ON AN ASYMPTOTIC EXPANSION APPROACH TO
NUMERICAL PROBLEMS IN FINANCE
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ABSTRACT. This paper reviews an asymptotic expansion approach to numer-
ical problems in pricing financial assets and securities.

1. INTRODUCTION

Let (92, F,{Ft}ief0,77, P) denote a probability space with filtration, on which
a m-dimensional standard Wiener process w is defined where P is the equivalent
martingale measure (the risk neutral measure) in finance, and T denotes some
positive constant. Now, let F'(w) be a Wiener functional, and then V, the value of
a portfolio or a security can be expressed as V = E[F(w)] under certain conditions.
Evaluating this expectation is one of the main problems in finance. Moreover, if
F depends on the parameter 6, evaluation of %—‘of = %E[F(w; 6)], the change of a
security value caused by a minimal change of this parameter is also an important
task in practice. As an example, consider a d-dimensional diffusion process X (¢)
which is obtained as a strong solution to the stochastic differential equation;

dx() = V(X9 e)dt + V(X' e)dwy, t € [0,T]; X\ = m,

where € € [0,1] is a known parameter. Here, the coefficients are assumed to be
smooth and to satisfy some regularity conditions. In finance, the problems of eval-
uating the present value of derivatives or the portfolio value in investment theory
are mostly reduced to the problems of computing E[f (X(TE ))], the expectation of

f(Xéf)), a function of X(Te). In financial applications, it is important to deal with
the case not only the function f(x) is smooth but also the case it is not. For
example, when various options are evaluated, it is expressed as f = T o g, where
T(z) = max{z,0} and g denotes a smooth function of RY — R. In general, it is
difficult to represent this expectation explicitly except for special cases. Therefore,
methods such as Monte Carlo simulation or numerical solutions of partial differen-
tial equations are applied and various speeding up techniques are developed, since
fast computation is required as well as accuracy for practical purposes. As an-
other approach, an approximation of the expectation by an asymptotic expansion
of the stochastic differential equation around ¢ = 0 can be considered. Further,
because %E[f(X(Te))] and %E[f(Xéf))], the changes of the security value caused
by the minimal changes of the initial value xg and the parameter €, are important
indicators for practical purposes, obtaining the approximations with high accuracy
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are very useful. Moreover, some methods which combines Monte Carlo simulation
and an asymptotic expansion with low orders are developed since the asymptotic
expansion up to the first or second order can be easily evaluated. By this way, the
efficiency of Monte Carlo simulation or the accuracy of approximation obtained by
the asymptotic expansion can be improved.

The application of the asymptotic expansion to finance is closely related to the
study in mathematical statistics, which is on asymptotic expansions of statistics for
stochastic differential equations, though it seems not to be so relevant to finance.
In particular, it is based on the asymptotic expansions of estimators developed by
Yoshida [47], [48], [49], which applies Watanabe theory(Watanabe [46]) in Malli-
avin calculus to unknown parameters of small diffusions. For further readings on
asymptotic expansions of small diffusions in mathematical statistics, see Dermoune-
Kutoyants [4], Kutoyants [18], [19], Masuda-Yoshida [22], Sakamoto-Yoshida [28],
[29], Sakamoto-Takada-Yoshida [27], Taniguchi-Kakizawa [41], Uchida-Yoshida [42],
[43], and Yoshida [50], [51], [52].

To my knowledge, the asymptotic expansion is first applied to finance for evalu-
ation of an average option that is a popular derivative in commodity markets. [12]
and [31] derive the approximation formulas for an average option by an asymp-
totic method based on log normal approximations of an average price distribution
when the underlying asset price follows a geometric Brownian motion. [48] applies
a formula derived more generally by the asymptotic expansion of small diffusion
processes. Thereafter, the asymptotic expansion is applied to a broad class of prob-
lems in finance. For basic theory in finance, see for instance Karatzas-Shreve [8]
and Bjork [1], and for the general relationship between finance and the asymptotic
expansion, see [15]. In what follows, more concrete applications of the asymptotic
expansion to numerical problems in finance are introduced.

2. FOUNDATION OF AN ASYMPTOTIC EXPANSION

This section provides basic methodology to approximate the values of financial
assets or securities after a summary of the framework of the asymptotic expan-
sion approach based on [47] and [48] in Section 2.1. As for details on Watanabe
theory([46]) in Malliavin calculus that is a core theory of this method, as well as
the asymptotic expansion, see Takanobu [39], Takanobu-Watanabe [40] and Uemura
[44] for instance besides the literatures on mathematical statistics mentioned above.
Kusuoka-Strook [17] also derives an asymptotic expansion of a certain Wiener func-
tional by Malliavin calculus. Further, see lecture notes or textbooks such as Watan-
abe [45], Tkeda-Watanabe [6], Nualart [25], Malliavin [21] and Shigekawa [30] for
general references for Malliavin calculus[

