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Abstract

We shall propose a new computational scheme for the evaluation of the
optimal portfolio for investment. Our method is based on an extension
of the asymptotic expansion approach which has been recently developed
for the pricing problems of the contingent claims’ analysis by Kunitomo-
Takahashi(1992,1995,1998), Yoshida(1992), Takahashi(1995,1999) and oth-
ers. In particular, we will explicitly derive the formula of the optimal port-
folio associated with maximizing utility from terminal wealth for a power
utility function in a financial market with Markovian coefficients.
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1 Introduction

We shall propose a new computational scheme for the evaluation of the
optimal portfolios for investment. Our method is based on the asymp-
totic expansion approach, a unified method of efficient computation justified
by Malliavin-Watanabe(1987) theory, which has been recently developed
for the pricing problems of the contingent claims’ analysis by Kunitomo-
Takahashi(1992,1995,1998), Yoshida(1992), Takahashi(1995,1999), Kunit-
omo and Kim(1999), Sorensen and Yoshida(1998) and Kashiwakura and
Yoshida(2001). They have developed the method through deriving formulas
for practical examples such as average options, basket options, and options
with stochastic volatility and with stochastic interest rates in a Markovian
setting, as well as bond options(swaptions), average options on interest rates,
and average options on foreign exchange rates with stochastic interest rates
in the Heath-Jarrow-Morton(1992) framework. In this paper, we extend the
method for portfolio problems. In particular, we will explicitly derive the for-
mula of the optimal portfolio associated with maximizing utility from termi-
nal wealth for a power utility function in a financial market with Markovian
coefficients. In general, it is quite difficult to compute an optimal portfolio
explicitly when the investment oppotunity is stochastic in a multiperiod set-
ting. The stochastic control approach initiated by Merton(1969,1971) gives
a solution in terms of the derivatives of the value function: While the so-
lution can be evaluated numerically based on the Hamilton-Jacobi-Bellman
equation, the implementation is not easy especially for the case of multiple
assets. In the martingale approach initiated by Karazas et al.(1987) and
Cox and Huang(1989), Ocone and Karatzas(1991) proposed the represen-
tation of optimal portfolios by utilizing the Clark formula. Although their
representation formulas were derived in general setting, explicit evaluation
was obtained only for logarithmic utility functions or a financial market with
deterministic coefficients, which were already known without their formulas.
Starting with the Clark formula, we will present an explicit expression for
the optimal portfolio in a financial market with Markovian coefficients which
is more concrete but practically sufficient setting. Moreover, our method
can be easily extended to the optimal portfolios associated with maximiz-
ing utility from both consumption and terminal wealth, and to the hedging
portfolios associated with contingent claims. The organization of this paper
is as follows. In Section 2 we explain the problem of the optimal portfolio for
investment, and in Section 3 we restate our problem in a Markovian setting.
In Section 4 we derive the second order scheme explicitly for a case of power
utility function through explaining the asymptotic expansion approach, and
in the appendix we show the result of the third order scheme.

2 The Representation of Optimal Portfolio

We will breifly describe the financial market, and introduce the representa-
tion of the optimal portfolio for investment derived by Ocone and Karatazas(1
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Let (2, F, P) probability space, w(t) = (w®(t),---,w"(t))* for 0 <t < T,
R-valued Brownian motion defined on (2, F,P) and {F;} for 0 <t < T
P-augmentation of the natural filtration, 73" = o(w(s);0 < s < t). Here,
we use the notation of z* as the transpose of z. S;(t),i=1,---,r and Sp(t)
denote the prices at time ¢ € [0, 7] of the risky asset 7 and of the risless asset

respectively. The prices are assumed to follow the stochastic processes: For
te[0,T),

dS; = Si(t)[b:(t)dt + Zr:fnj(t)dwj(t)]; Si(0)=sii=1,---,r
j=1

dSo = r(t)So(t)dt; So(0) =1

where we suppose that 7(t),b;(t) and o0i;(t), 3,7 = 1,---,r are bounded
and progressively measurable with respect to {#;}. We also assume the
nondegeneracy condition; for the 7 x r matrix o(t) = {0i;(t)}1<i j<- there
exists a real number € > 0 such that

go(t,w)o(t,w) € 2 el]’; Y€ € R, (t,w) € [0,T] x Q.

