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Abstract

We propose a new methodology for the valuation problem of financial contin-

gent claims when the underlying asset prices follow a general class of continuous

Itô processes. Our method can be applicable to a wide range of valuation prob-

lems including contingent claims associated with stocks, foreign exchange rates,

the term structure of interest rates, and even their combinations. We illustrate

our method by discussing the Black-Scholes economy when the underlying as-

set prices follow the continuous diffusion processes, which are not necessarily

time homogeneous. The standard Black-Scholes model on stocks and the Cox-

Ingersol-Ross model on the spot interest rate are simple examples. Then we

shall give a series of examples on the valuation formulae including plain vanilla

options, average options, and other contingent claims. We shall also give some

numerical evidence of the accuracy of the approximations we have obtained for

practical purposes. Our approach can be rigorously justified by an infinite dimen-

sional mathematics, the Malliavin-Watanabe-Yoshida theory recently developed

in stochastic analysis.
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1 Introduction

This paper proposes a new approach in the valuation problems of financial con-

tingent claims based on the small disturbance asymptotics. We shall extensively

develop an asymptotic expansion technique for financial asset pricing problems

in the continuous time stochastic process framework. This approach is general

enough to be applicable to a broad class of continuous Itô processes for asset prices

and their functionals and it is possible to evaluate the fair values of complicated

payoffs such as the average options under the general class of asset processes.

Contrary to other approaches, we can derive explicit formulae for many valuation

problems of contingent claims when the underlying asset prices follow the general

Itô stochastic processes.

The asymptotic expansion approach was first proposed and developed by Ku-

nitomo and Takahashi (1995), which mainly have dealt with the valuation prob-

lems of interest rates contingent claims in the HJM framework. (See Heath,

Jarrow, and Morton (1992).) Our approach is based on the key empirical obser-

vation that the observed and estimated volatilities of financial asset prices may

very over time, but they are not very large in comparison with the observed level

of asset prices. Then we can develop an asymptotic expansion method in which

the continuous Itô process can be expanded around the corresponding determin-

istic process. In the asymptotic expansions of the continuous stochastic processes

we shall derive, the first term is a Gaussian random variable and the following

terms are some adjustment terms. Thus we can derive explicit approximations

for the valuation problems of contingent claims based on the asymptotic expan-

sions of the stochastic processes. This method was first introduced by an intuitive

reasoning but can be justified in a rigorous mathematical fashion. However, since

the general Itô processes involve a space of Wiener measure, the mathematical

validity of our method is far from standard one even in probability theory.

The main purpose of this paper is to develop our asymptotic expansion ap-

proach for various problems of contingent claim evaluation. For this purpose we

mainly concentrate on the specific situation when the stochastic processes of as-

set prices follow a general class of the diffusion processes, that is, the continuous

Markovian processes. The Black-Sholes economy for stocks and foreign exchange

rates and the Cox-Ingersol-Ross economy for spot interest rate are special cases of

this framework. Since this is the simplest situation in our framwork, our method

can be rather explained in a straightforward way and the resulting formulae are

relatively simple. Also it is relatively straightforward to examine the accuracy

of the resulting approximations in the present case. We shall demonstrate that
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they are accurate for many practical purposes. In a companion of this paper, Ku-

nitomo and Takahashi (1995) have applied the asymptotic expansion approach

to the valuation problem of interest rates based contingent claims. Since they

have directly dealt with the stochastic processes for forward rates which are not

necessarily Markovian as we usually define in the standard stochastic analysis,

they need some discussions on the special features of the approach to obtain a

rigorous mathematical validity. However, non-Markovian processes can be rep-

resented by multi-dimensional Markovian processes in most cases and hence the

method discussed in this paper could be also applied to the HJM framework.

The organization of this paper is as follows. In Section 2 we explain the basic

method in the Black-Scholes economy where there is a constant risk-free interest

rate and the underlying asset price follow a one-factor stochastic process of the

general Markovian type. Then in Section 3 we shall apply our approach to sev-

eral problems including basket options, average options, options with stochastic

volatilities, and illustrate the general applicability of our approach to many other

problems. In Section 4 we shall investigate some numerical examples. We report

the accuracy of numerical pricing values when the underlying asset prices are the

square−root process and the log−normal process as examples in particular. In

Section 5, we shall give some concluding remarks on the asymptotic expansion

approach and discuss some generalizations. Finally the mathematical validity of

our approach will be discussed in the Appendix.

2 The Asymptotic Expansion Approach

The stochastic processes we mainly consider in this paper can be described by

the stochastic differential equation of Markovian type. More explicitly, in the

Black-Scholes economy, each underlying asset process {S(δ)(t)} follows

dS(δ) = rS(δ)dt+ δ
N∑

i=1

σi(S
(δ), t)dw̃it(2.1)

under the equivalent martingale measure, where 0 < δ ≤ 1, w̃it = (w̃i(t)) are

independent standard Brownian motions, and r is a positive constant. In the

Black-Scholes economy the interest rate of the riskless asset is constant and the

risky assets follow the continuous Markov processes. There is a strong restriction

imposed on the drift coefficients because we shall use the no-arbitrage theory

which has been standard in financial economics while the volatility functions

depend on both time and the underlying asset price. We emphasize that our
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method can be applicable to more general situations and we shall discuss this

issue briefly in Section 5.

In this section, in order to illustrate and clarify the basic method of the

asymptotic expansion approach, we take the Black-Scholes economy when N = 1.

More general Markovian cases will be explained in Section 3 and the validity of

our approach will be discussed in the Appendix. Thus the derivations in the next

two sections are formal in the proper mathematical sense. When N = 1, there is

one factor and the volatility function depends on time and the underlying asset

price in the economy. Hence it includes the standard Black-Scholes model, the

CEV (Constant Elasticity of Variance) processes, and the processes derived as

the continuous limit of the implied trees in our framework. For instance, the

Cox-Ingersol-Ross model for the spot interest rate is a special case of the CEV

processes.

The asymptotic expansion approach we are proposing consists of two steps.

First, we make the detailed derivation of the asymptotic expansion for the density

function of the normalized price of the risky asset. Next, by making use of the ap-

proximated density function, we can derive new formulas for the valuation of the

contingent claims when the underlying asset follows an approximated stochastic

Markov process. In this section we shall illustrate these steps by deriving some

explicit formulas for the plain vanila options.

2.1 The Asymptotic Expansion Approach to the Black-

Sholes Economy

We consider an economy where there is one risky asset and a riskless asset. The

volatility function in the risky asset process depends on the current level of the

asset and the current time. We assume that the process of the risky asset is

described by

dS(δ) = rS(δ)dt+ δσ(S(δ), t)dw̃t(2.2)

and the process of the riskless bond price {Bt} is determined by

dB = rBdt ,(2.3)

where 0 < δ ≤ 1, w̃t = (w̃(t)) is a one-dimensional standard Brownian motion,

and r is a positive constant. Alternatively, the integral form of the risky asset

process can be expressed as

S(δ)(t) = S(0) + r
∫ t

0
S(δ)(s)ds+ δ

∫ t

0
σ(S(δ), s)dw̃(s) .(2.4)
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Our first task is to obtain an asymptotic expansion of the random variable S(δ)(t)

around δ = 0 . By inserting δ = 0 in (2.4), we have a deterministic process

described by the differential equation

S(0)(t) ≡ lim
δ→0

S(δ)(t) = S(0) + r
∫ t

0
S(0)ds.

By solving the above equation, we have the solution as

S(0)(t) = ertS(0) .(2.5)

Next, we shall expand the integral equation (2.4) with respect to δ in a formal

way. In order to calculate the first order coefficient of δ, let

A(t) =
∂S(δ)(t)

∂δ
|δ=0.

By differentiating (2.4) with respect to δ, we obtain the stochastic differential

equation which A(t) must follow :

dA(t) = rA(t)dt+ σ(S(0), t)dw̃(t) .

This stochastic differential equation can be solved as

A(t) =
∫ t

0
er(t−s)σ(S(0), s)dw̃(s) .(2.6)

By expanding (2.4) twice and three times with respect to δ, we can also obtain

the second and third order coefficients of δ. For this purpose, let

B(t) =
∂2S(δ)(t)

∂δ2
|δ=0.

Then we obtain the stochastic differential equation of B(t) :

dB(t) = rB(t)dt+ 2∂σ(S(0), t)A(t)dw̃(t) ,

where we have used the notation for convenience

∂σ(S(0), t) ≡ ∂σ(S(δ), t)

∂S(δ)
|S(δ)=S(0) .

We can solve the above stochastic differential equation and B(t) can be expressed

as

B(t) = 2
∫ t

0
er(t−s)∂σ(S(0), s)A(s)dw̃(s) .(2.7)

We repeat the above construction and let also

C(t) =
∂3S(δ)(t)

∂δ3
|δ=0 .
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Then we have the stochastic differential equation :

dC(t) = rC(t)dt+ 3∂2σ(S(0), t)A(t)2dw̃(t) + 3∂σ(S(0), t)B(t)dw̃(t) .

Hence C(t) can be expressed as

C(t) = 3
∫ t

0
er(t−s)∂2σ(S(0), s)A(s)2dw̃(s) + 3

∫ t

0
er(t−s)∂σ(S(0), s)B(s)dw̃(s).(2.8)

By summarizing the above terms up to O(δ3), we have a formal asymptotic ex-

pansion of the random variable S(δ)(t). We state our reslut as the following propo-

sition.

Proposition 2.1 An asymptotic expansion of the price of the risky asset, S(δ)(t)

at any particular time point t, as δ → 0 is given by

S(δ)(t) = S(0)(t) + δA(t) + δ2B(t)

2
+ δ3C(t)

6
+ o(δ3) ,(2.9)

where A(t), B(t), and C(t) are defined by (2.6), (2.7) and (2.8), respectively.

