Modeling Term Structure of Default Correlation

Sira Suchintabandid Department of Banking and Finance Chulalongkorn Business School

- Multiname credit modeling:
 - Marginal Probability of Default (PD)
 - Default Correlation
- PD has a "term structure"

	1yr	2yr	3yr	4yr	5yr
Aaa	.00	.01	.01	.04	.11
Aa	.02	.06	.09	.16	.23
А	.05	.17	.34	.52	.72
Ваа	.18	.49	.91	1.4	1.9

• Extracting term structure of PD...

Single-name products (i.e., CDSs) of different maturities

- What about "term structure of correlation"?...
- I.e., how correlation of $\{\tau^{(i)} < t\}$ and $\{\tau^{(j)} < t\}$ varies with t
- Extracted using different information:
 - "Correlation products" such as index tranches
 - Comovement between CDSs of different maturities

Motivation from CDS Market

5-year sovereign CDSs

- 3-yr or 10-yr CDSs also imply different levels of correlation
- <u>Q</u>: How to reconcile?

Motivation from Basket Credit Derivatives

• <u>Q</u>: Term structure of correlation might be key to correlation skew?

Objective

Develop a model that:

- Allows correlation structure to vary with maturity
- Imposes correlation structure *on top of* term structure of PD
- Consistent with single-name & correlation products
- Tractable

Agenda:

- Existing models and challenges
- Model description
- Correlation Term Structure
- Calibration Example

- Copula
- Merton's
- First-Passage
- Intensity-based Conditionally Independent Default (CID)

Copula

$$\tau^{(i)} < t \qquad \Longleftrightarrow \qquad X^{(i)} > \Phi^{-1}(F(t))$$

- Where $X^{(i)}$ is standard normal and F is cdf of $\tau^{(i)}$
- Cannot specify correlation structure that varies with *t*
- Attempt to turn $X^{(i)}$ into a process

• Merton's (1974) model:

$$\tau^{(i)} < t \qquad \Longleftrightarrow \qquad X_t^{(i)} > B^{(i)}$$

- $X_t^{(i)}$ usually interpreted as firm's net liability
- Correlation among $X_t^{(i)}$ can be made vary with t
- Schlosser and Zagst (2009), Brunlid (2006)
- But can result in "multiple defaults"

• First-passage model (Hull and White (2001), Zhou (2001))

$$\tau^{(i)} < t \qquad \Longleftrightarrow \qquad \sup_{s \le t} X_t^{(i)} > B^{(i)}$$

- First time process $X_t^{(i)}$ crosses barrier $B^{(i)}$
- Time-varying correlation: Metzler (2008), Hull et al. (2010), ...
- $\sup_{s \le t} X_t^{(i)}$ loosely interpreted as how close we've come to default
- This "maximum-to-date" process makes the model intractable

• Intensity-based CID models:

$$\tau^{(i)} < t \qquad \Longleftrightarrow \qquad \int_0^t \lambda_s^{(i)} \, ds \, > E^{(i)}$$

- Where $\lambda_t^{(i)}$ is the default intensity, $E^{(i)} \sim$ exponential
- Correlation introduced through factor structure among $\lambda_t^{(i)}$'s
- Tractable, and allow time-varying correlation
- But factor structure usually affects marginal distribution of au

Agenda:

- Existing models and challenges
- Model description
- Correlation Term Structure
- Calibration Example

• Default by time *t*

$$\tau^{(i)} < t \qquad \Longleftrightarrow \qquad \int_0^t \delta_s^{(i)} \, dN_s^{(i)} > b_t^{(i)}$$

- $\tau^{(i)} = \text{first passage of a pure jump process across } b_t^{(i)}$
- $N_t^{(i)}$ is a Cox process with intensity $\lambda_t^{(i)}$
- $\delta_t^{(i)}$ is the jump size

• Default by time t

$$\tau^{(i)} < t \qquad \Longleftrightarrow \qquad \int_0^t \delta_s^{(i)} \, dN_s^{(i)} > b_t^{(i)}$$

- Approximate traditional first-passage time model
- Pure-jump process approximates maximum-to-date process
- Able to calibrate to any marginal distribution of $au^{(i)}$

• Default by time *t*

$$\tau^{(i)} < t \qquad \Longleftrightarrow \qquad \int_0^t \delta_s^{(i)} \, dN_s^{(i)} > b_t^{(i)}$$