Then, the stochastic process of an investor’s wealth denoted by W (t) are
expressed as

AW () = [r@W () - (t)]dt + 7(8)*[(5(2) — T()L)dt + () (2)

where W(0) = W > 0 is the initial capital, 1 denotes the vector in R"
with all elements equal to 1, ¢(t) denotes the consumption rate, and w(t) =
{mi(t)}i=,,.., denotes the portfolio. c(t) and = (t) satisfy the integrability
condition;

. /OT{|7r(t)|2+c(t)}dt<oo a.s.

Next, let A(W) denote the set of stochastic processes (m,c) which generate
W(t) > 0 for all t € [0,T] given W(0) = W. We call (w,c) is admissible for
W if (m,c) € A(W).

The problem of mazimizing utility from terminal wealth is formulated as
follows: With ¢ =0,

sup  E[U(W(T))]

(m,c)eA(W)

where U : (0, 00) = R denotes a utility function, and E|-] denotes the expec-
tation operator under P. We assume U is a strictly increasing, strictly con-
cave function of class C2, with U(0+4) = limyo U(c) € [~o0,00), U'(0+) =
limgjo U'(c) = 0o and U'(00) = lime—ye0 U'(c) = 0.

Let the market bl‘ice of risk 6(t), t € [0,T] an R"—valued progressively
measurable bounded process defined by '

6(t) = o(t) ' [b(t) — r(t)1].
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Then, the martingale measure denoted by P, is defined: Py(A) = #
for all A € Fr where

Z(t) = exp (~ /0 * 0(s)* duo(s) — % 0‘ |0(s)|2ds) L 0<t<:

We note that under Py wo(t) = w(t) + f;0(u)du, 0 <t < Tis a
Brownian motion.

Regarding the problem of mazimizing utility from terminal wealth
known that the optimal wealth level of terminal wealth given by
I(Y(W)Ho(T)), and that the value function V(W) := sup( )e aw
can be computed as V(W) = G(Y(W)), where G(y) := E[U(I(yH,
y < 0. (See for instance Theorem 7.6 in Karatzas and Shreve(1998
Here, I € C((0, 0); (0,00)) denotes the inverse of U'(-), and )(
the inverse of the continuous, decreasing function:

X(y) = Eo[B(T)I(yHo(T))] = E[Ho(T)I(yHo(T))); 0 <y <

which we assume maps (0, 00) into (0, 00), where (t) = 1/So(t)
B(t)Z(t) denotes the state price density at ¢, and Ey[] denotes the
tion operator under Fp.

Ocone and Karazas(91) gives the following theorem by utilizing
formula regarding the problem of the optimal portfolio for investr
ciated with mazimizing utility from terminal wealth.

Theorem 1 Suppose that
IY)+ ' <K@ +y™?), 0<y<oo

holds for some real, positive, constants o, B, K.
Then the optimal portfolio admits the repesenatation
__L
B(t)
’ T r
+ By [ﬂ(T)fﬁ (V(W)H(T)) ( | ertwdu+ 3 |
a=1

m(t)o(t) = {9‘(t)Eo[ﬁ(T)y(W)Ho(T)I'(J’(W)Ho(T))|~‘

T

where ¢(y) = yI(y),0 < y < 00, and Dyr(u) and Difs(u), @ =
deonote the Malliavin derivatives of r(u) and 6o(u).