Since S0 is a deterministic function of time, A(t) in the above expression

follows a normal distribusion. By a simple calculation

A(t) ∼ N(0,ΣAt) ,(2.10)

where

ΣAt =
∫ t

0
e2r(t−s)σ(S(0), s)2ds .(2.11)

Next we shall derive an asymptotic expansion of the density function of the

random variable X
(δ)
t . For this purpose we normalize X

(δ)
t around the determin-

istic process S0 and let

X
(δ)
t = {S

(δ)(t) − S(0)(t)

δ
} = A(t) + δ

B(t)

2
+ δ2C(t)

6
+ · · ·(2.12)

≡ g1 + δg2 + δ2g3 + · · · ,

where we have implicitly defined gi (i = 1, 2, 3) . Since we know that

g1 ∼ N(0,ΣAt) = N(0,Σg1) ,(2.13)

an asymptotic expansion of the density function of X
(δ)
t can be obtained as the

normal density function combined with the adjusted terms as δ → 0. In order

to obtain the explicit functional forms of the adjusted terms, we shall use the

inversion method based on the characteristic function which will be explained
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below. First, we make the following assumption in all the subsequent analyses of

this paper.

Assumption I : The variance of the random variable X
(δ)
t , Σg1 , is positive

for any t.

From (2.11) this condition is satisfied if σ(S0, t) > 0 for some t. Next, we

define the characteristic function of the random variable X(δ)(t) by

ψ(ξ) = E[eiξX
(δ)
t ] ,

where E[·] is the expectation operator. Then, the characteristic function ψ(ξ)

itself can be formally expanded along the polynomial orders of δ as δ → 0 :

ψ(ξ) = E[eiξ(g1+δg2+δ2g3+···)]

= E[eiξg1{1 + δ(iξ)g2 + δ2(iξ)g3 +
δ2

2
(iξ)2g2

2 + · · ·}]
= E[eiξg1] + δ(iξ)E[eiξg1g2] + δ2(iξ)E[eiξg1g3]

+
δ2

2
(iξ)2E[eiξg1g2

2] + · · ·

= e
(iξ)2Σg1

2 + δ(iξ)E
[
eiξxE[g2|g1 = x]

]
+ δ2(iξ)E

[
eiξxE[g3|g1 = x]

]
+

1

2
δ2(iξ)2E

[
eiξxE[g2

2|g1 = x]
]
+ · · · ,

where E[·|g1] is the conditional expectation operator given g1. Then we can ex-

plicitly evaluate each term in this expansion of the characteristic function. First,

we shall show that E[g2|g1 = x], E[g3|g1 = x], and E[g2
2|g1 = x] are some polyno-

mial functions of x, which will be denoted as h2(x),h3(x), and h22(x), respectively.

To do this, we present useful formulae to evaluate those conditional expectations

which will be used repeatedly in this paper.

Lemma 2.1 (1) Let �̃wt be an N dimensional Brownian motion. Let �x be a k

dimensional vector. Suppose q1(t) be a R1 �→ Rk×N non-stochastic function.

Suppose also q2(t) and q3(t) be R1 �→ Rm×N non-stochastic functions.

Then,

E

[∫ t

0

[∫ s

0
q2(u)d �̃wu

]�
q3(s)d �̃ws|

∫ T

0
q1(u)d �̃wu = �x

]

= trace
∫ t

0

∫ s

0
Σ−1

g1
q1(s)q3(s)

�q2(u)q1(u)�Σ−1
g1

[
�x�x� − Σg1

]
duds.
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(2) Let �̃wt be an N dimensional Brownian motion. Let �x be a k dimensional

vector. Suppose q1(t) be a R1 �→ Rk×N non-stochastic function. Suppose also

�q2(t) and �q3(t) be R1 �→ RN non-stochastic functions.

Then,

E

[[∫ t

0
�q2(u)d �̃wu

] [∫ t

0
�q3(s)d �̃ws

]
|
∫ T

0
q1(u)d �̃wu = �x

]

=
∫ t

0
�q2(u)�q3(u)

�du+
[∫ t

0
�q2(u)q1(u)

�du
]
Σ−1

g1

[
�x�x� − Σg1

]
Σ−1

g1

[∫ t

0
q1(s)�q3(s)

�ds
]
.

(3) Let �̃wt be an N dimensional Brownian motion. Let �x be a k dimensional

vector. Suppose q1(t) be a R1 �→ Rk×N non-stochastic function. Suppose also

�q2(t), �q3(t) and �q4(t) be R1 �→ RN non-stochastic functions.

Then,

E

[∫ t

0

[∫ s

0
�q2(u)d �̃wu

] [∫ s

0
�q3(u)d �̃wu

]
�q4(s)d �̃ws|

∫ T

0
q1(u)d �̃wu = �x

]

=
∫ t

0

∫ s

0

∫ s

0

[
�q2(v)q1(v)

�Σ−1
g1

[
�x�x� − Σg1

]
Σ−1

g1
q1(u)�q3(u)

��q4(s)q1(s)�Σ−1
g1
�x

− �q4(s)q1(s)
�Σ−1

g1
q1(v)

[
�q3(v)

��q2(u) + �q2(v)
��q3(u)

]
q1(u)

�Σ−1
g1
�x

]
dudvds

+
∫ t

0

∫ s

0
�q2(u)�q3(u)

��q4(s)q1(s)�Σ−1
g1
�xduds

(4) Let �̃wt be an N dimensional Brownian motion. Let �x be a k dimensional

vector. Suppose q1(t) be a R1 �→ Rk×N non-stochastic function. Suppose also

�q2(t), �q3(t) and �q4(t) be R1 �→ RN non-stochastic functions.

Then,

E

[∫ t

0

∫ s

0

[∫ v

0
�q2(u)d �̃wu

]
�q3(v)d �̃wv �q4(s)d �̃ws|

∫ T

0
q1(u)d �̃wu = �x

]

=
∫ t

0

∫ s

0

∫ v

0

[
�q2(u)q1(u)

�Σ−1
g1
�x

] [
�x�Σ−1

g1
q1(v)�q3(v)

�] [
�q4(s)q1(s)

�Σ−1
g1
�x

]
dudvds

−
∫ t

0

∫ s

0

∫ v

0

[
�q2(u)q1(u)

�] [
Σ−1

g1
q1(v)�q3(v)

�] [
�q4(s)q1(s)

�]
Σ−1

g1
�xdudvds

−
∫ t

0

∫ s

0

∫ v

0

[
�q3(v)q1(v)

�] [
Σ−1

g1
q1(s)�q4(s)

�] [
�q2(u)q1(u)

�]
Σ−1

g1
�xdudvds

−
∫ t

0

∫ s

0

∫ v

0

[
�q4(s)q1(s)

�] [
Σ−1

g1
q1(u)�q2(u)

�] [
�q3(v)q1(v)

�]
Σ−1

g1
�xdudvds

(5) Let �̃wt be an N dimensional Brownian motion. Let �x be a k dimensional
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vector. Suppose q1(t) be a R1 �→ Rk×N non-stochastic function. Suppose also

�q2(t), �q3(t) �q4(t), and �q5(t) be R1 �→ RN non-stochastic functions.

Then,

E

[[∫ t

0

[∫ s

0
�q2(u)d �̃wu

]
�q3(s)d �̃ws

] [∫ t

0

[∫ s

0
�q4(u)d �̃wu

]
�q5(s)d �̃ws

]
|
∫ T

0
q1(u)d �̃wu = �x

]

=
∫ t

0

∫ t

0

∫ s

0

∫ v

0

[
�q2(u)q1(u)

�Σ−1
g1

[
�x�x� − Σg1

]
Σ−1

g1
q1(s)�q3(s)

�×
�q4(u

′
)q1(u

′
)�Σ−1

g1

[
�x�x� − Σg1

]
Σ−1

g1
q1(v)�q5(v)

�

− �q2(u)q1(u)
�Σ−1

g1

[
q1(v)�q5(v)

��q4(u
′
)q1(u

′
) + q1(v)�q4(v)

��q5(u
′
)q1(u

′
)�

]
×

Σ−1
g1

[
�x�x� − Σg1

]
Σ−1

g1
q1(s)�q3(s)

�

− �q3(s)q1(s)
�Σ−1

g1

[
q1(v)�q5(v)

��q4(u
′
)q1

�(u
′
) + q1(u

′
)�q4(u

′
)��q5(v)q1(v)�

]
×

Σ−1
g1
�x�x�Σ−1

g1
q1(u)�q2(u)

�]
du

′
dudvds

+
∫ t

0

∫ s

0

∫ u

0
�q3(s)q1(s)

�Σ−1
g1

[
�x�x� − Σg1

]
Σ−1

g1
q1(u

′
)�q4(u

′
)��q5(u)�q2(u)�du

′
duds

+
∫ t

0

∫ s

0

∫ u

0
�q2(u

′)q1(u′)�Σ−1
g1

[
�x�x� − Σg1

]
Σ−1

g1
q1(s)�q5(s)

��q3(u)�q4(u)�du
′
duds

+
∫ t

0
�q3(s)q1(s)

�Σ−1
g1

[
�x�x� − Σg1

]
Σ−1

g1

[∫ s

0
q1(v)�q5(v)

�
∫ v

0
�q2(u)�q4(u)

�dudv
]
ds

+
∫ t

0

[∫ v

0

∫ s

0
�q2(u)�q4(u)

�du�q3(s)q1(s)�ds
]
Σ−1

g1

[
�x�x� − Σg1

]
Σ−1

g1
q1(v)�q5(v)

�dv

+
∫ t

0

[∫ s

0
�q2(u)q1(u)

�du
]
Σ−1

g1

[
�x�x� − Σg1

]
Σ−1

g1

[∫ s

0
q1(u)�q4(u)

�du
]
�q3(s)�q5(s)

�ds

+
∫ t

0

∫ s

0
�q3(s)�q5(s)

��q2(u)�q4(u)�duds

Formulas (1) and (2) are slight generalizations of Lemma 5.7 of Yoshida (1992a),

which are already reported as Lemma 6.1 of Kunitomo and Takahashi (1995).

Formulas (3), (4) and (5) are the direct results of calculations by utilizing the

Gaussianity of continuous processes involved. Since they are quite tedious but

straightforward to be done, we omit their derivations.

By using Lemma 2.1, we can evaluate the conditional expectations appeared

in the asymptotic expansion of the characteristic function. First, by applying

formula(1) to E[g2|g1 = x], we have

E[g2|g1 = x] = cx2 + f(2.14)

where

c =
1

Σ2
g1

∫ t

0
er(t−s)σ(S(0), s)∂σ(S(0), s)

∫ s

0
e2r(t−v)σ(S(0), v)2dvds ,
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and

f = −cΣg1 .