2.1. The Framework of an Asymptotic Expansion.
First, I consider a d-dimensional diffusion process X (¢), which is the strong solution
to the following stochastic differential equation:

(2.1) dx? = Vo(X!)dt + eV (X ) dwy; X§9 = 2o, t €[0,T),

where w denotes a m-dimensional standard Wiener process and ¢ € [0,1] is a
known parameter. Suppose that coefficients V5 : R? = R?, V : R? — RY @ R™
are smooth and satisfies regularity conditions. Let V; denote the i-th column of the
V and a R? ® R?-valued stochastic process Y~ denote the solution to the stochastic
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differential equation;

ay;, = ovp(X Ny, at + eZaV XN D dwy; VO = 14,
i=1
where 9, = %, and OV;(i = 0,1,--- ,m) denotes the d x d matrix whose (J, k)-
element is 0, Vj;. I4 denotes the d x d identity matrix. Moreover, define Y; as
Y, = Yt(O)_
Next, suppose that a function g : R? — R to be smooth and all derivatives have
polynomial growth orders. Then, for € | 0, g(Xéf )) has its asymptotic expansion;

(2.2) g(X\)) ~ gor + €gir + gar + -+ in Do,

where gor, 917, 9o, - € Doo. For any k € N, g € (1,00) and s > 0, this expansion
means that

1 . _
€—k||g(X§’)) —(gor +€gir + -+ € rgi_1,7)|lgs = O(1) (as € 0),

where ||G||4,s represents the sum of the LY -norms of Malliavin derivatives of a
Wiener functional G up to the s-th order. Further, a Banach space Dy ; = Dy s(R)
can be regarded as the totality of random variables bounded with respect to (g, s)-
norm || - [|q,s, and Dog = Nys0 Ni<g<oo g5

The coefficients in the expansion, gor, g17, 927 - -+ can be obtained by Taylor’s
formula and represented as multiple Wiener-Ito integrals. In particular, let Dy =

(e) 2 x ()
a)gf o and B, = 88)6% |e=0, then gor, g17 and ga7 can be written as
gor = g( , Q1T = Zazg zT:
1 1y
0 0
gr = 3 Z 8:9;9(X\\Dir Djr + 3 Zaig(Xj(“))EiT'
irj=1 =1

Here, D;; and Ey, i = 1, -+ ,d, which are the elements of D, and E, respectively
are represented by

t .
Dy = /Y(")Y—lw X9)dw,,

Ex / v,y Z 8;01Vo (XD, Dy + 228 V(XD dw,),

J.k=1 j=1

where Y(i") denote the i-th row of Y;.
Next, normalize g(X( )) as

_ 9(X) — gor

for € € (0,1]. Then, for h € H(where H denotes the Cameron-Martin subspace of
the m-dimensional Wiener space), the H-derivative of G(9) ig expressed as

T
DhG( Zag DhX( Zag / [Yj(f)(y;ﬁ(f))flv(Xt(f))ht]i dt.
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With a notation a\”,

a{? = (9g(X3)) V20 () v (X)),

the Malliavin (co)variance of G(©) is given by

T
(2.3) Ocio :/ age)(agé))ldt,
0

where z' denotes the transpose of z. Moreover, let
ar = o) = (29(X7) [YrY,'V (")

and make the following assumption:

T
(2.4) (Assumption 1) Xp = / ata;dt > 0.
0

Since Y7 is the variance of the random variable g;7, which follows a normal dis-
tribution, Assumption 1 means the condition that the distribution of g,7 does not
degenerate. In application, it is easy to check this condition in most cases, hence it
plays an important role for practical purposes. In what follows, I derive asymptotic
expansions useful for finance under Assumption 1. For detailed arguments such as
the proofs omitted here because of the space limitation, see [47], [48] and [14].

Under Assumption 1, o is uniformly non-degenerate for {|n£€)| < 1}; that is,
it can be shown that there exists a positive real number ¢y > 0 such that for any
c>copand p>1,

-p
(25) egz)l:’)l]E[1{|n£€)|Sl}(|UG(6) ) ] < o9,
where 7 = chT la\”) — a;|2dt. Then, for a measurable function with polynomial

growth 7 : R — R, a composite function 1(n{)T o G = (i T(G) is
well-defined as an element of D_o, = Uz Ni<p<oo Dp,s, where ¥(z), z € R
denotes a smooth function 0 < ¢(z) < 1, defined as ¢(r) = 1 for |z] < 1/2
and ¢(z) = 0 for |x| > 1. Here, a Banach space D, 5, s < 0 is the dual space of
D, _s(R)(¢ = p/(p—1)). Moreover, the coupling with the function 1 is well-defined,
which is called as generalized expectation and is written as E[w(nge))T o G].
Further, w(nﬁf))T 0 G can be expanded in D_.,. Since a function T such as
T(z) = max{z,0} that is measurable but not smooth appears frequently in finance,
the framework mentioned above is necessary for the asymptotic expansion.
Moreover, it also can be shown that for any k£ > 1,

P(p| >}
P> b)

< 00
l0 ek

This means that the probability of the events truncated by z/;(nge)) is smaller than
any polynomial orders of e. Then, in the expansion of z/;(nge))TOG () the coefficients
expressed as generalized Wiener functionals belonging to D_., can be written by
applying Taylor’s formula to T'(gor + €917+ €2gor +- - - ). Therefore, the asymptotic
expansion of the expectation E[T(G(9))] can be obtained relatively easily.

