Semi-Markov model for market microstructure and HF trading

Huyên PHAM

LPMA, University Paris Diderot and JVN Institute, VNU, Ho-Chi-Minh City

NUS-UTokyo Workshop on Quantitative Finance Singapore, 26-27 september 2013

> Joint work with Pietro FODRA EXQIM and LPMA, University Paris Diderot

Market making

Financial data modelling

• Continuous time price process $(P_t)_t$ over [0, T] observed at

$$P_0, P_{\tau}, \ldots, P_{n\tau}$$

- Different modelling of P according to scales τ and T:
 - Macroscopic scale (hourly, daily observation data): Itô semimartingale
 - Microscopic scale (tick data) → High frequency

Euribor contract, 2010, for different observation scales

Conclusion

Stylized facts on HF data

Microstructure effects

- Discreteness of prices: jump times and prices variations (tick) data)
- Mean-reversion: negative autocorrelation of consecutive variation prices

Semi Markov model for microstructure price

Irregular spacing of jump times: clustering of trading activity

Limit order book

• Most of modern equities exchanges organized through a mechanism of *Limit Order Book* (LOB):

Semi Markov model for microstructure price

Figure: Instantaneous picture of a LOB

High frequency finance

Two main streams in literature:

- Models of intra-day asset price
 - Latent process approach: Gloter and Jacod (01), Ait Sahalia, Mykland and Zhang (05), Robert and Rosenbaum (11), etc
 - Point process approach: Bauwens and Hautsch (06), Cont and de Larrard (10), Bacry et al. (11), Abergel, Jedidi (11),
- ightarrow Sophisticated models intended to reproduce microstructure effects, often for purpose of volatility estimation
- High frequency trading problems
 - Liquidation and market making in a LOB: Almgren, Cris (03),
 Alfonsi and Schied (10, 11), Avellaneda and Stoikov (08), etc
- → Stochastic control techniques for optimal trading strategies based on classical models of asset price (arithmetic or geometric Brownian motion, diffusion models)

Conclusion

Objective

Make a "bridge" between these two streams of literature:

Semi Markov model for microstructure price

- ► Construct a "simple" model for asset price in Limit Order Book (LOB)
 - realistic: captures main stylized facts of microstructure
 - Diffuses on a macroscopic scale
 - Easy to estimate and simulate
 - tractable (simple to analyze and implement) for dynamic optimization problem in high frequency trading
- → Markov renewal and semi-Markov model approach

References

- P. Fodra and H. Pham (2013a): "Semi-Markov model for market microstructure", preprint on arxiv or ssrn
- P. Fodra and H. Pham (2013b): "High frequency trading in a Markov renewal model".

Semi Markov model for microstructure price

Model-free description of asset mid-price (constant bid-ask spread)

Marked point process

Evolution of the univariate mid price process (P_t) determined by:

- The **timestamps** $(T_k)_k$ of its jump times $\leftrightarrow N_t$ counting process: $N_t = \inf\{n : \sum_{k=1}^n T_k \le t\}$: modeling of volatility clustering, i.e. presence of spikes in intensity of market activity
- The marks $(J_k)_k$ valued in $\mathbb{Z} \setminus \{0\}$, representing (modulo the tick size) the price increment at T_k : modeling of the microstructure noise via mean-reversion of price increments

Market making

Semi-Markov model approach

Markov Renewal Process (MRP) to describe $(T_k, J_k)_k$.

- Largely used in reliability
- Independent paper by d'Amico and Petroni (13) using also semi Markov model for asset prices

Jump side modeling

For simplicity, we assume $|J_k|=1$ (on data, this is true 99,9% of the times) :

ullet J_k valued in $\{+1,-1\}$: side of the jump (upwards or downwards)

$$J_k = J_{k-1}B_k (1)$$

 $(B_k)_k$ i.i.d. with law: $\mathbb{P}[B_k = \pm 1] = \frac{1 \pm \alpha}{2}$ with $\alpha \in [-1, 1)$. $\leftrightarrow (J_k)_k$ irreducible Markov chain with symmetric transition matrix:

$$Q_{\alpha} = \begin{pmatrix} \frac{1+\alpha}{2} & \frac{1-\alpha}{2} \\ \frac{1-\alpha}{2} & \frac{1+\alpha}{2} \end{pmatrix}$$

Remark: arbitrary random jump size can be easily considered by introducing an i.i.d. multiplication factor in (1).