Second, we evaluate E[g3|g1 = x] by using formula(3) and formula(4) . We

note that

g3 =
C(t)

6

=
1

2
ert

∫ t

0

[
ers∂2σ(S(0), s)

] [∫ s

0
e−rvσ(S(0), v)dw̃(v)

]2

dw̃(s)

+ ert
∫ t

0
∂σ(S(0), s)

∫ s

0
∂σ(S(0), v)

∫ v

0
e−ruσ(S(0), u)dw̃(u)dw̃(v)dw̃(s) .

By applying formula(3) and formula(4) to the first and second term of E[g3|g1 =

x], respectively, we obtain

E [g3|g1 = x] =
1

2
ert[x3c11 + xf11] + ert[x3c12 + xf12](2.15)

where

c11 =
1

Σ3
g1

e3rt
∫ t

0

[∫ s

0
e−2rvσ(S(0), v)2dv

]2

∂2σ(S(0), s)σ(S(0), s)ds ,

f11 =
1

Σg1

ert
∫ t

0

[∫ s

0
e−2rvσ(S(0), v)2dv

]
∂2σ(S(0), s)σ(S(0), s)ds− 3Σg1c11 ,

c12 =
1

Σ3
g1

e3rt
∫ t

0

[
e−rsσ(S(0), s)∂σ(S(0), s)

] ∫ s

0

[
e−rvσ(S(0), v)∂σ(S(0), v)

]
∫ v

0

[
e−2ruσ(S(0), u)2

]
dudsdt

and

f12 = −3Σg1c12 .

Alternatively, we can write

E [g3|g1 = x] = c1x
3 + f1x(2.16)

where

c1 =
1

2
ertc11 + ertc12

and

f1 =
1

2
ertf11 + ertf12 .

Similarly, by using formula(5), we can show that by the use of the constants

c2, f2 and k2,

E
[
g2

2|g1 = x
]

= c2x
4 + f2x

2 + k2 ,(2.17)
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where

c2 = e2rt 1

Σ4
g1

× l

f2 = e2rt

[−6

Σ3
g1

× l +
1

Σ2
g1

× (2m+ n+ o)

]

k2 = e2rt

[
3

Σ2
g1

× l +
1

Σg1

× (−2m− n− o)

]
,

and we have defined l, m, n and o as follows;

l = e4rt
[∫ t

0
e−rsσ(S(0), s)∂σ(S(0), s)

∫ s

0
e−2ruσ(S(0), u)2duds

]2

m = e2rt
∫ t

0
e−rsσ(S(0), s)∂σ(S(0), s)

∫ s

0
e−rvσ(S(0), v)∂σ(S(0), v)

∫ v

0
e−2ruσ(S(0), u)2dudvds

n = 2e2rt
[∫ t

0
e−rsσ(S(0), s)∂σ(S(0), s)

∫ s

0
e−rvσ(S(0), v)∂σ(S(0), v)

∫ v

0
e−2ruσ(S(0), u)2dudvds

]

o = e2rt
∫ t

0
[∂σ(S(0), s)]2

[∫ s

0
e−2ruσ(S(0), u)2du

]2

ds

By collecting terms of the asymptotic expansion, we obtain a simpler form of the

characteristic function as

ψ(ξ) = e
(iξ)2Σg1

2 + δ(iξ)E
[
eiξxh2(x)

]
+ δ2(iξ)E

[
eiξxh3(x)

]

+
δ2

2
(iξ)2E

[
eiξxh22(x)

]
+ · · · .

The explicit formulas of the expectations such as E
[
eiξxh2(x)

]
, E

[
eiξxh3(x)

]
,

and E
[
eiξxh22(x)

]
in ψ(ξ) can be easily obtained due to the Gaussianity of the

leading term.

As the final step to obtain the asymptotic expansion of the density function

of X(δ)(t), we need to invert ψ(ξ) (i.e. the inverse Fourier transformation). We

make use of the following formula, which has been given by Fujikoshi etal.(1982),

to summarize both steps of evaluating characteristic function and implementing

the inverse-Fourier transformation.

Lemma 2.2 Suppose that �x follows N-dimensional normal distribution with mean
�0 and variance-covariance matrix Σ . Then, for any polynomial functions h(·) and

g(·),
F−1

[
g(−i�ξ)E

[
h(�x)eiξ��x

]]
<�ω>

= g

[
∂

∂�ω

]
h(�ω)n[�ω;�0,Σ],(2.18)

where

F−1
[
g(−i�ξ)E

[
h(�x)eiξ��x

]]
<�ω>

= (
1

2π
)N

∫
RN

e−iξ��ωg(−i�ξ)E
[
h(�x)eiξ��x

]
d�ξ,

11



the expectation E [·] is taken over x, and F−1 [·]<�ω> denotes F−1 [·] being evaluated

at �ω.

The proof of this lemma is simple. If we notice that

(
1

2π
)N

∫
RN

e−iξ��ωE
[
h(�x)eiξ��x

]
d�ξ = h(�ω)n[ω;�0,Σ] ,

then by differenciating both sides with respect to the elements of �ω , we can

obtain the result.

As the final step, by applying each term in the asymptotic expansion of the

characteristic function, we can obtain the corresponding asymptotic expansion of

the density function of X
(δ)
t , which is denoted by f

X
(δ)
t
, as

f
X

(δ)
t

∼ n[x; 0,Σg1 ] + δ

[
− ∂

∂x
{h2(x)n[x; 0,Σg1 ]}

]

+ δ2

[
− ∂

∂x
{h3(x)n[x; 0,Σg1 ]}

]
+

1

2
δ2

[
∂2

∂x2
{h22(x)n[x; 0,Σg1 ]}

]
+ · · · .

where

X
(δ)
t =

S(δ)(t) − S(0)(t)

δ
,

and the density function of the Gaussian distribution is given by

n[x; 0,Σg1 ] =
1√

2πΣg1

exp

[
− x2

2Σg1

]
.

Using the polynomial functions of h2(x),h3(x), and h22(x), we can obtain more

explicit form of the density function. For later use, we state our result as the

following theorem.

Theorem 2.1 An asymptotic expansion of the density function of X
(δ)
t = [S(δ)(t)−

S(0)(t)]/δ as δ → 0 is given by

f
X

(δ)
t

= n[x; 0,Σg1](2.19)

+ δ

[
{ c

Σg1

x3 + (
f

Σg1

− 2c)x}n[x; 0,Σg1]

]

+ δ2

[
{ c2
2Σ2

g1

x6 + (
f2

2Σ2
g1

− 9c2
2Σg1

+
c1
Σg1

)x4

+ (
k2

2Σ2
g1

− 5f2

2Σg1

+
f1

Σg1

− 3c1 + 6c2)x
2 + (−f1 − k2

2Σg1

+ f2)}n[x; 0,Σg1 ]

]

+ o(δ2) .
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We again note that the asymptotic expansion we have obtained is formal in the

proper mathematical sense and it may not be a valid expansion of the density

function. However, we can give a rigorous mathematical validity as we shall

discussed in Section 6. The mathematical devices to justify our approach are

far from standard ones mainly because the continuous diffusion processes are

involved.

2.2 A New Computational Method for Options

We next show how to evaluate plain vanilla options with the general volatility

function by using an asymptotic expansion of the density function of X
(δ)
t ob-

tained previously. This is the simplest case which illustrates our approach to the

valuation problems of more complicated contingent claims. The payoffs of plain

vanilla options are defined as

V (T ) = (S(T ) −K)+

or

V (T ) = (K − S(T ))+ ,

where (X)+ = max(X, 0). We shall use the martingale technique which has been

standard in financial economics and the value at the initial date is given by

V (0) = e−rTE∗[V (T )](2.20)

where the expectation is taken under the equivalent martingale measure. Because

we have imposed a restriction on the drift function in the Black-Scholes economy,

this expectation is the same as the expectation operator E(·) we have already

used.

In the following, we only consider the asymptotic expansion of a call option

because that of a put option is obtained in the similar manner. We note that by

using X
(δ)
T , the V (T ) can be expressed as

V (T ) = δ

[
S(0)(T ) −K

δ
+X

(δ)
T

]+

= δ
[
y(δ) +X

(δ)
T

]+
,(2.21)

where

y(δ) =
S(0)(T ) −K

δ
.

In order to evaluate the terminal payoff function at the initial period, we need an

assumption.

13



Assumption II : There exists a constant y such that

y(δ) = y +O(δ).

The above condition means that we are considering the situation where the

strike price is near S(0)(T ) = erTS0. It corresponds to that we are considering

the valuation of call options when the strike price is near the forward value of the

underlying asset at the contracting period, that is, Kδ = S(0)(T ) − δy + O(δ2).

For the notational convenience, we omit δ of the strike price Kδ and will use

the notation K as before. This assumption could be relaxed to a certain extent,

but then there could be some more complications in the following analyses. We

shall use the formulas E[g2|g1 = x] = cx2 + f, E[g3|g1 = x] = c1x
3 + f1x, and

E[g2
2|g1 = x] = c2x

4 + f2x
2 + k2, where c, f, c1, f1, c2, f2 and k2 are defined in the

previous subsection. By substituting these formulas into the terminal payoff of

the call options, we can obtain the initial value of the call option. The resulting

expression is given by

V (0) = e−rT δE[(y(δ) +X
(δ)
T )+]

= e−rT δ
[
y(δ)

∫ ∞

−y(δ)
f

X
(δ)
T

(x)dx+
∫ ∞

−y(δ)
xf

X
(δ)
T

(x)dx
]

∼ e−rT δ

[
(y + a1δ + a2δ

2)
∫ ∞

−(y+a1δ+a2δ2)
n[x; 0,Σg1 ]dx

+ δ(y + a1δ + a2δ
2)

∫ ∞

−(y+a1δ+a2δ2)

−∂{(cx2 + f)n[x; 0,Σg1]}
∂x

dx

+ δ2(y + a1δ + a2δ
2)

∫ ∞

−(y+a1δ+a2δ2)

−∂{(c1x3 + f1x)n[x; 0,Σg1 ]}
∂x

dx

+
1

2
δ2(y + a1δ + a2δ

2)
∫ ∞

−(y+a1δ+a2δ2)

∂2{(c2x4 + f2x
2 + k2)n[x; 0,Σg1]}
∂x2

dx

+
∫ ∞

−(y+a1δ+a2δ2)
xn[x; 0,Σg1 ]dx+ δ

∫ ∞

−(y+a1δ+a2δ2)
x
−∂{(cx2 + f)n[x; 0,Σg1 ]}

∂x
dx

+ δ2
∫ ∞

−(y+a1δ+a2δ2)
x
−∂{(c1x3 + f1x)n[x; 0,Σg1 ]}

∂x
dx

+
1

2
δ2

∫ ∞

−(y+a1δ+a2δ2)
x
∂2{(c2x4 + f2x

2 + k2)n[x; 0,Σg1 ]}
∂x2

dx

]

where we use y(δ) ∼ y + a1δ + a2δ
2 for some constants y, a1, and a2. In the

following theorem, we present a more explicit formula upto the third order which

may be convenient to evaluate the value of the call option. 1

1 In numerical computation of section 4, given S(0)(T ), δ and K, we substitute actual y(δ)

for y and set a1 = a2 = 0 in the formula, which shows enough accuracy for practical purpose.