Now let us consider a more specific case. For a smooth function ¢(¢) : [0,1] x
R — R, of which all derivatives with respect to z have polynomial growth orders
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uniformly in e, the following holds uniformly in B € B for a positive large number
c>0:

(2.6) YNNG (GNI(G)) ~ Bg+ By + - in D_o (as €] 0),
where B = B(R) denotes a Borel set in R. Here, the coefficients ®q, ®;,--- are

generalized Wiener functionals and they are obtained by applying formal Taylor’s
formula to ¢¢(G(9))I5(G()); in particular, @, and ®; are expressed as

o = ¢gr)Is(oir)
& = {g2000° (q17) + 6V (017) M B(017) + 6 (917) 9270 B (017),
where ¢p) = %(:) e=0-

Therefore, the expectation E[¢(G(€))I5(G9))] has its asymptotic expansion uni-
formly in B as

(2.7) E[¢\9(G'9))I5(G'))] ~ E[®] + €B[®1] + -+ (as € ] 0),

where each term of the expansion can be expressed as the expectation of a multiple
Wiener-Ito integral conditional on a normal random variable. For example, E[®]
and E[®] are written as

E[®,] = /B 6 (2)nz; 0, Sylde,

E[®,] /B (6 (@)nlz;0,51) = ¢ (2)0{Elgorlgir = alnla; 0, S1]})da,
where n[z; 0, ¥ 7] denotes the density function of the normal distribution with mean
0 and variance Y. Moreover, E[gor|g17 = 7] is a polynomial function of z and
hence the computations of the expectations become easier. It is known that precise
approximations are obtained by applying asymptotic expansions up to such low
orders in financial examples.

2.2. Valuation of Option Values by an Asymptotic Expansion.

Now approximations for values of various derivatives can be provided by the frame-
work explained above. First, note that X(¢) in the previous subsection represents
the key variable such as the underlying asset’s price, which is an important factor to
determine values of derivatives. Next, I show the application of the asymptotic ex-
pansion to finance, specifically by using an example of a standard European vanilla
option which is examined in [32]. Let w be a one-dimensional Wiener process, a be
a constant, € € [0,1], and o(z,t) be a smooth function of z satisfying appropriate
regularity conditions. Suppose that under the equivalent martingale measure, the
underlying asset price of the option S©) follows a stochastic process;

(2.8) ds') = a8 Vdt + o (S, t)dwy; S = s(> 0).

Let a strike price K be some positive constant, then the values of vanilla call and
put options at the expiration date T' are respectively written as

(2.9)  V(T) = max {5<Tf) - K,o} and V,(T) = max {K - sgf),o} .
Moreover, the values at the contract date(t = 0) are respectively expressed as

(2.10) V.(0) = e”"TE[V.(T)] and V,(0) = e "TE[V,(T)],
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where r, a nonnegative constant denotes the (instantaneous) short-term interest
rate. In what follows, I explain the case of call options, which can be also applied
to the case of a put option. First, in the setting of Section 2.1, let d =2, m =1,

and X' = (x{, X{9) with X§) = ¢, and X = S!. Next, with z = (29, 21)
and g(z) = z; — K, G is given by
€ 0
_Xp-x7
€ )

G

where € € (0,1] and Xl(%) = ng)) = e*T's. Then, the value at expiration can be
written as

V.T) = max{s(;) - K,O} — max {eG@ +x0- K,o}
= max{e(G(e) + y(e)),O} ,

(0)
X, —K

where y(©) = . Note also that X7 is expressed as

T T
(2.11) Yr= / e2(T=u) 52 (Xl(g),Xég))du = / 2 (T=w52(S0) )du.
0 0
Although ¢(¢)(z) and B can be set as ¢{9) () = ex + (Xl((%) —K) and B = {Xl(fT) >
K} = {G9 > —y(9} respectively, I consider this problem under the following
assumption for more practical purposes:
(Assumption 2)

For any y(© there exists a real number y such that y(¢) =y + o(e) .