Introduction

Mean reversion

• Under the stationary probability of $(J_k)_k$, we have:

$$\alpha = \operatorname{correlation}(J_k, J_{k-1})$$

• Estimation of α :

$$\hat{\alpha}_n = \frac{1}{n} \sum_{k=1}^n J_k J_{k-1}$$

- $\rightarrow \alpha \simeq -87,5\%$, (Euribor3m, 2010, 10h-14h)
- → Strong mean reversion of price returns

Introduction

Timestamp modeling

Conditionally on $\{J_kJ_{k-1}=\pm 1\}$, the sequence of inter-arrival jump times $\{S_k=T_k-T_{k-1}\}$ is i.i.d. with distribution function F_\pm and density f_\pm :

$$F_{\pm}(t) = \mathbb{P}[S_k \leq t | J_k J_{k-1} = \pm 1].$$

Remarks

• The sequence $(S_k)_k$ is (unconditionally) i.i.d with distribution:

$$F = \frac{1+\alpha}{2}F_+ + \frac{1-\alpha}{2}F_-.$$

• $h_+=\frac{1+\alpha}{2}\frac{f_+}{1-F}$ is the intensity function of price jump in the same direction, $h_-=\frac{1-\alpha}{2}\frac{f_-}{1-F}$ is the intensity function of price jump in the opposite direction

Non parametric estimation of jump intensity

Figure : Estimation of h_{\pm} as function of the renewal quantile

Simulated price

Figure: 30 minutes simulation

Figure : 1 day simulation □ → ◆ □ → ◆ ■ → ◆ ■ → ◆ ■ → ◆ ● → ◆

Diffusive behavior at macroscopic scale

Scaling:

$$P_t^{(T)} = \frac{P_{tT}}{\sqrt{T}}, \quad t \in [0, 1].$$

Theorem

$$\lim_{T \to \infty} P^{(T)} \stackrel{(d)}{=} \sigma_{\infty} W,$$

where W is a Brownian motion, and σ_{∞}^2 is the macroscopic variance:

$$\sigma_{\infty}^2 = \lambda \left(\frac{1+\alpha}{1-\alpha} \right).$$

with
$$\lambda^{-1} = \int_0^\infty t dF(t)$$
.

Mean signature plot (realized volatility)

We consider the case of **delayed renewal** process:

- $S_n \rightsquigarrow F$, n > 1, with finite mean $1/\lambda$, and $S_1 \rightsquigarrow$ density $\lambda(1 F)$
- \rightarrow Price process P has stationary increments

Proposition

$$\bar{V}(\tau) := \frac{1}{\tau} \mathbb{E}[(P_{\tau} - P_0)^2] = \sigma_{\infty}^2 + \left(\frac{-2\alpha}{1-\alpha}\right) \frac{1 - G_{\alpha}(\tau)}{(1-\alpha)\tau},$$

where $G_{\alpha}(t) = \mathbb{E}[\alpha^{N_t}]$ is explicitly given via its Laplace-Stieltjes transform \widehat{G}_{α} in terms of $\widehat{F}(s) := \int_{0}^{\infty} e^{-st} dF(t)$.

$$\bar{V}(\infty) = \sigma_{\infty}^2$$
, and $\bar{V}(0^+) = \lambda$.

Remark: Similar expression as in Robert and Rosenbaum (09) or Bacry et al. (11). ◆□ > ◆□ > ◆豆 > ◆豆 > 豆 の Q @ >

Market making

Market making

Figure : Mean signature plot for $\alpha < 0$

Markov embedding of price process

• Define the last price jump direction:

$$I_t = J_{N_t}, t \ge 0,$$
 valued in $\{+1, -1\}$

and the elapsed time since the last jump:

$$S_t = t - \sup_{T_k \le t} T_k, \quad t \ge 0.$$

► Then the price process (P_t) valued in $2\delta\mathbb{Z}$ is embedded in a Markov process with three **observable** state variables (P_t, I_t, S_t) with generator:

$$\mathcal{L}\varphi(p,i,s) = \frac{\partial \varphi}{\partial s} + h_{+}(s) [\varphi(p+2\delta i,i,0) - \varphi(p,i,s)] + h_{-}(s) [\varphi(p-2\delta i,-i,0) - \varphi(p,i,s)],$$

Trading issue

Problem of an agent (market maker) who submits limit orders on both sides of the LOB: limit buy order at the best bid price and limit sell order at the best ask price, with the aim to gain the spread.