14



Theorem 2.2 Under Assumption II, an asymptotic expansion of the price of a

call option with the general volatility function is given by

V (0) = e−rT

⎡
⎣δ

⎛
⎝yN(

y

Σ
1
2
g1

) + Σg1n[y; 0,Σg1]

⎞
⎠(2.22)

+ δ2

⎛
⎝(cΣg1 + f + a1)N(

y

Σ
1
2
g1

) − cyΣg1 n[y; 0,Σg1]

⎞
⎠

+ δ3

⎛
⎝a2N(

y

Σ
1
2
g1

) + {c1(2Σ2
g1

+ y2Σg1) + f1Σg1 +
1

2
(c2y

4 + f2y
2 + k2)

+ (
1

2
a2

1 + ca1y
2 + a1f)}n[y; 0,Σg1]

)]
+ o(δ3).

The proof is a result of the straightforward calculation from the previous

equation for V(0). In order to derive (2.22) and to evaluate the integrals which

would appear in the coefficients of δk, k ≥ 4, the following formulae are useful.

We omit the proofs because they are easily obtained by the repeated applications

of integration by parts operations.∫ ∞

−y
xn[x; 0,Σg1 ]dx = Σg1n[y; 0,Σg1] ,∫ ∞

−y
x2n[x; 0,Σg1 ]dx = Σg1N(

y

Σ
1
2
g1

) − yΣg1n[y; 0,Σg1] ,

∫ ∞

−y
x3n[x; 0,Σg1 ]dx = (2Σ2

g1
+ Σg1y

2)n[y; 0,Σg1] ,∫ ∞

−y
x4n[x; 0,Σg1 ]dx = 3Σ2

g1
N(

y

Σ
1
2
g1

) − (3Σ2
g1
y + Σg1y

3)n[y; 0,Σg1] ,

∫ ∞

−y
x5n[x; 0,Σg1 ]dx = (8Σ3

g1
+ 4Σ2

g1
y2 + Σg1y

4)n[y; 0,Σg1] ,∫ ∞

−y
x6n[x; 0,Σg1 ]dx = 15Σ3

g1
N(

y

Σ
1
2
g1

) − (15Σ3
g1
y + 5Σ2

g1
y3 + Σg1y

5)n[y; 0,Σg1] ,

∫ ∞

−y
x7n[x; 0,Σg1 ]dx = (48Σ4

g1
+ 24Σ3

g1
y2 + 6Σ2

g1
y4 + Σg1y

6)n[y; 0,Σg1] .

3 Applications

Our new computational method previously presented is so general that it can be

applicable to various problems in the valuation of contingent claims in the unified

manner. To demonstrate this, we show three examples in this section, the pricing

of basket options, average options, and options with stochastic volatilities. It has

been known that the explicit formulas are hardly obtainable for these problems

15



even when the underlying asset price follows the geometric Brownian motion

case as in the original Black-Scholes model. On the other hand, all examples

in this section are evaluated under the assumption that underlying assets and

factors follow the general class of Markov processes, which are not necessarily

time homogeneous.

3.1 Basket Options

We consider the pricing of basket options (including so called ”spread” options)

which is a natural extension of plain vanilla options by using our method. We

formally define ”basket” I(t) as

I(t) =
N∑

j=1

αjSj(t)(3.23)

where Sj(t) denotes the the price of the j th risky asset which is a component of

the basket. We note that, as a special case, the ”spread” is defined by αj1 = 1 ,

αj2 = −1, j2 �= j1 and j = 0 for j �= j1, j2 in I(t). That is,

I(t) = Sj1(t) − Sj2(t).

Then the payoffs of the basket options are expressed as

V (T ) = (I(T ) −K)+

or

V (T ) = (K − I(T ))+

. In what follows, we consider call options and we set V (T ) = (I(T ) −K)+. For

the present pricing problem, we consider the Black-Sholes economy where there

are risky assets, each of which may depend on N independent Brownian motions.

dS
(δ)
j (t) = rS

(δ)
j (t)dt + δ

N∑
i=1

σi(S
(δ)
j (t), t)dw̃i(t) ,(3.24)

where

dB = rBdt ,

r is a positive constant, and 0 < δ ≤ 1 .

In this formulation we note that δ can differ in j and can be δi, but then

we redefine δ such that δ = min[δi]i and we have the same expression of

the processes as above. Also we shall use the notations, σδ
ij(t) and ∂jσ

0
ij(t) for

16



σi(S
(δ)
j (t), t), and

∂σi(S
(δ)
j ,t)

∂S
(δ)
j

|
S

(δ)
j =S

(0)
j

, respectively. Then, following the steps in the

previous subsection, for each j we define

S
(0)
j (t) ≡ lim

δ→0
S

(δ)
j (t) = ertSj(0)

Aj(t) ≡ ∂S
(δ)
j (t)

∂δ
|δ=0 =

∫ t

0
er(t−s)

N∑
i=1

σ0
ij(t)dw̃i(s)

Bj(t) ≡ ∂2S
(δ)
j (t)

∂δ2
|δ=0 = 2

∫ t

0
er(t−s)

N∑
i=1

∂jσ
0
ij(s)Aj(s)dw̃i(s)

and

Cj(t) ≡ ∂3S
(δ)
j (t)

∂δ3
|δ=0

= 3
∫ t

0
er(t−s)

N∑
i=1

∂2
jσ

0
ij(s)Aj(s)

2dw̃i(s) + 3
∫ t

0
er(t−s)

N∑
i=1

∂jσ
0
ij(s)Bj(s)dw̃i(s) .

Then, as in the previous subsection, we can obtain the asymptotic expansion of

each risky asset as S
(δ)
j (t) (j = 1, 2, · · · , N).

S
(δ)
j (t) = S

(0)
j (t) + δAj(t) + δ2Bj(t)

2
+ δ3Cj(t)

6
· · · .

Because the ”basket” I(δ)(t) is a linear combination of finite number of risky

assets S
(δ)
j (t) (j = 1, 2, · · · , N), we can easily obtain the asymptotic expansion of

the random variable of the basket :

I(δ)(t) ∼
N∑

j=1

αjS
(0)
j (t) + δ

N∑
j=1

αjAj(t) +
δ2

2

N∑
j=1

αjBj(t) +
δ3

6

N∑
j=1

αjCj(t) + · · · .

Next, as in the previous subsection, we define X(δ)(t) for which we can explicitly

obtain the density function. Let

X(δ)(t) ≡ I(δ)(t) − I(0)(t)

δ
∼ g1 + δg2 + δ2g3 + · · ·(3.25)

where

g1 =
∫ t

0
er(t−s)�σ

(0)
I (s)�d�̃w(s),

g2 = ert
N∑

j=1

αj

∫ t

0

[∫ s

0
e−rv�σ0

j (v)
�d�̃w(v)

]
∂j�σ

0
j (s)

�d�̃w(s) .

�σ
(0)
I (s), �σ0

j (s) and ∂j�σ
0
j (s) denoteN dimensional vectors of which the i-th elements

are
∑N

j=1 αjσ
0
ij(s), σ

0
ij(s) and ∂jσij(s) respectively. Because the integrand of g1 is

a deterministic function, g1 follows the Gaussian distribution and we can write

g1 ∼ N(0,Σg1) ,
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where

Σg1 ≡
∫ t

0
e2r(t−s)�σ

(0)
I (s)��σ(0)

I (s)ds .

For the pricing problem of the call basket options, we need to evaluate the con-

ditional expectations such as E[g2|g1 = x], E[g3|g1 = x], and E[g2
2|g1 = x]. By

using formulae in Lemma 2.1, we can evaluate those expectations. For example,

by applying formula(1), we obtain

E[g2|g1 = x] = cx2 + f ,(3.26)

where

c = ert
N∑

j=1

αjcj ,

f = ert
N∑

j=1

αjfj ,

cj =
1

Σ2
g1

e2rt
∫ t

0

[∫ s

0
e−2rv�σ

(0)
I (v)��σ0

j (v)dv
]
e−rs�σ

(0)
I (s)�∂j�σ

0
j (s)ds ,

and

fj = −Σg1cj .

Therefore, by applying the pricing formula in Theorem 2.2 and replacing y(δ) by

y(δ) ≡ [I(0)(T )−K]/δ, we can obtain the initial value of the basket (call) option.

3.2 Average Options

We next consider as a more complicated example the average options commonly

known as ”Asian Options” in the simple Black-Scholes economy with the general

volatility function. The payoffs of the average options are defined as

V (T ) = (Z(δ)(T ) −K)+(3.27)

or

V (T ) = (K − Z(δ)(T ))+ ,

where

Z(δ)(T ) =
1

T

∫ T

0
S(δ)(t)dt .

Then the value of average options at the initial date can be again expressed as

V (0) = e−rTE[V (T )].
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In what follows, we evaluate the call options as an example. In the average option

case, we consider the asymptotic expansion of the functional of the risky asset

Z(δ)(T ) and we have

Z(δ)(T ) = Z(0)(T ) +
1

T

∫ T

0
A(t)dt+ δ

1

T

∫ T

0

B(t)

2
dt

∫ T

0

C(t)

6
dt+ · · · ,(3.28)

where

Z(0)(T ) ≡ lim
δ→0

Z(δ)(T ) =
1

T

∫ T

0
S(0)(t)dt .

By defining X
(δ)
T for which we obtain the density function as

X
(δ)
T =

Z(δ)(T ) − Z(0)(T )

δ
,

the the stochastic expansion of X
(δ)
T is given by

X
(δ)
T = g1 + δg2 + δ2g3 + · · · ,

where

g1 =
∫ T

0
A(t)dt,

g2 =
∫ T

0

B(t)

2
dt,

and

g3 =
∫ T

0

C(t)

6
dt .