Assumption 2 means that K = K(9) = S(TO) — ey + o(€?). Thus, I consider the
strike price to be close to the forward price Sg,f) ) with the same expiration date as
the option’s one, which is based on the fact that such trade is common in practice.
This assumption can be relaxed, but in order to avoid complexity I admit it in the
following. Now I set

¢\ (@) = e( +y'),
and B = {G() > —y(9}. Then, by the equation (2.7), an approximation formula
up to the e2-order for the call option’s value at the contract date is derived as

(oo}

(2.12) V.(0) = e_TT{e/ (x +y)n[z; 0, Lr]dz

+ € /oo(c:n2 + f)nfz; 0, S7]dz} + o(€?),

where the constants ¢ and f are given by

1 (T u
c = 2—2/ e“(T*")U(S,(LO),u)(?a(SfLO),u)/ eza(T*“)UZ(S,(LO),v)dvdu,
T J0 0
(2.13)
f - —CET.

Moreover, a more concrete approximation formula can be obtained by integration
by parts.
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Theorem 2.1. Suppose that the underlying asset price follows the stochastic process
(2.8) under the equivalent martingale measure. Then, under Assumptions 1 and
2, the asymptotic expansion up to the e€2-order of V.(0), the price of a vanilla call
option at the contract date with the maturity date T and the strike price K, is given

by

V.(0) = e’“TG{ET"[%O’ETHyN (x/%_)}

2.14 T2 d SN L)-z 10,3 N<y>} 2
(2.14) +e ec{ T <\/E_T yXrn[y; 0, X7] + f N + o(€?),
where X and ¢, f are respectively defined as (2.11) and (2.13), and N(x) denotes
the distribution function of a standard normal distribution.

Finally, it is remarkable that in practice, by computation of the option price under
the assumption that y(© is a constant and y = y(¢), a precise approximation can be
still obtained in general even with the strike price far from S(TO ), the forward price
with the same maturity as the option’s one.

The values of various option contracts can be evaluated by using the similar
method. In particular, with redefinition of ¥, ¢ and f in (2.14), almost the same
approximation formula can be applied to various options. In what follows, some
examples for call options are presented. For more details, see [32] and [36].

(1) A Basket Option

Suppose that Si(f), i = 1,---,n, the underlying asset prices of a basket
option follow the stochastic processes;

n
dS) = aiSdt + €y 0;(SY), dwje; S = si(>0),
Jj=1
where a;,i = 1,--+ ,n are constants, and w = (w1, -+ ,wy) is a n-dimensional
Wiener process. Then, the value of the basket option at the maturity date
T is given by

Vo(T) = max{ZBiSZ(;)—K,O},
i=1

where the strike price K is a positive constant and §;, i = 1,---,n are
constants. Further, let r be a nonnegative constant. Then, the price at
the contract date(t = 0) is expressed as V.(0) = e "TE[V.(T)]. In this
case, it is specified that d = n + 1, m = n, Xt(e) = (X(g:),Xl(i),--- ,X,(ft )
with Xé;) = t, Xi(;) = Sl(;)(i =1,---,n), and g(z) = >, Bix; — K,
x = (zo,21, -+ ,Ty,) in the setting of Section 2.1.

In the following examples, a and r are set to be a constant and a non-
negative constant respectively as well as in this example, unless otherwise
stated.

(2) An Average Option
The stochastic processes which describe the dynamics of the underlying
variables of an average option are expressed as

dSt(E) = aSt(e)dt + ea(St(e),t)dwt; S(()E) =s(>0)
dz\? = sdt; 77 =0,
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where w denotes a one-dimensional Wiener process. Then, the maturity
value of an average option is expressed as

1 (e
V(T) = max{TZ(T)—K,O}.

Thus the price at the contract date is given by
V.(0) = e"TE[V.(T)], where d = 3, m = 1, X\? = (X0(;>,X1(;),X§;))
with X{? = ¢, x{9 = 519, x{ = 79 and g(x) = Loy — K, © =
(zo,z1,x2) in the setting of Section 2.10
(3) A Vanilla Option with the Stochastic Volatility
Assume that the underlying variables of a vanilla option with the stochastic
volatility follow the stochastic processes below;

dst(e) — S(E dt-}-eZUl] S(E E) t)d’Lth; S(gé) — S(> 0)
7j=1
az\? = ps'?, zlo tdt+6202 S\, 7 tydw;y; Z8) = (> 0),
Jj=1

where w = (w;,ws) denotes a two-dimensional Wiener process.

The payoff at maturity is expressed as V.(T') = max{ng) — K, 0}, and
the price at the contract date is evaluated by V.(0) = e "TE[V.(T)].

