤u≤s

|Y (ε)
n+1(u, t) − Y (ε)

n (u, t)|2] → 0 .

Hence we can establish the existence of the random variables {Y (ε)(s, t)} satisfying

(6.47). Then by the same argument as in (6.41)-(6.44), we have

(6.52) E[|Y (ε)(s, t)|p] <∞
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for any p > 1. Let Z(ε)(s, t) = Y (ε)−1(s, t). Then we can show that

(6.53) d[Z(ε)(s, t)Y (ε)(s, t)] = 0

and

(6.54)

Z(ϵ)(s, t) = 1 − ε2
∫ s

0

[
∂σ(f (ε)(v, t), v, t)

∫ t

v
σ(f (ε)(v, y), v, y)dy

]
Z(ε)(v, t)dv

− ε
∫ s

0
∂σ(f (ε)(v, t), v, t)Z(ε)(v, t)dB(v)

by using Itô’s Lemma and Z(ε)(0, t) = 1. Hence by the similar argument as to

Y (ε)(s, t), we can establish that

(6.55) E[|Z(ε)(s, t)|p] <∞

for any p > 1. Q.E.D.

Now consider the asymptotic behavior of a functional

(6.56) F (ε)(s, t) =
1

ε
[f (ε)(s, t) − f (0)(0, t)]

as ε → 0. By using the stochastic process {Y (ε)(s, t)}, the H−derivative of

F (ε)(s, t) can be represented as

(6.57) DhF
(ε)(s, t) =

∫ s

0
Y (ε)(s, t)Y (ε)−1(v, t)C(ε)(v, t)dv ,

where

(6.58)

C(ϵ)(v, t) = σ(f (ε)(v, t), v, t)ḣ(v) + εσ(f (ε)(v, t), v, t)

×
∫ t

v
∂σ(f (ε)(v, y), v, y)Dhf

(ε)(v, y)dy .

Then by re-arranging each term in the integrands of (6.57), we have the repre-

sentation

(6.59) DhF
(ε)(s, t) =

∫ s

0
ν

(ε)
s,t (u)ḣ(u)du ,

where

(6.60)

ν
(ε)
s,t (u) = Y (ε)(s, t)Y (ε)−1(u, t)σ(f (ε)(u, t), u, t)

+ ε
∫ s

u
Y (ε)(s, t)Y (ε)−1(v, t)σ(f (ε)(v, t), v, t)

(∫ t

v
∂σ(f (ε)(v, y), v, y)ξ(ε)

v,y(u)dy
)
dv ,

34



and the random variable {ξ(ε)
v,y(u)} is defined as (6.35) with ε. Then the Malliavin-

covariance for F (ε)(s, t) is given by

(6.61)

σ(F (ε)(s, t)) = |DF (ε)(s, t)|2H⊗R

=
∫ s

0
[ν

(ε)
s,t (u)]

2du .

Let

(6.62)

η(ε)
c (s, t) = c

∫ s

0
|ε
(∫ s

u
Y (ε)(s, t)Y (ε)−1(v, t)σ(f (ε)(v, t), v, t)

×
∫ t

v
∂σ(f (ε)(v, y), v, y)ξ(ε)

v,y(u)dydv
)
|2du

+c
∫ s

0
|Y (ε)(s, t)Y (ε)−1(u, t)σ(f (ε)(u, t), u, t) − σ(f (0)(u, t), u, t)|2du ,

for a positive constant c. Then the condition in Assumption II in Section 3 is

equivalent to the non-degeneracy condition:

(6.63) Σ(s, t) =
∫ s

0
σ
(
f (0)(v, t), v, t

)2
dv > 0

because Y (0)(v, t) = 1 for 0 < v ≤ s ≤ t. The next lemma shows that the

truncation by η(ε)
c (s, t) is negligible in probability.

Lemma 6.7 : For 0 < s ≤ t ≤ T and any n ≥ 1,

(6.64) lim
ε→0

ε−nP{|η(ε)
c (s, t)| > 1

2
} = 0 .

Proof of Lemma 6.7: We re-write (6.62) as η(ε)
c (s, t) = η

(ε)
1 + η

(ε)
2 . By

using Assumption I, Lemma 6.5, Lemma 6.6, and the Markov inequality, it is

straightforward to show that for any p > 1 and c1 > 0 there exists a positive

constant c2 such that

(6.65) P{|η(ε)
1 | > c1} ≤ c2ε

2p .

By the continuity of the volatility function σ(·), there exist positive constants

M13 and M14 such that

(6.66) |η(ε)
2 | ≤M13|f (ε)(s, t) − f (0)(0, t)| +M14|Y (ε)(s, t)Y (ε)−1(v, t) − 1| .
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Then by Lemma 10.5 of Ikeda and Watanabe (1989), for a positive c3 and suffi-

ciently small ε > 0, there exist positive constants c4 and c5 such that

(6.67) P{ sup
0≤s≤t≤T

|f (ε)(s, t) − f (0)(0, t)| > c3} ≤ c4exp(−c5ε−2) .