We note that the leading term in the average options case also can be written

as

g1 =
∫ T

0

1

T

[
er(T−s) − 1

r

]
σ(S(0), s)dw̃(s) .(3.29)

Because of the same reason as before, g1 follows a normal distribution. The

variance of the Gaussian random variable can be calculated as

g1 ∼ N(0,Σg1) ,(3.30)

where

Σg1 =
∫ T

0

1

T 2

[
er(T−s) − 1

r

]2

σ(S(0), s)2ds .

By following the same method as in the previous sebsection, we can express the

asymptotic expansion of the density function as

f
X

(δ)
T

∼ n[x; 0,Σg1 ] + δ
−∂{E[g2|g1 = x]n[x; 0,Σg1 ]}

∂x

+ δ2−∂{E[g3|g1 = x]n[x; 0,Σg1 ]}
∂x

+
1

2
δ2∂

2{E[g2
2|g1 = x]n[x; 0,Σg1 ]}

∂x2
+ · · · .
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Then, we need to evaluate the conditional expectations such as E[g2|g1 = x],

E[g3|g1 = x], and E[g2
2|g1 = x].

For instance, noting g2 = 1
T

∫ T
0

∫ t
0 e

rt∂σ(S(0), s)
∫ s
0 e

−rvσ(S(0), v)dw̃(v)dw̃(s)dt, and

using the formula(1) in Lemma 2.1, we can show

E[g2|g1 = x] = cx2 + f ,(3.31)

where

c =
1

Σ2
g1

1

T 3

∫ T

0

∫ t

0
ert

[
er(T−s) − 1

r

]
σ(S(0), s)∂σ(S(0), s)

×
∫ s

0
e−rv

[
er(T−v) − 1

r

]
σ(S(0), v)2dvdsdt ,

(3.32)

and

f = −cΣg1 .

3.3 Options with a Stochastic Volatility

The third example in this section is the evaluation problem of options with

stochastic volatilities which He (1992) has developed in an equilibrium frame-

work. We assume that there exists a risk-free rate, r which is a positive constant.

In general, under the equivalent martingale measure, the processes of the under-

lying asset and a state variable in He (1992) are defined by

dS
(δ)
1 (t) = µ1(S

(δ)
1 , Y (δ), t)dt+ δ �σ1(S

(δ)
1 , Y (δ), t)�d �̃wt(3.33)

and

dY (δ)(t) = µ2(S
(δ)
1 , Y (δ), t)dt+ δ �σ2(S

(δ)
1 , Y (δ), t)�d �̃wt ,(3.34)

where 0 < δ ≤ 1, �̃wt is the standard two dimensional Brownian motion, and

�σ1(S
(δ)
1 , Y (δ), t) and �σ2(S

(δ)
1 , Y (δ), t) denote two dimensional vectors. By using

vector representation, two equations can be rewritten as

d�S
(δ)
t = �µ(S

(δ)
1 , Y (δ), t)dt+ δΣ(S(δ), Y (δ), t)d �̃wt ,(3.35)

where

�S
(δ)
t =

[
S

(δ)
1t

Y
(δ)
t

]
,

�µ(S
(δ)
1 , Y (δ), t) =

[
µ1(S

(δ)
1 , Y (δ), t)

µ2(S
(δ)
1 , Y (δ), t)

]
,
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and

Σ(S(δ), Y (δ), t) =

[
�σ1(S

(δ), Y (δ), t)�

�σ2(S
(δ), Y (δ), t)�

]
.

In fact, we know that

µ1(S
(δ)
1 , Y (δ), t) = rS

(δ)
1t .

Next, we define a non-singular matrix, Gt which satisfies a (deterministic) dif-

ferential equation:

dGt = ∂µ0Gtdt ,(3.36)

where

∂µ0 =

[
∂1µ

0
1 ∂2µ

0
1

∂1µ
0
2 ∂2µ

0
2

]
,

∂iµ
0
j ≡

∂µδ
j

∂S
(δ)
i

|δ=0, and S
(δ)
2 ≡ Y (δ).

In order to derive the asymptotic expansion of �S
(δ)
t , first �S

(0)
t is defined so that

this solves the differential equation :

d�S
(0)
t = �µ(S(0), Y (0), t)dt .(3.37)

Next, we define �At as

�At =
∂�S

(δ)
t

∂δ
|δ=0

�At must satisfy the following stochastic differential equation :

d �At = ∂µ0 �Atdt+ Σ0d �̃wt .

This stochastic differential equation can be solved as

�At = Gt

∫ t

0
G−1

s Σ0d �̃wt.(3.38)

Third, we define �Bt as

�Bt =
∂2�S

(δ)
t

∂δ2
|δ=0.

Then we can show that �Bt must satisfy the following stochastic differential

equation :

d �Bt =

⎡
⎣ 2∑

i=1

2∑
j=1

∂i∂j
�µ0AitAjt +

2∑
i=1

∂i
�µ0Bit

⎤
⎦ dt+ 2

2∑
i=1

∂iΣ
0Aitd �̃wt .
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This equation also can be solved as

�Bt =
∫ t

0
GtG

−1
s

⎡
⎣ 2∑

i=1

2∑
j=1

∂i∂j
�µ0AisAjs

⎤
⎦ ds

+2
∫ t

0
GtG

−1
s

[
2∑

i=1

∂iΣ
0Ais

]
d �̃ws .

Hence, as in the previous sections, the stochastic expansion of �S
(δ)
t is given by

�S
(δ)
t = �S(0) + δ �g1 + δ2 �g2 + · · · ,(3.39)

where �g1 = �At, and �g2 = 1
2
�Bt. In this case the two dimensional leading term

follows the two dimensional Gaussian distribution with

�g1 ∼ N(�0,Σg1
) ,(3.40)

Σg1
≡ Gt

∫ t

0

[
G−1

s Σ0Σ0�G−1�
s

]
dsG�

t .

To evaluate a call option, we first define
�
X

(δ)
t ≡ �S

(δ)
t −�S

(0)
t

δ
, and derive the asymp-

totic expansion of the density function of
�
X

(δ)
T by utilizing the formulas of Lemma

2.1 and Lemma 2.2, and then we compute e−rT δE[(X
(δ)
1T + y(δ))+] where X

(δ)
1T =

S
(δ)
1T

−S
(0)
1T

δ
and y(δ) =

S
(0)
1T

−K

δ
. The detail is omitted since the similar argument can

be applied as in the previous examples.

4 Numerical Examples

In this section, we will present several numerical investigations of the approxi-

mations derived by the asymptotic expansion method introduced and explained

in the previous sections. In the Black-Scholes economy, as the first numerical

example we will present the numerical examples of plain vanilla call options for

the square-root process 2 of the underlying asset. As the second example, we

will give numerical results on of average call options for the square-root process

of the underlying asset as well as for the log-normal process of the underlying as-

set. In the Black Scholes economy the latter process has been commonly used in

2 We have used this because it is a typical time-homogenous diffusion example. However, the
volatility function is not smooth at the origin and we need to use a smoothed version of the
square root process at the origin for the mathmatical point of view. (See the conditions (6.48)
in Section 6, for instance.) However, we can show that the smoothing does not make significant
differences and the effects are negligible in the small disturbance asymptotic theory.
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practice. Under the equivalent martingale measure, we assume that the processes

of the underlying asset are given by

dS(δ) = (r − q)S(δ)dt+ δ(S(δ))
1
2dw̃t(4.41)

or

dS(δ) = (r − q)S(δ)dt+ δS(δ)dw̃t ,(4.42)

where r and q denote the risk-free interest rate and a dividend yield, respectively,

both of which are assumed to be positive constants in the Black-Scholes economy,

and w̃t denotes the one dimensional Brownian motion.

Tables 1-3 show the numerical values of plain vanilla call options for the

square-root processes of the underlying asset which represents an equity index

with no dividend. The values obtained by the stochastic expansions upto the first

and second order are given respectively. For the comparative purpose, the values

by the Monte Carlo simulations are also given, which are based on 500,000 trials

implemented in each case. We note that all the ”difference” or ”difference rate”

appearing in Tables 1-14 are those from, or those relative to, the corresponding

values by the Monte Carlo simulations. The spot prices and the risk-free interest

rate are assumed to be 40.00 and 5 % respectively, and the term to expiry is

assumed to be one year. The volatilities δ are set so that the instantaneous vari-

ances at time 0 are equivalent to those of the log-normal process whose volatilities

are 10 % in Table 1, 20 % in Table 2, and 30 % in Table 3. The values of out-of-

the money (strike price K= 45), at-the-money (K=40), and in-the-money (K=35)

are given. We observe that the values obtained by the stochastic expansions upto

the second order are improved and more accurate than those with the first order.

Tables 4-10 show the numerical values of the average call options when the

underlying assets follow square-root processes, where the underlying asset is an

equity index with no dividend (that is, q = 0 ) in Tables 4-6 and it is the foreign

exchange rate of Japanese yen and US dollar (that is, q is a US Interest rate)

in Table 7-10. The results given by the stochastic expansion are those from the

computation upto the second order. For the comparative purpose, the values by

the Monte Carlo simulations are also shown, which are based on 500,000 trials

implemented in each case.

In Tables 4-6, the spot prices and the risk-free interest rate are assumed

to be 40.00 and 5 %, respectively, and the volatilities (δ) are set so that the

instantaneous variances at time 0 are equivalent to those of log-normal process

where the volatilities are 30 %. The vales of out-of-the money (strike price K=

45), at-the-money (K=40), and in-the-money (K=35) are shown for each of the

time to maturities : three months, six months and one year.
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In Tables 7-10, the spot prices, the risk-free Japanese interest rate, and the

US interest rate are assumed to be 100.00, 3 %, and 5 % respectively. The

volatilities(δ ) are set so that the instantaneous variances at time 0 are equivalent

to those of the log-normal process where the volatilities are 10 % in Tables 7-9

and 30 % in Table 10. The values of out-of-the money (K= 105 for Tables 7-9 and

K=110 for Table 10), at-the-money (K=100 for Tables 7-10), and in-the-money

(K=95 for Tables 7-9 and K=90 for Table 10) are shown for each of the time to

maturities : three months, six months, and one year.