In this case, it is speciﬁed that d=3,m=2 X = (Xéz),Xl(E),XQ(E))’
with X = ¢, X9 =59, x{9 = (9 and g(z) = 21— K, x = (0, 71, 22)
in the setting of Sectlon 2 1

(4) A Vanilla Option under the Stochastic Interest Rate

Assume that the stochastic processes determining the value of the option
under the stochastic interest rate follow

sl = (9 - )dt—l-eZalJ ) D Hdwji; S = s(>0)

ngf) I ()Z( )dt' Z( ) _

drt(é) = (S(E) rte),t dt-{—eZ@] S(E E) ) dwji; r[()) =r(>0),
j=1

where w = (w1, w2) denotes a two-dimensional Wiener process.
The value at maturity is expressed as V.(T') = maX{S(TE) — K,0}.
Then the value at the contract date is evaluated by

V.(0) = Elelo Py )|,

where d = 4, m = 2, X\9 = (X§¢, .-, X{) with Xo = ¢, X\ = 519,
X;i) = Zt(e), X:S) = rt(e), and g(x) = 23(z; — K), © = (z0, 1,72, 73) in the
setting of Section 2.1.

2.3. Approximations of the Values of Financial Assets and Securities un-
der Diffusion Processes.

The framework of the asymptotic expansion can be applied not only to the simple
cases mentioned above, but also to evaluation of much broader range of assets’
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and securities’ values. In particular, there are many cases where the asymptotic
expansion can be applied to approximate that values when the underlying asset
prices of financial assets or securities, cash flows and discount rates such as interest
rates are expressed as a function of a random vector X (¢ that follows a diffusion
process. The method is almost the same as the one illustrated above and hence
it is omitted. In this subsection, only the method to represent values of financial
assets or securities will be reviewed.

First, just as in the previous subsections, I consider a d-dimensional diffusion
process X (9 defined as the strong solution to the stochastic differential equation
(2.1). In general, the contract value V' of a financial asset which generates a cash
flow at the maturity date T is represented as

(2.15) V=E [ef Jo" B (X du p (x|

where f denotes the underlying asset price and F' is the cash flow which character-
izes the asset or security to be evaluated. Note that the dynamics of the underlying
asset price f is expressed by a diffusion process, whose drift term (the coefficient
of the dt term) is Ry (X9)f — D(X?) under the equivalent martingale measure.
Moreover, Ry at time ¢ € [0,T] is represented as

J1
Ri(X()) =r(X{)) + 3 s1;(X,),
j=1

where r is the risk-free interest rate and s;;, j = 1,---,.J; are various spreads
(the differences from the risk-free rate) such as credit spreads or liquidity spreads.
Suppose that all of them are expressed as functions of the variable X (9. Further,
D(Xt(e)) denotes a payoff generated by the underlying asset such as a dividend or an
interest rate and is also represented as a function of the variable X (¢). Meanwhile,
R,, the discount rate of the objective asset or security to be evaluated at time ¢ is
also expressed as

Ja
Ro(X()) = r(X()) + Y 52;(X}),
j=1

where s95,7 = 1,---, J> are various spreads related to the objective asset or security.
Suppose also that all of them are expressed as some functions of the variable X (¢).

As an example, let F' = 1 in (2.15) for a zero-coupon bond with the face value
1 and the maturity date T'. Next, let V; denote the price of the zero-coupon bond
with the maturity 7;. Then, V', the value of a coupon bond with the maturity Tx
and coupon payments ¢; at T;(i = 1,--- | N, Ty < --- < T) is represented by the
equation V = Zfil ¢;V;. Moreover, the present value of a call option on the coupon
bond with the option maturity 7'(< T}) can be evaluated if I set F'(z) = (z — K)*
and f(X(Te)) = Eil cifi(Xéf)) in the equation (2.15), where fi(X(Te)), i=1,---,N
are given by

fZ(Xé”E)) =E |e” f’l?l Rl(X,(f))du|X7(—‘é):| .
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3. ASYMPTOTIC EXPANSIONS IN AN INSTANTANEOUS FORWARD RATES MODEL
AND A JUMP-DIFFUSION MODEL

Among main stochastic models in finance, there exist models where the stochastic
processes of the underlying variables do not belong to the class of diffusion processes.
This section illustrates two typical examples.

3.1. An Instantaneous Forward Rates Model.
Among stochastic models for evaluating the interest rate derivatives, there exists
a model developed by Heath-Jarrow-Morton [5] which is formulated based on the
forward rates with infinitesimal terms of the interest rates, that is the instantaneous
forward rates {f(s,t) : 0 < s <t < T}. Here, s is the time when the forward rate
is determined and ¢ denotes the time when the forward rate starts to be applied.
The stochastic processes for the instantaneous forward rates are considered in
the framework of the asymptotic expansion by introducing a parameter e € [0, 1].
For example, let w be a m-dimensional standard Wiener process and let f(0,¢),
t € [0,T] be a given Lipschitz continuous function of ¢. Then, under the equivalent
martingale measure, the stochastic processes of {f(9)(s,t) : 0 < s <t < T} are
written as

19602100 + @[3 00000 [ a0 a
0 ;1 v

(3.1) + GZ/ oi (£ (v,1),v,t)dw;(v) ;e € [0,1],
i=1 70
where the volatility functions {o;(f(¢)(s,t),s,t);i = 1,--- ,m} are smooth and sat-

isfy the regularity conditions which guarantee that the equation (3.1) has its so-
lution. It is to be noted that the drift term (the coefficient of the dv term ) of
f9(s,t) depends on {f(9)(v,y);0 < v < s,v <y < t}. Moreover, the stochastic
process of the instantaneous short-term interest rate r(¢)(t) is determined by the
relationship, (¢ (t) = f()(t,t).