- How to introduce correlation?
- Let's first assume homogeneity and constant jump size... $\tau^{(i)} < t \qquad \Longleftrightarrow \qquad \delta N_t^{(i)} > b_t$
- Correlation introduced by letting $N_t^{(i)} = M_t^{(i)} + M_t^*$

$$(1-a_t)\lambda_t \qquad a_t\lambda_t$$

- Assuming fixed jump size δ

$$\tau^{(i)} < t \qquad \Longleftrightarrow \qquad \delta M_t^{(i)} + \delta M_t^* > b_t^{(i)}$$
$$(1 - a_t)\lambda_t \qquad a_t\lambda_t$$

- <u>Note</u>: a_t used to allocate *intensity*, not *magnitude*
- Instead of *one* Cox process with factor structure in intensity, we've two Cox processes whose intensities are fraction of λ_t
- a_t does not affect marginal distribution of $au^{(i)}$

- Assuming fixed jump size δ

$$\tau^{(i)} < t \qquad \Longleftrightarrow \qquad \delta M_t^{(i)} + \delta M_t^* > b_t^{(i)}$$
$$(1 - a_t)\lambda_t \qquad a_t\lambda_t$$

- Conditional independence
- Condition on value of M_t^* , not on its intensity

• Joint default probability

$$P(\tau^{(i)} < t, \ \tau^{(j)} < t)$$

= $P_{m_t^*}(b_t/\delta) + \sum_{k=0}^{\lfloor b_t/\delta \rfloor} p_{m_t^*}(k) [P_{m_t}(b_t/\delta - k)]^2$

• where $p_{\nu}(x) = e^{-\nu} \nu^{x} / x!$ and $P_{\nu}(x) = 1 - \sum_{k=0}^{\lfloor x \rfloor} p_{\nu}(k)$

•
$$m_t^* = \int_0^t a_s \lambda_s ds$$
 and $m_t = \int_0^t (1 - a_s) \lambda_s ds$

- For portfolio of credit instruments
 - > Laplace transform of its aggregate loss is available
 - Use inverse transform to compute loss distribution

Agenda:

- Existing models and challenges
- Model description
- Correlation Term Structure
- Calibration Example

Modeling Term Structure of Correlation

- How correlation between $\{\tau^{(i)} \leq t\}$ and $\{\tau^{(j)} \leq t\}$ depends on t
- This term structure of correlation is controlled by a_t

Base Correlation Curve

- Tranche pricing, detached at 3%, 6%, 9%, 12%, 22%
- Use correlation term structure to control base correlation curve

Figure 2: Base correlation curves using three different term structures of correlation. The leftmost curve uses $\{\varrho(t)\}_{t=1,...,5} = [.00 \ .04 \ .10 \ .17 \ .26]$, the middle $[.00 \ .02 \ .08 \ .17 \ .28]$, and the rightmost $[.00 \ .01 \ .06 \ .16 \ .29]$

Extension

- Correlation between recovery rate and default
- Random correlation
- Random jump size to take care of clustering
- Randomizing the jump size equivalent to multifactor model

Agenda:

- Existing models and challenges
- Model description
- Correlation Term Structure
- Calibration Example

Calibration Example

• 5-year iTraxx Europe monthly fixings, Mar '08 – Jan '09

	0–3%	3 - 6%	6–9%	9 - 12%	1222%	Index Level
Mar '08	40%	484	310	216	110	123
May '08	34%	301	189	127	62	80
Jul '08	31%	356	220	141	70	90
Sep '08 $$	47%	672	388	208	97	130
Nov '08 $$	64%	1176	601	325	127	180
Jan '09	64%	1186	607	316	97	165

• Calibrate the correlation, assuming

$$P(\tau < t) = 1 - e^{-st/(1-R)}$$

Calibration Example

• Base correlation:

Calibration Example

• Can produce the skew by calibrating only the correlation...

• Note: compared with "implied copula" (Hull 2006)

Conclusion

- Motivate the concept of correlation term structure
 - Implied from market data
 - Important role in explaining correlation skew
- Develop a model of correlated default that:
 - Imposes term structure of correlation on top of PD
 - > Easy to calibration to single-name & correlation products
 - Tractable, even under generalizations