Tables 11-14 show the numerical values of average call options when the un-

derlying assets follow log-normal processes, where the underlying asset is the

foreign exchange rate of Japanese yen and US dollar. The assumptions for the

spot prices, the risk-free Japanese, and US interest rates are same as in Tables

7-10. The volatilities are assumed to be 10 % in Tables 11-13, and 30 % in Ta-

ble 14. The values of out-of-the money (K= 105 for Tables 11-13 and K=110

for Table 14), at-the-money (K=100 for Tables 11-14), and in-the-money (K=95

for Tables 11-13 and K=90 for Table 14) are shown for each of the time to ma-

turities : three months, six months, and one year. The results given by the

asymptotic expansion are those from the approximations upto the second order

as well as from computation upto the first order. We observe that the values

from the asymptotic expansion upto the second order are much more improved

than those upto the first order. Figure 1 shows the difference of the distributions

of the Xδ
T/Σ

0.5
g1

obtained by the asymptotic expansions from those obtained by

the Monte Carlo simulations. We can observe that the difference is significantly

smaller in the asymptotic expansions upto the second order than those upto the

first order, which leads to the much improved values of the option prices. For

the comparative purpose, the values by the Monte Carlo simulations are shown,

which are based on 500,000 trials implemented in each case, and moreover, the

values obtained by the PDE method developed in He and Takahashi (1996) are

given.

5 Concluding Remarks

In this paper we have proposed a new methodology for the valuation problems

of financial contingent claims when the underlying asset prices follow the general

class of continuous Markov processes. The method is applicable to a wide range

of the valuation problems of contingent claims associated with stocks, foreign

exchange rates, and those in a stochastic interest rate enviroment. We illustrate
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the method by giving a series of examples when the processes of underlying assets

and economic factors are described by the general stochastic differential equations

of Markovian type. In a companion of this paper, Kunitomo and Takahashi (1995)

have systematically presented the results of our asymptotic expansion approach

in a non-Markovian setting of term structure of interest rates, whic was originally

developed by Heath, Jarrow, and Morton (1992). Also it is even possible to extend

our approach to the valuation of the average option on foreign exchange rates in

the stochastic interest rates economy. 3

As we have seen in Section 3, the formulae for the various pricing problems

of contingent claims are simple analytic functions based on the Gaussian kernel,

which can be evaluated quite easily. As we have shown in Section 4, the approxi-

mations we have obtained are numerically accurate for practical purpose in many

cases. Also as we shall discuss in Section 6, our method is not an ad hoc ap-

proximation because we have developed a rigorous mathematical theory for the

validity of our asymptotic expansion method, which is basically along the line

of the Malliavin-Watanabe-Yoshida theory. The latter theory has been recently

investigated by probabilists and our asymptotic theory can be regarded as their

natural application. Therefore the Small Disturbance Asymptotic Theory and the

resulting asymptotic expansions we are proposing in this paper does have not

only practical usefulness but also may have some theoretical interest in finance.

6 Mathematical Appendix: Validity of the Asymp-

totic Expansion Approach

The mathematical validity of the asymptotic expansion approach in this paper

can be given along the line based on the remarkable work by Watanabe (1987)

on the Malliavin calculus in stochastic analysis. Yoshida (1992a,b) have utilized

the results and method originally developed by Watanabe (1987) and given some

useful results on the validity of the asymptotic expansions of some functionals

on continuous time homogenous diffusion processes. The validity of our method

can be obtained by the similar arguments used by Yoshida (1992a,b, 1997) and

Chapter V of Ikeda and Watanabe (1989) but with some modifications. Since the

rigorous proofs of our claims in this section can be quite lengthy but some parts

are straightforward extensions of the existing results in stochastic analysis, we

shall only give their essentials and the modifications we need for our applications

3 Takahashi (1995) has dealt with this case for the multi-countries economy with interest
rates and derive some useful formulae in the framwork of Heath-Jarrow-Morton interest model.
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in the previous sections. 4 The main aim in the following steps will be to

check the truncated version of the non-degeneracy condition for the Malliavin-

covariance in our situation and show the sufficient conditions of Theorem 2.2 of

Yoshida (1992b).

First, we shall prepare some notations. For this purpose, we shall freely use

the notations by Ikeda and Watanabe (1989) as a standard textbook. We shall

only discuss the validity of the asymptotic expansion approach based on the

one-dimensional Wiener space without loss of generality. We only need more

complicated notations in the general case. (See Ikeda and Watanabe (1989) for

the details.) Let (W , P ) be the 1−dimensional Wiener space and let H be the

Cameron-Martin subspace of W endowed with the norm

|h|2H =
∫ T

0
|ḣ(t)|2dt(6.43)

for h ∈ H . The norm of R−valued Wiener functional g for any s ∈ R, and

p ∈ (1,∞) is defined by

‖g‖p,s = ‖(I −L)s/2g‖p ,(6.44)

where L is the Ornstein-Uhlenbeck operator and ‖ · ‖p is the Lp-norm in the

standard stochastic analysis. An R−valued function g : W �→ R is called

an R−valued polynomial functional if g = p([h1](w), · · · , [hn](w)), where n ∈
Z+, hi ∈ H , p(x1, · · · , xn) is a polynomial, and

[h](w) =
∫ T

0
ḣ(t)dw(t)

for h ∈ H are defined in the sense of stochastic integrals.

Let P (R) denote the totality of R−valued polynomials on the Wiener space

(W , P ). Then P (R) is dense in Lp(R). The Banach space Ds
p is the completion of

P (R) with respect to ‖·‖p,s. The dual space of Ds
p is the D−s

q , where s ∈ R, p > 1,

and 1/p + 1/q = 1. The space D∞ = ∩s>0 ∩1<p<+∞ Ds
p is the set of Wiener

functionals and D̃
−∞

= ∪s>0 ∩1<p<+∞ D−s
p is a space of generalized Wiener

functionals. For F ∈ P (R) and h ∈ H , the derivative of F in the direction of h

is defined by

DhF (w) = lim
ε→0

1

ε
{F (w + εh) − F (w)} .(6.45)

4 For complete discussions on mathematical validity of our approach, see Kunitomo and
Takahashi (1998).
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Then for F ∈ P (R) and h ∈ H there exists DF ∈ P (H) such that DhF (w) =<

DF (w), h >H , where < · >H is the inner product of H and DF is called the

H−derivative of F. It is known that the norm ‖ · ‖p,s is equivalent to the norm∑s
k=0 ‖Dk · ‖p. For F ∈ D∞, we can define the Malliavin-covariance by

σ(F ) =< DF (w), DF (w) >H ,(6.46)

where < · >H is the inner product of H . It is known that the operator D can

be well-defined in D∞. (See Chapter V of Ikeda and Watanabe (1989) for the

details.)

Now we give the proof of validity of our method. For the ease of exposition,

we consider a one dimensional stochastic differentail equation and the validity

of the multidimentional case could be obtained by the similar arguments with

more complicated notations. For the fixed T < 0 and δ ∈ (0, 1], we consider a

stochastic differential equation :

S
(δ)
T = S0 +

∫ T

0
µ(S(δ)

s , s)ds+
∫ T

0
δσ(S(δ)

s , s)dw̃s ,(6.47)

where µ(S(δ)
s , s) and σ(S(δ)

s , s) are R×[0, T ] → R and Borel measurable in (S(δ), s).

We assume that they are C∞(R → R) for s ∈ [0, T ] with bounded derivatives

of any orders in the first arguments. That is, for the first argument there exists

M > 0 such that

sup
S∈R,0≤s≤T

|∂
kµ(Ss, s)

∂Sk
| < M ,

sup
S∈R,0≤s≤T

|∂
kσ(Ss, s)

∂Sk
| < M(6.48)

for any k = 1, 2, 3, · · · . We further assume that there exists a positve M ′ such

that

sup
0≤s≤T

[|µ(0, s)|+ |σ(0, s)|] < M ′.

These conditions imply that there exists some positve K such that for all s ∈
[0, T ],

|µ(S(δ), s)| + |σ(S(δ), s)| < K(1 + |S(δ)
s |),(6.49)

|µ(S1(δ), s) − µ(S2(δ), s)| + |σ(S1(δ), s) − σ(S2(δ), s)| < K|S1(δ) − S2(δ)|.(6.50)

By the standard argument (e.g. Ikeda and Watanabe (1989)) we have the exis-

tence of the unique strong solution which has continuous sample paths and is in
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Lp for any 1 ≤ p <∞. In the remaining of the section, we will discuss the validity

of the asymptotic expansion of φ(X
(δ)
T )IB(X

(δ)
T ) where X

(δ)
T is defined by

X
(δ)
T =

S
(δ)
T − S

(0)
T

δ

and B is a Borel set. In the typical examples of European call options and

put options, we take φ(x) = (x + y) and B = [−y,∞) for call options, and

φ(x) = (−x− y) and B = (−∞,−y] for put options, where y is a constant.

Lemma 6.1 Under the assumptions we have stated, S
(δ)
T is in D∞ and has an

asymptotic expansion

S
(δ)
T ∼ S

(0)
T + δg1T + δ2g2T + · · ·(6.51)

in D∞ as δ ↓ 0 with g1T , g2T , · · · ∈ D∞.

Proof: First, we shall prove S
(δ)
T in D∞. Let us define Y (δ) by

dY (δ) = ∂µ(S(δ), t)Y (δ)dt+ δ∂σ(S(δ), t)Y (δ)dwt, Y
(δ)
0 = 1 ,

where ∂µ and ∂σ denotes the ∂µ
∂S(δ) and ∂σ

∂S(δ) , respectively. Then we see that

Y (δ) has the unique strong solution and Y (δ) ∈ Lp. Let W δ
t = Y

(δ)−1
t . Then, by

using Itô’s Lemma, W δ
t satisfies the stochastic differential equation

dW δ = −{∂µ(S(δ), t) − δ2∂σ(S(δ), t)2}W δdt− δ∂σ(S(δ), t)W δdwt,W
δ
0 = 1 .