Here we suppose that @ and r satisfy the following conditions:

e R-valued progressivlely measurable process r is bounded; fo:
[0,T] r(s,-) € D1, where Dy, denotes the Sobolev space
(p,s) = (1,1), (s,w) = Dr(s,w) € (L*([0,T]))" admits pro
measurable version, and

. b oo\
</o |7‘(s)|2ds) +(/0 |D7(s)]I ds)]

where ||-]| denotes the L2([0, T)) norm, and IDr(s)|? = iy

irlii, =B
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o R"-valued progressively measurable process 6 is bounded; for a.e. s €
[0,T] 6(s,) € (D1.1)", (s,w) = DB(s,w) € (LX([0,T)))" admits a

progressively measurable version, and

( /0 T|9(s)|2ds)§ + ( /o ! ||D0(s)||2ds)§] <o

where [ D8(s)||> = 7 ;-1 | D*6;(s)|I*.

lollz, = E

e For some p > 1 we have

£ 5
( /0 ’ ||Dr(s)||2ds> } <oo, E ( /0 ! ||D0(s)||2ds> ] < oo.

We note that the optimal portfolio is also expressed under P:

Hy(T)
Ho(t)

Ho(T)
~B| L (VW H(T)x

E

ro(t) = B [ 2V W)H(T) TG ANEA PO

T T T T
( / Dtr<u>du+g{ | (Da(wdww + [ {Dteaw)}ea(u)du}) m]

= wie e - [2 g ywym)i=] o)
_E [Igo(g)) & (VW) Ho(T))

T T T T
( / Dtr(u)du+z{ / (DyBe() Y (u) + / {Dtﬁa(u)}ea(u)du}> m]
t a1 LUt t

where W (t) denotes the optimal wealth at time ¢, and

Hy(T)
Ho(t)

W(t) =B [ I@(W)Ho(T))lf-t] .

It is well known that the optimal portfolio m(t) is easily derived for two
simple cases: (See for instance chapter 3 in Karatzas and Shreve(1998).)
For the case of a log utility function U(z) = logz,

T (t) = 0*(t)o(t) W ()
where 0(t) = o(t)"![b(t) — r(t)1]. For the case of a power utility function
U(z) = 3’;, 0 <1,8#0,if r(-) and 6(-) are deterministic,

T (t) = zl—i—(s—)e*(t)a(t)‘lW(t).

However, if () and 6(-) are not deterministic, it is difficult to evaluate (%)
explicitly for a power utility function. '



3 The Optimal Portfolio Problem for Investment
in a Markovian Setting

In the spirit of Ocone and Karazas (1991), we will a consider more concrete
but sufficiently general setting for practical purpose in the sequel.

Let X be a d-dimensional diffusion process defined by the stochastic differ-
ential equation:

dXt = W(XE, e)du + V(XS €)dw,, Xf=rz,
dS¢ = Igb(XE)du + Iso(XE)dw,, Sf=s

dS§, = Sour(XS)du, S§ = so

for u € [t, T] where Ig denotes the r x r diagonal matrix with i-th diagonal
element of S;. Here we suppose ¢ € (0,1], Vo € Cg°(R? x (0,1]; R?) and
V = (Vg)p=; € Cy° (R%x (0,1}; R“®@R") where C°(R? x (0, 1]; E) denotes a
class of smooth mappings f : R%x (0,1] & E whose derivatives 928™ f(z, €)
are all bounded for n € Z4 such that |n| > 1 and m € Z,.. Note that time-
dependent-coefficient diffusion processes are included in the above equation
if we enlarge the process to a higer-dimensional one. We also assume that
be CP(RY%RT), r € C°(R%R,) and 0 € C°(R?; R™ @ R™) are bounded,
and that o € C°(R%; R" ® R") is non-singular. Then, 6 is defined as

6(Xz) = o(X3) 7 b(X3) — r(X3)1],
and 6 € C{°(R% R") is bounded.
Let Y5, be a unique solution of the d x d-matrix valued stochastic differential
equation:

dthu = ;=0 azva(xfu G)thﬁdwg

tht =1
It is then known that
DXy = Y,V(X{,€) =Y, V(ze,€), u>t.
(See for instance pp.109 of Nualart(1995).)
Let f € C°(R% R) and utilizing the fact
Def(X3) = 0f (XD X 3] = 8f(X5) YV (2t,€), u 2t

we give the representation of the optimal portfolio m(t) in our Markovian
setting:

m*(t)o(z) = W6"(z) — E [Hosr¢ (VHo,7)| 6° (2)