Even for this model, the approximations of the values for interest rate derivatives
can be still considered in a unified framework with derivation of asymptotic expan-
sions of the instantaneous forward rates when e | 0 and with use of the relation
between the instantaneous forward rates and a zero-coupon bond price;

T
(3.2) PO, T) = exp {—/ £l (t,u)du} .

As an example, I consider a call option on a coupon bond, which is a standard
interest rate derivative. The payoff at maturity of the option is given by

Vo(T) = max{) ¢P(tT) - K,0},
=1

where 0 < T <T) < --- <Tp, ¢,i =1,--+  n are positive constants and K (> 0) is
a strike price. Then, the contract value is evaluated by

V.(0) = E[e—foTri“duvc(T).
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When € | 0, the forward rate f(¢)(s,t) is expanded as
(33) f(e)(s)t) ~ f(O,t) + 6f1(s)t) + €2f2(57t) +---in Doo;

where fi(t,u), f2(t,u)--- € D>®. As a result, P(9)(¢,T) and exp {—fOT 7(©) (t)dt}
are expanded as

T T
PO@T) ~ [];((%f)) - /t fi(t,u)du — € t f2(t,u)du
L]t ’
+ 625{ fl(t,u)du} + in D,

e~ Jo @  p(o,T)

1—e/Tf1(t,t)dt—e2 /TfQ(t,t)dt
0 0

21 7 2] ,
+ € 5{/0 fl(t,t)dt} J +--- in D,

where f;(s,t), i = 1,2 are given by
© (s f
fi(s,t) 8’“875%10:/ >~ ot (v, tydw; (v),
0 =1
2 () (g
st = 3 e

= p(0 utdv+/zaa (v,t) f1(v, t)dw;(v).

Here, 050) (v,t) = 03 (£ (v,t),v,t), and b (v,t) and 80( )(U t) are defined as

B, = 3 (00,00 / (O (w0, 0)dy,
=1 v
doi(x,v,t)

85\” (v, 1) T le=s0.)

Therefore, in the framework of the previous section with definition of X, (©) and
X9 i=1,---,nas

it
t
x\9 = exp{—/ r(e)(u)du}
0

T;
Xi(:) = P(f)(t,Ti) = exp {_/ f(‘)(t,u)du} ,i=1,---.n,
t

the payoff at maturity of the call option on a coupon bond is written as

Ve(T) = max {Z ciXi(:) - K,O} .

i=1

Moreover, let = (zo, 21, ,%,) and define g(z) as

0 (2”: C;L; — K) .
i=1
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Then, a similar method can be applied as in the case of diffusion processes. Conse-
quently, with redefinition of ¥, ¢ and f, the approximation of this option can be
obtained based on almost the same asymptotic expansion as for the approximation
(2.14) given in Theorem 2.1. For more details, see [13], [14] and [34].

For evaluation of other various interest rate derivatives, approximations based on
the asymptotic expansion can also be derived. Moreover, the approximate formula
for the value of a derivative dependent on instantaneous forward rates and other
variables following diffusion processes is given by [31].

3.2. Evaluation of the Values of Securities under Jump-Diffusion Pro-
cesses.

So far, stochastic models where uncertainty is generated by Wiener processes have
been used. However, I can also apply the asymptotic expansion to stochastic pro-
cesses including jumps in their sample paths. Suppose that (2, F, {F:}icpo,17, P)
is a filtered probability space with an equivalent martingale measure P and is
equipped with a m-dimensional Wiener process w and a stationary Poisson ran-
dom measure g on [0,7] x E, which are mutually independent. Let also (E, &) be
a measurable space. Moreover, suppose that the intensity measure of the Poisson
random measure j is

A(dt,dz) = dt x v(dx),

where v is a positive o-finite measure on (E, £) and the compensated Poisson mea-
sure is represented as

~

a(dt, dx) = p(dt, dx) — \(dt, dx).

In this setting, examples for evaluation of the values of a bond and an option are
provided.

Evaluation of a Bond Price
Let X(9 denote the R%valued stochastic process defined as the solution to the
following stochastic differential equation:

(3.4) dXO(t) = A(XO @), )dt +eo (X O ())dw(t) + ¢ / O(X9 (¢-), 2)fi(dt, dz),
E

where € € [0,1] and assume that the coefficients A : R? x [0,1] = R?, 0 : R? —
R?® R™ , and C : R? x RY = R are smooth and satisfy regularity conditions.
Define also R?-valued random vectors D and E as

X ()(t) 92X () ()
D(t) = T|€:0 and E(t) = Th;o.
In this case, D(t) satisfies the following stochastic differential equation:
dD(t) = 0.A(XO(t),0)dt + dA(X O (t),0)D(t)dt + o (X O (t))dw(t)

+ [, C(XO(t=), 2)(dt, dz); D(0) = 0.