Hence W δ
t has also the unique strong solution and Y (δ)−1 ∈ Lp.

In order to show our assertion, we calculate the first order H-derivative of S
(δ)
T .

For any h ∈ H , we note that DhS
(δ)
T satisfies an stochastic integral equation :

DhS
(δ)
T =

∫ T

0
δ∂σ(S(δ), s)DhS

(δ)
s dw(s)+

∫ T

0
∂µ(S(δ), s)DhS

(δ)
s ds+

∫ T

0
δσ(S(δ), s)ḣsds.

Then for h ∈ H ,

DhS
(δ)
T =

∫ T

0
Y

(δ)
T Y (δ)−1

s δσ(S(δ), s)ḣsds.

Hence for the first order H-derivative we have

|DS(δ)
T |2H =

∫ T

0
|Y (δ)

T Y (δ)−1
s δσ(S(δ), s)|2ds.

We note

|DS(δ)
T |2H ≤ δ2|Y (δ)

T |2
[∫ T

0
|Y (δ)−1

s |2K2(1 + |S(δ)
s |)2ds

]
.
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Thus we have an inequality

E
[
|DS(δ)

T |2H
]
≤ δ2E

[
|Y (δ)

T |2{
∫ T

0
|Y (δ)−1

s |2K2(1 + |S(δ)
s |)2ds}

]
.

Likewise for any 2 < p <∞, we can show an inequality :

E
[
|DS(δ)

T |pH
]
≤ (δK)pT (p−2

2
)E

[
|Y (δ)

T |p{
∫ T

0
|Y (δ)−1|p(1 + |S(δ)

s |)pds}
]
.

In our evaluation we often use Hölder inequality for expectations:

E[|xsys|] ≤ E[|xs|p]
1
p E[|ys|q]

1
q

for p > 1, q > 1, 1
p

+ 1
q

= 1 . By using an inequality

(|x| + |y|)p ≤ 2(p−1)(|x|p + |y|p)

for p ≥ 1 and Fubini’s theorem, we can evaluate the right hand side of the last

equation as

E

[
|Y (δ)

T |p{
∫ T

0
|Y (δ)−1|p(1 + |S(δ)

s |)pds}
]

≤ E
[
|Y (δ)

T |2p
] 1

2 E

[
(
∫ T

0
{|Y (δ)−1|(1 + |S(δ)

s |)}pds)2}
] 1

2

≤ E
[
|Y (δ)

T |2p
] 1

2 T
1
2 E

[∫ T

0
|Y (δ)−1|2p(1 + |S(δ)

s |)2pds

] 1
2

≤ E
[
|Y (δ)

T |2p
] 1

2 T
1
2{

∫ T

0
E

[
|Y (δ)−1|4p

] 1
2 E

[
(1 + |S(δ)

s |)4p
] 1

2 ds} 1
2

≤ E
[
|Y (δ)

T |2p
] 1

2 T
1
2{

∫ T

0
E

[
{|Y (δ)−1|4p

] 1
2 E

[
2(4p−1)(1 + |S(δ)

s |4p)
] 1

2} 1
2 .

Because S(δ)
s , Y (δ)

s , Y (δ)−1
s ∈ Lp for s ∈ [0, T ] and any 1 < p < ∞, we have

E
[
|DS(δ)

T |pH
]
<∞ for any p > 1. Therefore, we conclude S

(δ)
T ∈ ∩1<p<∞D1

p.

Repeating the similar arguments as for the first derivative, we can show the

boundedness of higher order H-derivatives 5 with Lp estimates of S
(δ)
T . Then we

conclude S(δ) ∈ D∞.

Next, we shall prove the second part of the lemma. The coefficients of the

asymptotic expansion of S
(δ)
T is given by the Taylor formula. For instance,

g1T =
∫ T

0
YTY

−1
s σ(S(0), s)dws ,

5 To be rigorous mathematically, we have to use Lemma 2.1 of Kusuoka and Strook (1982)
and some related results for abstract spaces. See the proof of Theorem 3.1 of Kunitomo and
Takahashi (1998) for the detail.
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g2T =
∫ T

0

1

2
YTY

−1
s {∂2µ(S(0), s)g2

1sds+ 2∂σ(S(0), s)g1sdws} ,
and

g3T =
∫ T

0
YTY

−1
s {∂2µ(S(0), s)g1sg2sds+

1

6
∂3µ(S(0), s)g3

1sds

+
1

2
∂2σ(S(0), s)g2

1sds+ ∂σ(S(0), s)g2sdws} ,

where Yt = Y
(0)
t is the solution of the differential equation

dY = ∂µ(S(0), t)Y dt, Y0 = 1.

Thus we have Yt = exp(
∫ t
0 µ(S(0), s)ds). By the boundedness of YT , Y

−1
s , σ(S(0), s)

on [0, T ], it is easily seen E[|g1s|p] <∞, s ∈ [0, T ] for any 1 < p <∞. Given g1s ∈
Lp, we can easily see by Burkholder’s inequality (or local martingale inequality in

Theorem III-3.1 of Ikeda and Watanabe (1989) ), E[|g2s|p] < ∞ for any 1 < p <

∞. Likewise, gks ∈ Lp is obtained recursively given gjs ∈ Lp, j = 1, 2, · · ·k − 1.

Hence g1T , g2T , · · · ∈ ∩1<p<∞D1
p.

Next, we note Dhg1T = YT

∫ T
0 Y −1

s σ(S(0), s)ḣsds and Dk
h1,···,hk

g1 = 0 for k =

2, 3, · · ·. Thus we can show g1T ∈ D∞. We also have

Dhg2T = YT{
∫ T

0
Y −1

s ∂2µ(S(0), s)g1sDhg1sds+
∫ T

0
Y −1

s ∂σ(S(0)
s , s)Dhg1sdws

+
∫ T

0
Y −1

s ∂σ(S(0), s)ḣsds},

D2
h1,h2

g2T = YT{
∫ T

0
Y −1

s ∂2µ(S(0), s)Dh1g1sDh2g1sds+
∫ T

0
Y −1

s ∂σ(S(0), s)Dh1g1sḣ2sds}.

and Dk
h1,···,hk

g2T = 0 for k = 3, 4, · · ·. Then, given g1s ∈ D∞ for any s ∈ [0, T ],

we can conclude g2T ∈ D∞.

By using similar arguments, recursively we can show the Lp-boundedness of

any order H-derivatives of gkT , k = 3, 4, · · · . Therefore, we have proven the second

part. Q .E .D .

Next, we consider the normalized random variable X
(δ)
T as X

(δ)
T =

S
(δ)
T

−S
(0)
T

δ
.

By Lemma 6.1, we see X
(δ)
T is in D∞ and has the asymptotic expansion :

X
(δ)
T ∼ g1T + δg2T + · · ·

in D∞ as δ ↓ 0 with g1, g2, · · · ∈ D∞. We also have the first order H-derivative

as

DhXT =
∫ T

0
Y

(δ)
T Y (δ)−1

s σ(S(δ), s)ḣsds.
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Hence the Malliavin covariance σ(X
(δ)
T ) =< DX

(δ)
T , DX

(δ)
T >H is explicitly given

by ∫ T

0
{Y (δ)

T Y (δ)−1
s σ(S(δ), s)}2ds.(6.52)

Note

σ(X
(δ)
T ) → Σg1 =

∫ T

0
{YTY

−1
s σ(S(0), s)}2ds(6.53)

as δ ↓ 0 where Σg1 denotes the variance of g1T , which is the limiting random

variable.

We consider the uniform non-degeneracy of Malliavin covarince, which is the

important step of the application of Theorem 2.2 of Yoshida (1992b). In order to

do this application, we make the following assumption.

Assumption I’ :

Σg1 =
∫ T

0
{YTY

−1
s σ(S(0), s)}2ds > 0 .(6.54)

Next, we define ηδ
c by for any c > 0,

ηδ
c = c

∫ T

0
|Y (δ)

T (Y (δ)
s )−1σ(S(δ)

s ) − YTY
−1
s σ(S(0)

s )|2ds.

Then we have the following lemma.

Lemma 6.2 Under Assumption I’, the Malliavin covariance σ(X
(δ)
T ) is uniformly

non-degenerate. That is, there exists c0 > 0 such that for c > c0 and any p > 1,

sup
δ∈(0,1]

E
[
1{ηδ

c≤1}{det σ(X
(δ)
T )}−p

]
<∞.(6.55)

Proof : Let ξδ
s,t = Y

(δ)
t (Y (δ)

s )−1σ(S(δ)
s ) and ξs,t = YtY

−1
s σ(S(0)

s ).

Then, |ηδ
c | ≤ 1 is equivalent to

∫ T
0 |ξδ

s,T − ξs,T |2ds ≤ 1
c
.

Note

|σ(X
(δ)
T ) − Σg1| = |

∫ T

0
(ξδ

s,T )2 − (ξs,T )2ds|

≤
∫ T

0
|ξδ

s,T − ξs,T |2ds+ 2
∫ T

0
|ξs,T ||ξδ

s,T − ξs,T |ds

≤ 1

c
+ 2Σ

1
2
g1(

1

c
)

1
2 .

Hence we can take c0 > 0 such that for any c > c0 > 0,

0 < Σg1 − |σ(X
(δ)
T ) − Σg1 | < σ(X

(δ)
T )
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holds uniformly for δ ∈ (0, 1]. Thus, we obtain the result. Q.E.D.

Next, we present two inequalities which are useful to show the truncation by

ψ(ηδ
c ) is negligible in the asymptotic expansions. We omit their proofs because

they are quite lengthy. 6

Lemma 6.3 (1) There exist positive constants ai (i = 1, 2) independent of δ such

that

P ( sup
0≤s≤T

|S(δ)
s − S(0)

s | > a0) ≤ a1

a0
(a0 + C) exp(− a2a

2
0

(a0 + C)2
δ−2)(6.56)

for all a0 > 0.