► We need to model the market order flow, i.e. the counterpart trade of the limit order

Market trades

- A market order flow is modelled by a marked point process $(\theta_k, Z_k)_k$:
 - θ_k : arrival time of the market order $\leftrightarrow M_t$ counting process
 - Z_k valued in $\{-1, +1\}$: side of the trade.
 - ullet $Z_k=-1$: trade at the best BID price (market sell order)
 - $Z_k = +1$: trade at the best ASK price (market buy order)

index n	$ heta_{m{k}}$	best ask	best bid	traded price	Z_k
1	9:00:01.123	98.47	98.46	98.47	+1
2	9:00:02.517	98.47	98.46	98.46	-1
3	9:00:02.985	98.48	98.47	98.47	-1

► Dependence modeling between market order flow and price in LOB: Cox marked point process

Trade timestamp modeling

• The counting process (M_t) of the market order timestamps $(\theta_k)_k$ is a Cox process with conditional intensity $\lambda_M(S_t)$.

Examples of parametric forms reproducing intensity decay when s is large:

$$\lambda_M^{exp}(s) = \lambda_0 + \lambda_1 s^r e^{-ks}$$

 $\lambda_M^{power}(s) = \lambda_0 + \frac{\lambda_1 s^r}{1 + s^k}.$

with positive parameters λ_0 , λ_1 , r, k, estimated by MLE.

Strong and weak side of LOB

- We call strong side (+) of the LOB, the side in the same direction than the last jump, e.g. best ask when price jumped upwards.
- We call weak side (—) of the LOB, the side in the opposite direction than the last jump, e.g. best bid when price jumped upwards.
- ► We observe that trades (market order) arrive mostly on the weak side of the LOB.

Trade side modeling

• The trade sides are given by:

$$Z_k = \Gamma_k I_{\theta_k^-},$$

 $(\Gamma_k)_k$ i.i.d. valued in $\{+1, -1\}$ with law:

$$\mathbb{P}[\Gamma_k = \pm 1] = \frac{1 \pm \rho}{2}$$

for $\rho \in [-1,1]$.

Market making

Interpretation of ρ

$$\rho = \operatorname{corr}(Z_k, I_{\theta_k^-})$$

- $\rho = 0$: market order flow arrive independently at best bid and best ask (usual assumption in the existing literature)
- $\rho > 0$: market orders arrive more often in the strong side of the LOB
- $\rho <$ 0: market orders arrive more often in the weak side of the LOB
- Estimation of ρ : $\hat{\rho}_n = \frac{1}{n} \sum_{k=1}^n Z_k I_{\theta_k^-}$ leads to $\rho \simeq -50\%$: about 3 over 4 trades arrive on the weak side.
- \triangleright ρ related to adverse selection

Market making strategy

- Strategy control: predictable process $(\ell_t^+, \ell_t^-)_t$ valued in $\{0, 1\}$
 - ullet $\ell_t^+=1$: limit order of fixed size L on the strong side: $+I_{t^-}$
 - ullet $\ell_t^-=1$: limit order of fixed size L on the weak side: $-I_{t^-}$
- ullet Fees: any transaction is subject to a fixed cost $arepsilon \geq 0$
- ► Portfolio process:
 - Cash $(X_t)_t$ valued in \mathbb{R} ,
 - inventory $(Y_t)_t$ valued in a set \mathbb{Y} of \mathbb{Z}

Agent execution

- Execution of limit order occurs when:
 - A market trade arrives at θ_k on the strong (resp. weak) side if $Z_k I_{\theta_k^-} = +1$ (resp. -1), and with an executed quantity given by a distribution (price time priority/prorata) v_L^+ (resp. v_L^-) on $\{0, \ldots, L\}$
 - The **price jumps** at T_k and crosses the limit order price

Remark

 ϑ_L^\pm cannot be estimated on historical data. It has to be evaluated by a backtest with a zero intelligence strategy.