Therefore, the random vector D(t) can be expressed as

D(t) = Yt/ot Ys_l[afA(X(O)(s),O)ds-i—U(Xs(O))dw(s)—l-/EC’(X(O)(s—),a:)ﬂ(ds,da:)],
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where Y is a R¢ ® R?-valued function and is the solution to the following ordinary
differential equation:

dy; = dA(XO(1),0)Ydt; Yy = .
Similarly, E satisfies the stochastic differential equation;
dE(t) = OA(X] )E( )dt +20.0A(X?,0)D(t)dt + 02A(x [, 0)dt

+88A( 9 0)D(t)D(t)dt + 200(X ") D(t)dw(t)
+2 fEac t@ 2)D,_ji(dt, dz); E(0) = 0,

where 88A(Xt(0), 0)D(t)D(t) is a d-dimensional vector and is given by
00A(X®,0)D(t)D(t)
= [D'{(?iajAl(Xt(O),0)}(i’j)D, ,D'{8;0;A4(X”,0)} sy D| (i,5=1,2,---,d).

Here, {8 0; Ar (X, x© 0)}(' _denotes a d x d matrix defined for each k =1,--- ,d.

i,j)
Further, Ba(Xt( ))Dt denotes a d x m matrix and is represented by

d
80(X"\D(t) = {Z akaij(Xt(O))Dk(t)} (i=1,--,dj=1---,m).
k=1 i,j

Moreover, a notation 80( (E),ZU)Dt_ denotes a d-dimensional vector whose i-th
element is Zk 1 0kCi(X t? ,a:)Dk(t—). Therefore, E(t) is given by

E(ty=Y, [, Y, ! [23 AA(X®,0)D(s)ds + 32 A(X”,0)ds
+ 90A(X”,0)D(s)D(s)ds + 205(X ") D(s)dw(s)
+ 2[,0C(XO(s—),z)D,_ji(ds,dz)].

On the other hand, it is known that the price of a zero-coupon bond is generally
expressed as
P(0,T) = B [e= i 9(x{)ds
Here, g denotes the sum of the risk-free rate and the spreads determined by risk
factors such as the credit risk and the liquidity risk, and is supposed to be repre-

sented by a function of X(¢)(¢). Then, an asymptotic expansion up to the e>-order
of P(0,T), the zero-coupon bond price is given by

T
P(0,7) = e i o7 (1 - / E [(04") D(s)] ds
0

+ { /Zaajgs /ag(O)E (8)]ds

3,j=1

(3.5) + E[( / 899 D(s) ]})4—0(62).
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With definition of d.A(r) and C(t) as 9. A(1) = 8. AX(7),0) and C(t) =
C(XO(t—),z), E[D;(s)D;(u)] is represented as the following:
(3.6) E[Di(s)D;(u)]
0

= {Y(i")(s) Y_l(T)afA(T)dT} {Y(j")(u) /0 ’ Y_l(T)aeA(T)dT]
@) ([ e (1) ar) (Y0)
+Y ) (s) ( /0 mY*l(T) { /E C(T)C(T)’u(dx)} (Yl(T))'dT> (YU%-)(U))’.

A more specific expression of (3.5) can be obtained based on the equations such as
(3.6).

Evaluation of an Option Value

Here, I consider a more specific example for evaluating the value of an option. Let
m=d=1,€e€]0,1] and a be a constant. Further, under an equivalent martingale
measure, suppose that the underlying asset price of an option follows a stochastic
process;

3.7) dS!” = aSdt + e (S, t)dw, + / S e — 1)ji(dtdz); S5 =s(>0),
R

where o(z, t) is a function satisfying appropriate regularity conditions. Here, u([0, t]x
A) is given by

Ny
w(01] x 4) = 3 1a(g?),

where A € B(R), and N; denotes a Poisson process with a constant intensity
A(> 0). Define random variables (5](-6)) j>1 determining jump sizes as

gl =em—1,j>1,

where (1;);j>1 denotes a sequence of random variables which follow independent
identical distributions (i.i.d.) and its probability law is v. Suppose also that v =
E[n;] < oo and E[fj(-e)] < 0o. Note that §J(-E) is defined so that the underlying asset
price does not become negative by its jumps. In this case, the compensated Poisson
measure fi(dt,dz) is given by

p(dt,dz) = p(dt,dz) — Adt x v(dz).

Note that this model is an extension of Merton[24].