(2) There exist positive constants ai (i = 1, 2) independent of δ such that

P ( sup
0≤s≤T

|Y (δ)
s − Ys| > a0) ≤ a1

a0
(a0 + C) exp(− a2a

2
0

(a0 + C)2
δ−2)(6.57)

for all a0 > 0.

By using Lemma 6.3, we now can show the truncation is negligible in probability

by utilizing the above large deviation inequalities. We present this result as the

next lemma, but omit its proof because it is straightforward but quite lengthy.7

Lemma 6.4 For c > 0, ηδ
c is O(1) in D∞ and for c0 > 0 , there exist some

constants ci, i = 1, 2, 3, such that

P ({|ηδ
c | > c0}) ≤ c1 exp(−c2δ−c3)(6.58)

Then all conditions stated in Theorem 2.2 of Yoshida (1992b) are satisfied and

we have the desired result as its direct consequence.

Proposition 6.1 Under the assumptions we have made, for a smooth function

φδ(x) with all derivatives of polynomial growth orders, ψ(ηδ
c)φ

δ(X
(δ)
T )IB(X

(δ)
T ) has

an asymptotic expansion;:

ψ(ηδ
c)φ

δ(X
(δ)
T )IB(X

(δ)
T ) ∼ Φ0 + δΦ1 + · · ·(6.59)

in D̃
−∞

as δ ↓ 0 where B is a Borel set, ψ(x) is a smooth function such that

0 ≤ ψ(x) ≤ 1 for x ∈ R,ψ(x) = 1 for |x| ≤ 1/2 and ψ = 0 for |x| ≥ 1, and

Φ0,Φ1, · · · are determined by the formal Taylor expansion.

6 See Lemma 3.5 of Kunitomo and Takahashi (1998) for the proofs.
7 See Lemma 3.6 of Kunitomo and Takahashi (1998) for the proof.
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Finally, we obtain an asymptotic expansion of the expectation of φδ(X
(δ)
T )IB(X

(δ)
T )

as δ → 0, which is summarized in the next theorem.

Theorem 6.1 Under the assumptions we have made, an asymptotic expansion

of E[φδ(Xδ)IB(X
(δ)
T )] is given by

E[φδ(X
(δ)
T )IB(X

(δ)
T )] ∼ E[ψ(ηδ

c )φ
δ(X

(δ)
T )IB(X

(δ)
T )](6.60)

∼ E[Φ0] + δE[Φ1] + · · ·

as δ ↓ 0.

As a final concluding remark, we should mention that the inversion technique

we have used is different from the one used by Yoshida (1992a,b). He has used the

Schwartz’s type distribution theory for the generalized Wiener functionals while

our method is based on the simple inversion technique for the characteristic func-

tions of random variables, which has been standard in the statistical asymptotic

theory. Hence what we need to show is that the resulting formulae by our method

are equivalent to his final formulae. Let take φδ(x) = 1 in Proposition 6.1 as an

illustration. 8 Then Yoshida (1992a,b) used the notation

p
′
1(x) = (−1)

d

dx
E [φ(f0)f1∂IA(f0)|f0 = x] ,

and

p
′′
1(x) = (−1)

d

dx
E [{f1∂φ(f0)}IA(f0)|f0 = x] ,

where IA(f0) is the indicator function and f0 corresponds to the random vari-

able of the order Op(1), which are the same as IB(·) and g1, respectively, in our

notations. The differentiation of indicator functions in the above has a proper

mathematical meaning in the sense of differentiation on the generalized Wiener

functionals. (See Watanabe (1987) and Yoshida (1992a,b) for its details.) By

the use of the pull-back operation of the generalized Wiener functionals, Yoshida

(1992a) has obtained the explicit expansion form of the density function for a

particular functional in his problem as

p1(x) = p
′
1(x) + p

′′
1(x).

In our framework it is straightforward to show that

p
′
1(x) = (−1)

d

dx
[E(g2|g1 = x)n(x; 0,Σg1)]

8 Theorem 3.7 of Kunitomo and Takahashi (1998) shows the proof of the equivalence up to
the third order term.
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and p
′′
1(x) = 0 since ∂φ(·) = 0 . Then we notice that p1(x) is exactly what the

inversion formula gives as the second order term in the asymptotic expansion of

the density function of the normalized random variable X
(δ)
T . We have the similar

arguments for higher order terms in the asymptotic expansions.
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Figure 1: Errors in the Expansion around the Normal distribution
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Table 1: Plain Vanilla Call Options-Square root process -(vol. = 10% )

Strike price 45 40 35
(1)Monte Carlo 0.5771 2.7226 6.7676
(2)Stochastic Expansion(second) 0.5763 2.7228 6.7640
Diff. Rate% -0.144 0.007 -0.053
(3)Stochastic Expansion(first) 0.5548 2.7398 6.7796
Diff. Rate% -3.865 0.632 0.178

Table 2: Plain Vanilla Call Options-Square root process -(vol. = 20% )

Strike price 45 40 35
(1)Monte Carlo 2.0005 4.1841 7.4802
(2)Stochastic Expansion(second) 1.9979 4.1858 7.4855
Diff. Rate% -0.130 0.041 0.071
(3)Stochastic Expansion(first) 1.9460 4.2231 7.5776
Diff. Rate% -2.724 0.932 1.303

Table 3: Plain Vanilla Call Options-Square root process -(vol. = 30% )

Strike price 45 40 35
(1)Monte Carlo 3.5347 5.7069 8.6453
(2)Stochastic Expansion(second) 3.5379 5.7105 8.6502
Diff. Rate% 0.091 0.064 0.057
(3)Stochastic Expansion(first) 3.4573 5.7674 8.8191
Diff. Rate% -2.189 1.067 2.010
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Table 4: Average Call Options on Equity -Square root process -(T=0.25y)

Strike price 45 40 35
(1)Monte Carlo 0.1559 1.4985 5.2659
(2)Stochastic Expansion 0.1562 1.4983 5.2679
Difference 0.00029 -0.00020 0.00210
Diff. Rate% 0.18 -0.01 0.04

Table 5: Average Call Options on Equity-Square root process-(T=0.50y)

Strike price 45 40 35
(1)Monte Carlo 0.5221 2.1758 5.6468
(2)Stochastic Expansion 0.5228 2.1788 5.6516
Difference 0.00078 0.00301 0.00482
Diff. Rate % 0.15 0.14 0.09

Table 6: Average Call Options on Equity-Square root process-(T=1.0y)

Strike price 45 40 35
(1)Monte Carlo 1.2802 3.1848 6.3845
(2)Stochastic Expansion 1.2813 3.1873 6.3881
Difference 0.00112 0.00255 0.00362
Diff. Rate % 0.09 0.08 0.06
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Table 7: Average Call Options on FX-Square root process- (T=0.25y)

Strike price 105 100 95
(1)Monte Carlo 0.0416 1.0217 4.7672
(2)Stochastic Expansion 0.0419 1.0215 4.7698
Difference 0.00031 -0.00025 0.00254
Diff. Rate % 0.75 -0.02 0.05

Table 8: Average Call Options on FX-Square root process-(T=0.50y)

Strike price 105 100 95
(1)Monte Carlo 0.1721 1.3625 4.6858
(2)Stochastic Expansion 0.1730 1.3654 4.6931
Difference 0.00090 0.00286 0.00730
Diff. Rate % 0.52 0.21 0.16

Table 9: Average Call Options on FX-Square root process-(T=1.0y,Vol.=10%)

Strike price 105 100 95
(1)Monte Carlo 0.4443 1.7700 4.6525
(2)Stochastic Expansion 0.4426 1.7709 4.6585
Difference -0.00166 0.00090 0.00600
Diff. Rate % -0.37 0.05 0.13

Table 10: Average Call Options on FX-Square root process(T=1.0y,Vol.=30%)

Strike price 110 100 90
(1)Monte Carlo 2.7995 6.18088 11.7334
(2)Stochastic Expansion 2.8045 6.1881 11.7464
Difference 0.00502 0.007221 0.00130
Diff. Rate % 0.18 0.12 0.11
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Table 11: Average Options on FX -Log-normal process- (T=0.25y)

Strike price 105 100 95
(1)Stochastic Expansion(normal)(1st) 0.0384 1.0199 4.7738

Diff. Rate % -15.97 -0.19 0.16
(2)Stochastic Expansion(normal)(2nd) 0.0452 1.0220 4.7650

Diff. Rate % -1.09 -0.02 -0.02
(3)Finite difference(Crank-Nicholson method) 0.0457 1.0216 4.7659

Diff. Rate % 0.01 -0.02 -0.00
(4)Monte Carlo simulation method 0.0457 1.0218 4.7660

Table 12: Average Options on FX -Log-normal process- (T=0.50y)

Strike price 105 100 95
(1)Stochastic Expansion(normal)(1st) 0.1620 1.3610 4.7040

Diff. Rate % -11.96 -0.53 0.53
(2)Stochastic Expansion(normal)(2nd) 0.1830 1.3660 4.6800

Diff. Rate % -0.54 -0.16 0.01
(4)Finite difference(Crank-Nicholson method) 0.1831 1.3656 4.6788

Diff. Rate % -0.49 -0.19 -0.01
(5)Monte Carlo simulation method 0.1840 1.3682 4.6793
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Table 13: Average Options on FX -Log-normal process- (T=1.00y,Vol.=10%)

Strike price 105 100 95
(1)Stochastic Expansion(normal)(1st) 0.4180 1.7590 4.6750

Diff. Rate % -10.30 -0.61 0.81
(2)Stochastic Expansion(normal)(2nd) 0.4640 1.7720 4.6410

Diff. Rate % -0.43 -0.12 0.08
(3)Finite difference(Crank-Nicholson method) 0.4640 1.7715 4.6315

Diff. Rate % -0.43 -0.09 -0.13
(4)Monte Carlo simulation method 0.4660 1.7699 4.6375

Table 14: Average Options on FX -Log-normal process- (T=1.00y,Vol.30%)

Strike price 110 100 90
(1)Stochastic Expansion(normal)(1st) 2.6107 6.1516 11.8900

Diff. Rate % -12.22 -0.76 2.61
(2)Stochastic Expansion(normal)(2nd) 2.9699 6.1910 11.5751

Diff. Rate % -0.14 -0.12 -0.11
(3)Monte Carlo simulation method 2.9740 6.1985 11.5874
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