’ T T T
-E [Ho,t,m (VHoe) ( [ oYy gdu+ Y [ (X0
a=1

- T € € €
+ 2-:1/t ea(Xu)aea(Xu)Y},uV(x,e)du)]
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where W is the wealth at time ¢,

Hy(T)
H o(t)

T T .
= exp (— /t 8(X5)* dw(u) —-;- /t 16(X)2du — /t Tr(x;)du),

Hoy,r =

and the relation between W and ) is given by the equation:
W = E(Ho.,rI(YHo.T))-
X for u € [t,T) is generated by the SDE:
dX; = Wo(X;, €)du + V(XE, €)dwy,
with the initial value X{ = z.

Our objective is to evaluate m(t) explicitly. In the present article, we will
propose a practical and effcient scheme for computing the optimal portfolio
by utilizing the asymptotic expansion approach.

4 An Asymptotic Expansion Scheme

4.1 Preparations

First, we will summarize the basic tools for the asymptotic expansion ap-
proach. We assume the deterministic limit condition:

[A1] V(,0) = 0.

It follows from [A1] that the limit process (Xg)ue[t,'r] is a unique (determin-
istic) solution of the ordinary differential equation:

X0 = a:+/ Vo (X2, 0)ds.
t

We further assume o(X?) is non-singular for all u € [t,T]. Next, put
Y:,s = Y. Clearly, Y; is a unique (deterministic) solution of the ordi-
nary differential equation:

dYs, = 0,Vo(X0,0)Y.ds s €[t T]
Yie = L

9y =

[ 2ye .
and ;s € GL(d,R). Next, let D(t;u) = %‘Imo, E(tyu) = %—fﬁlgo and
YU = Z¥ix| . Then D(t;u), E(t,u) and Y\J (u € [t,T)) are determined
by the following stochastic differential equations:

dD(t;u) = 8:Vo(XY,0)D(t;u)du + Yheg 8eVa (X, 0)dw™
D(t;t) = 0,
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( dE(t;u) = 8:Vo(X3,0)E(t; u)du + 82Vo(X2,0)[D(t; u), D(t; u)]du
+2 37 0 020:Va(X?, 0) D(t; u)dw™
+ 30 0 02V (XY, 0)dw®

E(t;t) = 0
and
avl) = a.v5(x0,0)¥ds + 82Vo(X2,0)(D(t; 5)]Ys,eds
+ 0 00 Va(X?,0)Y; odw?
Yy = o |

Here we used the fact that 9zVu(,0) = 0 for @ = 1,...,r. Moreover, we use
a conventions dw® = du, 8% = 8'/8(X¢), 8¢ = 8'/9¢, and notations:

92Vo(Xy, 0)(D(t; w), D(t; u)] = i 82,02, Vo(X3,0) D9 (¢, u) DO (8; w),

ig=1
and
d . .
O2Vo(X2,0)(D(t; )| Veds = Y 0405 Vo(XP,0) DU (¢; 5)(Y,s))ds.
ij=1
where D(¥)(t; 5) denotes the i-th element of D(t; s) and (Y;,)(*) denotes the
i-th row of Y; ,. We will use the following abbreviations:

Xo = X0 Yu=Y? V=V =Vy(X0), a=0,1,---,7.

We then have representations of D(t;u), E(t;u) and Yt[i] from the above set
of stochastic differential equations:

u r
D(t;u) = Y},u/t Yt:,lzacVa,dwg‘

a=0

B(tiw) = Yiu [ Yo {82ValD(tis), D(tis)ds

+2Y " 0:0eVasD(t; s)dw®™ + Y 82 Vasdw®}

a=0 a=0

u r
Y = Y [ (407 [02VaulD(ti )] Yeads + Y BubaVas¥ipdu .
t

a=0

Next, we will illustrate our approach by using an example of a power utility
function.