- ► Risks:
 - Inventory ↔ price jump
 - Adverse selection in market order trade

Market making optimization

• Value function of the market making control problem:

$$v(t, s, p, i, x, y) = \sup_{(\ell^+, \ell^-)} \mathbb{E} [PNL_T - CLOSE(Y_T) - \eta \cdot RISK_{t, T}]$$

where $\eta \geq 0$ is the agent risk aversion and:

$$PNL_t = X_t + Y_t \cdot P_t, \text{ (ptf valued at the mid price)}$$

$$CLOSE(y) = -(\delta + \varepsilon) \cdot |y|, \text{ (closure market order)}$$

$$RISK_{t,T} = \int_{-t}^{T} Y_u^2 \cdot d[P]_u, \text{ (no inventory imbalance)}$$

Variable reduction to strong inventory and elapsed time

Theorem

The value function is given by:

$$v(t, s, p, i, x, y) = x + yp + \omega_{yi}(t, s)$$

where $\omega_q(t,s) = \omega(t,s,q)$ is the unique viscosity solution to the integro ODE:

$$\begin{split} \left[\partial_t + \partial_s\right] \omega + 2\delta(h^+ - h^-)q - 4\delta^2\eta(h^+ + h^-)q^2 \\ + \max_{\ell \in \{0,1\}, q-\ell L \in \mathbb{Y}} \mathcal{L}_+^\ell \omega \, + \max_{\ell \in \{0,1\}, q+\ell L \in \mathbb{Y}} \mathcal{L}_-^\ell \omega = 0 \\ \omega_q(\mathcal{T}, s) = -|q| \left(\delta + \epsilon\right) \end{split}$$

in $[0, T] \times \mathbb{R}_+ \times \mathbb{Y}$.

$$\mathcal{L}_{\pm}^{\ell} \ = \ \mathcal{L}_{\pm, \mathit{M}}^{\ell} + \mathcal{L}_{\pm, \mathit{jump}}^{\ell}$$

• favorable execution of random size $\leq L$ by market order

$$egin{array}{lll} \mathcal{L}_{\pm,\scriptscriptstyle{M}}^{\ell} \; \omega &:= & \lambda_{\pm,\scriptscriptstyle{M}}(s) \int \left[\omega(t,s,q\mp \mathbf{k}\ell) - \omega(t,s,q)
ight. \ & + \left. (+\delta - arepsilon) k\ell
ight] artheta_L^{\pm}(\mathbf{dk}) \end{array}$$

unfavorable execution of maximal size L due to price jump

$$\mathcal{L}_{\pm,j_{\textit{ump}}}^{\ell} \omega := h_{\pm}(s) \big[\omega(t,0,\pm q - \mathbf{L}\ell) - \omega(t,s,q) + (-\delta - \varepsilon) \mathbf{L}\ell \big]$$

with

$$\lambda_{\pm,{\scriptscriptstyle M}}(s) \;\; := \;\; rac{1\pm
ho}{2}\cdot\lambda_{\scriptscriptstyle M}(s) \hspace{0.5cm} ext{(trade intensities)}$$

Optimal policy shape: $\rho = 0$, execution probability = 10%

Optimal policy shape: $\rho = 0$, execution probability = 5%

Optimal policy shape: $\rho = -0,33$, execution probability = 5%

Concluding remarks

- Markov renewal approach for market microstructure
 - + Easy to understand and simulate
 - + Non parametric estimation based on i.i.d. sample data
 - + dependency between price return J_k and jump time T_k
 - Reproduces well microstructure effects, diffuses on macroscopic scale
 - + Markov embedding with observable state variables (≠ Hawkes process approach)
 - + Develop stochastic control algorithm for HF trading
 - MRP forgets correlation between inter-arrival jump times $\{S_k = T_k T_{k-1}\}_k$
- Extension to multivariate price model
- Model with market impact for liquidation problem