We rewrite the second term on the right hand side of (6.66) for η
(ε)
2 ,

(6.68) η
(ε)
22 = M14Y

(ε)(v, t)−1|Y (ε)(s, t) − Y (ε)(v, t)| ,

where

(6.69)

Y (ε)(s, t) − Y (ε)(v, t) = ε2
∫ s

v

[
∂σ(f (ε)(u, t), u, t)

∫ t

u
σ(f (ε)(u, y), u, y)dy

]
Y (ε)(u, t)du

+ ε
∫ s

v
∂σ(f (ε)(u, t), u, t)Y (ε)(u, t)dB(u) .

Then by Lemma 6.6, for any p > 1 and c6 > 0 there exists a positive constant c7

such that

(6.70) P{|η(ε)
22 | > c6} ≤ c7ε

2p .

By using (6.65), (6.67), and (6.70), we have (6.64). Q.E.D.

Thus by modifying the method developed by Yoshida (1992a) for the present

case, we have the key result on the validity of the asymptotic expansion approach

in this paper.

Theorem 6.3 : Under Assumptions I and II in Section 3, the Malliavin-covariance

σ(F (ε)) of F (ε) is uniformly non-degenerate in the sense that there exists c0 > 0

such that for any c > c0 and any p > 1,

(6.71) sup
ε
E[I(|η(ε)

c | ≤ 1)σ(F (ε))−p] < +∞ ,

where I(·) is the indicator function.

Hence we have obtained a truncated version of the non-degeneracy condition

on the Malliavin-covariance for the spot interest rate and forward rates processes,

which are the solutions of the stochastic integral equation (3.1).
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It is also straightforward to obtain the truncated version of non-degeneracy

condition on the Malliavin-covariance under the assumption Σ > 0 for the dis-

count coupon bond price process and the average interest rate process as we have

stated in Theorem 3.2 of Section 3. This is because under Assumption I in Section

3, we can show that for any p > 1 and 0 ≤ s ≤ t ≤ T,

(6.72) E[|P (ε)(s, t)|p] < +∞ .

Then Using the Novikov condition (see Theorem III-5.3 of Ikeda and Watanabe

(1989)), we can find a continuous martingale for the bond process and apply the

same arguments as we did for the forward rate processes.

The rest of our arguments for the asymptotic expansion approach is based

on Theorem 4.1 of Yoshida (1992a), which is an extension of Theorem 2.3 of

Watanabe (1987) because it gives the validity of the asymptotic expansion of

the distribution function of functionals with truncation under the non-degenacy

condition on the Malliavin-covariance given by (6.71). Let ψ : R → R be a

smooth function such that 0 ≤ ψ(x) ≤ 1, ψ(x) = 1 for |x| ≤ 1
2
, and ψ(x) = 0

for |x| ≥ 1. Then the composite functional ψ(η(ε))IA(F (ε)) is well-defined for any

A ∈ B in the sense that it is in D̃
−∞

, where B is the Borel σ−field in R and

IA(·) is the indicator function. By using Theorem 6.3, lemmas in this section, and

Theorem 4.1 of Yoshida (1992a) it has a proper asymptotic expansion as ε → 0

uniformly in D̃
−∞

. Then we have a proper asymptotic expansion for the density

function of our interest by taking the expectation operations.

At the end of this step, we should mention that the integrals in (3.46) depend

on the parameter ε . Since Yoshida (1992b) has given Theorem 2.2 and Lemma

2.1 for the validity of asymptotic expansions when the bounded integral operators

depend on a parameter, his arguments cover the situiation of our Theorem 3.3.

Thus our formal derivations of Theorems 3.2 and Theorem 3.3 in Section 3 can

be rigorously justified by applying the results of Yoshida (1992a,b).

[Step 4] : The inversion technique we have used is different from the one

used by Yoshida (1992a,b). He has used the Schwartz’s type distribution theory

for the generalized Wiener functionals while our method is based on the simple

inversion technique for the characteristic functions of random variables, which has

been standard in the statistical asymptotic theory. Hence what we need to show

is that the resulting formulae by our method are equivalent to his final formulae.

In the notations of Yoshida (1992a), we take φ(x) = 1 in his Lemma 5.6. Then

he has used

(6.73) p
′

1(x) = (−1)k ∂k

∂x1 · · · ∂xk

E
[
φ(f0)f

i
1∂iIA(f0)

]
,
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and

(6.74) p
′′

1(x) = (−1)k ∂k

∂x1 · · · ∂xk

E
[
{f i

1∂iφ(f0)}IA(f0)
]
,

where IA(f0) is the indicator function and f0 corresponds to the random variable

of the order Op(1), which is similar to g1 in our notation. The differentiation

of the indicator function has some proper mathematical meaning in the sense

of differentiation on a generalized Wiener functionals. (See Watanabe (1987)

and Yoshida (1992a,b) for details.) By the use of the pull-back operation of

the generalized Wiener functionals, Yoshida (1992a) has obtained the explicit

expansion form of the density function for a particular functional in his problem

as

(6.75) p1(x) = p
′

1(x) + p
′′

1(x).

In our framework it is straightforward to show that

(6.76) p
′

1(x) = (−1)
d

dx
[E(g2|g1 = x)ϕΣ(x)]

and p
′′
1(x) = 0 since ∂iφ(·) = 0 when k = 1 by using our notations in this paper.

Then we notice that (6.76) is exactly what the inversion formula (Lemma 6.2)

gives as the second order term in the asymptotic expansion of the density function

of the normalized random variable X
(ε)
T in (3.31).
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