4.2 The Case of a Power Utility Function
We assume a utility function to be so called a power function, that is U(.’c)
T, 0<1,04#0.

Then, I(y) and ¢(y) are given by I(y) = yﬁ_:“7 #(y) = yﬁ:" and ¢/(y) =
‘('1371 (v)-

Hence,
(o) = TopWH) + T ) FB | (Hour) FY
(/ Or(X;)Ye,V(z, €)du + Z/ 00 (X3) YLV (z, €)dw® (u)
t a=]
s / o(X5)00a(XE)YE,V (2, e)duﬂ
a=1
where

-1 -5
W = (V) =E [(Ho,t,T)(‘—:‘)] :
Here, we use the abbreviations 7(u) = r(X;) and fa(u) = 64(X5)-

We set
5

—6)
T

( / Br(XOYEV(z,du+ 3 / 00 (X Ve,V (z, €)duw(u)
a=1 t

F =

V) EVE [(Hm)‘—f’

+ Z / Ha(X,i)aea(X;mqu(x,e)du)].
a=1 t

We start with slightly general setting. Define
u u
Cfu = exp ( / ao(X5)ds + / a(Xj)dws> ,
. t t
where ag € C°(R% R) and a € C{°(R% R"). Here, C°(R%; R)(CP°(R% R"))

denotes a class of smooth functions f : R — R (f : R? — R") whose
derivatives are of polynomial growth orders.

We assume the following integrability condition for G-

[A2] For any p € (1,00), Supeg(o,1] “C{T“p < 00.

Under Condition [A2], it is easily seen that ({ has a stochastic expansion:

Gr ~ Qr+elh+ <""‘
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in D as € } 0. The first three coefficients are given by

C?.T = exp (/tT ao(X,)ds + /tT a(X,)dw,) ,

o
p
=

]

(tO,T (/tT Ora0(X,s)D(t; s)ds + /tT 8za(X,)D(t; s)dw,)
and
@ ¢o T 8a0(X.)D(t: 8)d TBXD-d2
@ = @r{( [ GaaXDE s+ [ 6:0(X,)D( o)
T T
+ /t Baa0(Xs)E(t; 5)ds + /t 8za(X,)E(t; s)dw,

+/tT6,2,ao(X,)[D(t; s),D(t;s)]ds+/tT aga(X,)[D(t; s),D(t;s)]dws}.

For f € C‘T’°(Rd;R), put

T
ga,e — / 5f(X;)thuV(xt, e)dwﬁ', a=01,-..--,7
t

Since V(z,0) = 0 from [Al], we see that

@ =0 (a=0,1,..,7) | (1)

The first derivative g®! = Q%;'—'-k-_-o of g™ is given by

alll = ]Ta X) Y0V @
[ =, 2 f(Xu)[Y2,u0e (z¢,0))dwy. (2)

The second derivative g = 8—2595:|¢=o of g™¢ is given by

T d i ,
8 = 20 88X (Y0 (@ Odug

i,j=1

T 4 )
12 [ S af (XYL 0 (o, 0)dug
t

=1

o7 d )
+ / 3 8 f (Xu) Y 82V (x1, 0)dw
i=1

After all, from (1) and (2), and by tedius routine work, we obtain the stochas-
tic expansion of g*:

2
g~ €gor.[ll + %ga’m 4



in D*°(R%) as € | 0.

Utilizing above results, we will derive an asymptotic expansion of the inside
of the expectation of F.

First, we directly apply the expression of the expansion for (f, if we set
—~&
Gu= (Ho't,T)('f-") where ag(X¢) and a(X§) are specified by

w(X) = (TS + gy gy K

a(XS) = (25)0(X5).

Here, we note that [A2] is satisfied in this case because of the boundedness
assumptions of r(-) and 6(:).

