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Motivation

• Multiname credit modeling:

 Marginal Probability of Default (PD)

 Default Correlation

• PD has a “term structure”
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1yr 2yr 3yr 4yr 5yr

Aaa .00 .01 .01 .04 .11

Aa .02 .06 .09 .16 .23

A .05 .17 .34 .52 .72

Baa .18 .49 .91 1.4 1.9



Motivation
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Motivation

• Extracting term structure of PD…

 Single-name products (i.e., CDSs) of different maturities

• What about “term structure of correlation”?...

• I.e., how correlation of 𝜏 𝑖 < 𝑡 and 𝜏 𝑗 < 𝑡 varies with 𝑡

• Extracted using different information:

 “Correlation products” such as index tranches

 Comovement between CDSs of different maturities
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Motivation from CDS Market

5-year sovereign CDSs

• 3-yr or 10-yr CDSs also imply different levels of correlation

• Q: How to reconcile? 



Motivation from Basket Credit Derivatives

• Q: Term structure of correlation might be key to correlation skew?
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Objective

Develop a model that:

• Allows correlation structure to vary with maturity

• Imposes correlation structure on top of term structure of PD

• Consistent with single-name & correlation products

• Tractable
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• Existing models and challenges

• Model description

• Correlation Term Structure

• Calibration Example



Challenges in Existing Models

• Copula

• Merton’s

• First-Passage

• Intensity-based Conditionally Independent Default (CID)
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Challenges in Existing Models

• Copula

𝜏 𝑖 < 𝑡 ⟺ 𝑋 𝑖 > Φ−1 𝐹 𝑡

• Where 𝑋 𝑖 is standard normal and 𝐹 is cdf of 𝜏 𝑖

• Cannot specify correlation structure that varies with 𝑡

• Attempt to turn 𝑋 𝑖 into a process
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Challenges in Existing Models

• Merton’s (1974) model:

𝜏 𝑖 < 𝑡 ⟺ 𝑋𝑡
𝑖
> 𝐵 𝑖

• 𝑋𝑡
𝑖

usually interpreted as firm’s net liability

• Correlation among 𝑋𝑡
𝑖

can be made vary with 𝑡

• Schlosser and Zagst (2009), Brunlid (2006)

• But can result in “multiple defaults”
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Challenges in Existing Models

• First-passage model (Hull and White (2001), Zhou (2001))

𝜏 𝑖 < 𝑡 ⟺ sup
𝑠≤𝑡
𝑋𝑡
𝑖
> 𝐵 𝑖

• First time process 𝑋𝑡
𝑖

crosses barrier 𝐵 𝑖

• Time-varying correlation: Metzler (2008), Hull et al. (2010), …

• sup
𝑠≤𝑡
𝑋𝑡
𝑖

loosely interpreted as how close we’ve come to default

• This “maximum-to-date” process makes the model intractable
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Challenges in Existing Models

• Intensity-based CID models:

𝜏 𝑖 < 𝑡 ⟺  
0

𝑡

𝜆𝑠
𝑖
𝑑𝑠 > 𝐸 𝑖

• Where 𝜆𝑡
𝑖

is the default intensity, 𝐸 𝑖 ∼ exponential

• Correlation introduced through factor structure among 𝜆𝑡
𝑖

’s

• Tractable, and allow time-varying correlation

• But factor structure usually affects marginal distribution of 𝜏
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• Existing models and challenges

• Model description

• Correlation Term Structure

• Calibration Example



Model Description

• Default by time 𝑡

𝜏 𝑖 < 𝑡 ⟺  
0

𝑡

𝛿𝑠
𝑖
𝑑𝑁𝑠
𝑖
> 𝑏𝑡

𝑖

• 𝜏 𝑖 = first passage of a pure jump process across 𝑏𝑡
𝑖

• 𝑁𝑡
𝑖

is a Cox process with intensity 𝜆𝑡
𝑖

• 𝛿𝑡
𝑖

is the jump size
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Model Description

• Default by time 𝑡

𝜏 𝑖 < 𝑡 ⟺  
0

𝑡

𝛿𝑠
𝑖
𝑑𝑁𝑠
𝑖
> 𝑏𝑡

𝑖

• Approximate traditional first-passage time model

• Pure-jump process approximates maximum-to-date process

• Able to calibrate to any marginal distribution of 𝜏 𝑖
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Model Description

• Default by time 𝑡

𝜏 𝑖 < 𝑡 ⟺  
0

𝑡

𝛿𝑠
𝑖
𝑑𝑁𝑠
𝑖
> 𝑏𝑡

𝑖

• How to introduce correlation?