Here, if T assume r to be a nonnegative constant, V', the contract price of a
vanilla call option with the maturity T and the strike price K (> 0) is represented
as V = e‘T’TE[(S(TE) — K)4]; ()4 denotes max{z,0}. Here, in order to apply an
asymptotic expansion, I define X(9) as
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where St(O) is given by St(O) = Spe®t and X (9 follows the stochastic differential
equation;
dx9 = aXxVdt + U(eX + S dw,
+ [ (XD 4 S0 (£5=1) f(dt, de); X9 =0
With this X(9), the option value V is expressed as
V =e"TeR[(X\) + k)],

where k(€) =

represented as k() = k4 O(e) by a real number k. Then, the asymptotic expansion
up to the e order of the call option value V is expressed as

V =eTeE[(XY + k) 4] + ole).

©)_
y. As in the Assumption 2 in Section 2.2, assume that k() is

X () in this equation follows the stochastic differential equation:

dx© = ax©dt + o(S\V, t)dw, + / S zji(dt, dz); X3 =o.
R

Moreover, by further calculation, E[(X} C k)4] is expressed as

[(X(0)+k ZE ZTn<k2+SOeTZm>

ks Sge“T ! ar (AT
+ (ko +50€aTZ77i)N< Z —,
i=1 \ ET =1

4!

where Z?Zl n; = 0. k2, n(z) and T are given by

1 2
ky = k—v(\T)Spe?”, n(z) = Norore exp <2§T>,
T

T
(3.8) Xr = /620((T78)0'2(52,8)d8.
0

Suppose also that X7 > 0. Moreover, with an assumption that the random variables
(m:)i>1 which determine the distributions of the jump sizes follow a normal one, a
more concrete expression can be obtained.

Theorem 3.1. Suppose that the underlying asset price follows the stochastic process
in (3.7) and (n;)i>1 follow a normal distribution, n; ~ N(v,0”). Then, under the
assumption that X7 > 0, an asymptotic expansion up to the e-order of V, the
contract price of a vanilla call option with the maturity date T and the strike price
K, is given by

_ - Sr —c3; csj
V = e Te exp J +c ;N | —=2—=
= [ 271'(03]- +1) (2(@21]- +1) J /0421]‘ 1
g —02, \T J
(59) + o (ﬁ) JRCTEYV2 G
27 (ci; +1) (c; +1) J:
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where ky and Tr are defined as (3.8), and the constant coefficients c1;0 c2;0 ¢35
and cq; are defined as

k2 + Soe™T (vj) a5 = Soe®T(00/F)

C1j _ Cyy

C3; = \/T_T ’C4j:E-

C1j

For the details such as numerical examples, see [15] and [16].

4. CONCLUSION

Finally, I briefly review other applications of the asymptotic expansion technique
to numerical problems in finance, which can not be introduced in the paper because
of the space limitation.

[37] applies an asymptotic expansion to a dynamic investment problem with
utility maximization for the asset at the end of the investment period, and derives an
approximation formula for evaluating the optimal portfolio. Although the optimal
portfolio has been numerically evaluated as a function of derivatives of the solution
to some Bellman equation except for special cases, it is a hard task to compute
it when the number of assets is large. [37] provides its approximation based on
the representation which Ocone-Karatzas [26] derives by using the Clark-Ocone
formula. Moreover, [11] applies this method to a dynamic bond portfolio problem.

In evaluation of the expectation of a Wiener functional by Monte Carlo simula-
tion, [38] proposes a new estimator using a random variable that has its expectation
explicitly obtained by an asymptotic expansion and has a high correlation with the
objective Wiener functional. The convergence of the simulation based on this esti-
mator becomes faster and the approximation error due to the asymptotic expansion
up to a low order is decreased. As for the extension of this method, see [34], [16],
and [36].

[35] extends the decomposition formula for an American option value by Carr-
Jarrow-Myneni [3] and proposes an approximation of the value applying the fact
that the density function of the underlying asset can be approximated by the as-
ymptotic expansion.

[23] provides approximations for the risk indicators of options by asymptotic
expansions of the derivatives of a stochastic differential equation with respect to
parameters as well as by extending the variance reduction method of Monte Carlo
simulation in [38].

[43] studies the bias correction when unknown parameters in the representation
of an option value are substituted by their estimators. Kawai [10] applies the
asymptotic expansion method to the market models of interest rates developed by
Brace-Gatarek-Musiela [2], Jamshidian [7] and others.

This paper illustrates the cases where the diffusion terms of the stochastic pro-
cesses for the asset prices are 0 when ¢ = 0. However, expansions for the cases
where the diffusion processes are not 0 when ¢ = 0, but become the processes
that are relatively easy to be computed are also considered. For more details, see
Kashiwakura-Yoshida [9], Liitkebohmert [20] and [37] for instance.

As introduced above, various applications of the asymptotic expansion method
are developed for numerical problems in finance.
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