Next, we show the expansions of

T T

o = / Dyr(u)du = / Or(W)YE,V (z, €)du
t t
T T

gg* = / D0 (u)dw®(u) = / 00, (u)Y,V (z, €)dw™(u)
t t :
T T

o = / DyBa(w)8a(u)du = / B00(u) Ve,V (3, €)0a(u)du.
t t

Replacing f(-) by 7(-), 64(-), 262(-) and, utilizing above result, we obtain
the expansions of g5, gg™°, and gg3°:

2
g = fgl”+-€2—g?'+0(62)'

2
[+ X3 ’ «, € ’
95 = e€gp oy 5—93 ey o(€?)
2
a o, € a,
992’6 = 6902[1] + —2'992(2] + 0(62)
where
T
g = /t orll (u) Y0V (z,0)du
1] T alo) «
ol = /t 8619 ()Y, 48V (, 0)dw™ (x)
o (1) T 4001 () 9410)
o = /t 619 (1) 9619 () ¥; 40V (z, 0)du

T T
o = 2( / 82rl0) (u)[ D (t; w)] Ve uds + f arl°‘(u)1ft{ﬂdu) 8.V (z,0)
t t

T
+ ( / arl°l(u)yt,udu) 2V (z, 0)
t

137



138

g = ( / 8261 (u) [D(t; w)) ¥, udw® (w) + / aelol(u)yt“‘dw"(u))ﬁ
+ ( / ao};’l(u)y;,udwa(u)) 8%V (2,0)
t
T T A
o = 2 ( /t 619 (1) 52019 (u) (D (t; w)| Vs il + / 691 ()99 (u) V) du
t

T
+ ( / 9!3'<u)6o£?'<umudu) 62V (z,0)
t

[The second order scheme(the asymptotic expansion upto the
order)]

We will obtain the asymptotic expansion of the optimal portfolio upto tl
e-order. In the appendix, we will also show the third order scheme.

Based on the previous expansions, we have

( / T or(XYEV (2 dut Y / 002(XS) VeV (2, €)dw® (u)

a=1

£y / B (X5)00a(X )thuV(a:,e)du)

a=1

= e(g! + Z gy 4 Z g™y + o(e)
a=1 a=1

T .o .
=€(/ oril(w)¥indu + 3 [ 000w)¥iudu®() + 3 [ o)
¢ a=1 ¢ = ¢
+o(e),
and
(Hoer) T8 = o(729) [T rOlwidu gy J, 100N Pde

o~ 37 [T 1800 @) Paut () [ 60 w)dw() o

(1+e(1_ /31.[01 )D(tudu+e(1 6)2/

5)2; /t 9191(u)ae,l;’l(u)p(t;u)du> + o(e).

+e(3

Then, E’s expansion is obtained by

_
E o= 0 ()@l [ O au g [, 0P

(1-49)
g L5 [T 015600
e( /t Brl0 (w)Y; wdu + (1-5); /t 619) () 9619 () Y; udu. | 86V
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If we utilize the relation;
W -
E [(Ho,t.T)(f:%)]

(y)(ﬁlx) =

and the expansion;

E [(Ho,t,T)(i:'%)] — e(l_if)f;Tr[ol(u)d"eiﬁiaT)f sz 1610] (22)|2du «

(1+e

where

) / &r9 (w) Dy (¢; wdu+ e 5)2 Z / 619 ()001% (u) Dy (¢; u)du) +o(€)

Di(t;u) =Yy /t Y {0V (s)ds + (—1i—6)6€V[°](s)9[°](s)ds},

E’s expression in terms of W is given by

5
= o

1 & /T
€ ( /t orl9 (w)Y; wdu + () ; /t ogl(u)aeg)l(u)yt,udu> 8V (z,0) + ofe).

Then, we have the following theorem:

Theorem 2 An asymptotic expansion of the optimal portfolio for invest-
ment for a power utility function is given by

* — 1 *

de (/t Orl%(u)Y; ,du + (1—_1_5)— Zr: /tT 0% (u) 5610 (u)Yt,udu) 0.V (z, 0)} o™ (z) + ofe).
a=1
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5 Appendix

In this appendix, we will show the result of the third order scheme of the
optimal portofolio for the case of a power utility function.

[The third order scheme(the asymptotic expansion upto the -
order)]

n* (t) =

where
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