• Let’s first assume homogeneity and constant jump size…

𝜏 𝑖 < 𝑡 ⟺ 𝛿𝑁𝑡
𝑖
> 𝑏𝑡

• Correlation introduced by letting 𝑁𝑡
𝑖
= 𝑀𝑡

𝑖
+ 𝑀𝑡

∗
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𝑎𝑡𝜆𝑡1 − 𝑎𝑡 𝜆𝑡



Model Description

• Assuming fixed jump size 𝛿

𝜏 𝑖 < 𝑡 ⟺ 𝛿𝑀𝑡
𝑖
+ 𝛿𝑀𝑡

∗ > 𝑏𝑡
𝑖

• Note: 𝑎𝑡 used to allocate intensity, not magnitude

• Instead of one Cox process with factor structure in intensity,

we’ve two Cox processes whose intensities are fraction of 𝜆𝑡

• 𝑎𝑡 does not affect marginal distribution of 𝜏 𝑖
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𝑎𝑡𝜆𝑡1 − 𝑎𝑡 𝜆𝑡



Model Description

• Assuming fixed jump size 𝛿

𝜏 𝑖 < 𝑡 ⟺ 𝛿𝑀𝑡
𝑖
+ 𝛿𝑀𝑡

∗ > 𝑏𝑡
𝑖

• Conditional independence

• Condition on value of 𝑀𝑡
∗, not on its intensity
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𝑎𝑡𝜆𝑡1 − 𝑎𝑡 𝜆𝑡



Model Description

• Joint default probability

𝑃 𝜏 𝑖 < 𝑡, 𝜏 𝑗 < 𝑡

= 𝑃𝑚𝑡∗ 𝑏𝑡/𝛿 +  

𝑘=0

𝑏𝑡/𝛿

𝑝𝑚𝑡∗ 𝑘 𝑃𝑚𝑡 𝑏𝑡/𝛿 − 𝑘
2

• where 𝑝𝜈 𝑥 = 𝑒
−𝜈𝜈𝑥/𝑥! and 𝑃𝜈 𝑥 = 1 −  𝑘=0

𝑥 𝑝𝜈 𝑘

• 𝑚𝑡
∗ =  0

𝑡
𝑎𝑠𝜆𝑠𝑑𝑠 and 𝑚𝑡 =  0

𝑡
1 − 𝑎𝑠 𝜆𝑠𝑑𝑠
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Model Description

• For portfolio of credit instruments

 Laplace transform of its aggregate loss is available

 Use inverse transform to compute loss distribution
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• Existing models and challenges

• Model description

• Correlation Term Structure

• Calibration Example



Modeling Term Structure of Correlation

• How correlation between 𝜏 𝑖 ≤ 𝑡 and 𝜏 𝑗 ≤ 𝑡 depends on 𝑡

• This term structure of correlation is controlled by 𝑎𝑡
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Tail Dependence

𝑃 𝜏 𝑖 ≤ 𝑡 𝜏 𝑗 ≤ 𝑡

𝑡



Base Correlation Curve

• Tranche pricing, detached at 3%, 6%, 9%, 12%, 22%

• Use correlation term structure to control base correlation curve
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Extension

• Correlation between recovery rate and default

• Random correlation

• Random jump size to take care of clustering

• Randomizing the jump size equivalent to multifactor model
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• Existing models and challenges

• Model description

• Correlation Term Structure

• Calibration Example



Calibration Example

• 5-year iTraxx Europe monthly fixings, Mar ’08 – Jan ’09

• Calibrate the correlation, assuming

𝑃 𝜏 < 𝑡 = 1 − 𝑒−𝑠𝑡/ 1−𝑅
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Calibration Example

• Base correlation:
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Calibration Example

• Can produce the skew by calibrating only the correlation…

• Note: compared with “implied copula” (Hull 2006)
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Conclusion

• Motivate the concept of correlation term structure

 Implied from market data

 Important role in explaining correlation skew

• Develop a model of correlated default that:

 Imposes term structure of correlation on top of PD

 Easy to calibration to single-name & correlation products

 Tractable, even under generalizations
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