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Abstract

Essays on the Valuation Problems of Contingent Claims

by

Akihiko Takahashi

Doctor of Philosophy in Business Administration

University of California, Berkeley

Professor Hua He, Chair

This dissertation consists of three essays on valuation problems of contingent

claims in financial markets. The first essay proposes a new methodology for the

valuation problems of financial contingent claims when the underlying asset prices

follow the general class of continuous Ito processes. My method can be applicable to

a wide range of the valuation problems including the complicated contingent claims

associated with a stock, a foreign exchange rate and the term structure of interest

rates. I illustrate the method by giving a series of examples both in the Black-Sholes’

economy and in the arbitrage-free based forward rate model of the term structure.

My method gives some explicit formulae for solutions which are numerically accurate

enough for practical purpose in most cases. Moreover, I present a rigorous proof on

the validity of the method by utilizing the Malliavin-Watanabe Calculus in stochastic

analysis.

The second essay propose a new valuation technique for the valuation problem

of the average-rate options under log-normally distributed underlying asset prices.

This method transforms the valuation problem into an evaluation of a conditional

expectation that is determined by a one-dimensional Markov process as suppose

to a two-dimensional Markov process commonly known. This transformation is

extremely useful since numerically it is much easier to handle a one-dimensional

problem than a two-dimensional problem. Alternatively, I also derive a partial

differential equation that the value function must satisfy. I illustrate this technique

in the simple Black-Scholes’ economy and in the term structure model.

The third essay examines the valuation problems of the securities with default

risks. I propose two models in a general equilibrium framework, one of which utilizes

a predictable stopping time and the other of which makes use of a totally inaccesible

1



stopping time to characterize the state of default. In the both models, the state of

the default may be related to the other economic variables which are determined in

equilibrium inside the models. Moreover, for the both models, I explicitly derive the

partial differential equations with boundary conditions which allow us to evaluate

any securities subject to default risks in a unified framework.
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Chapter 1

An Asymptotic Expansion
Approach to Pricing Financial
Contingent Claims

1 Introduction

We propose a new approach to the valuation of contingent claims where we exten-

sively develop the unified method of the asymptotic expansion technique for the

asset pricing in a continuous time framework. The approach is general enough to be

applicable in the broad class of Ito processes of assets and of their functionals, and

is powerful in evaluating the complicating payoffs such as average options under the

general asset processes. The asymptotic expansion technique is, to our knowledge,

firstly applied to financial economics by Kunitomo-Takahashi(1992). They make

use of the first order expansion in the pricing of average option under the assump-

tion of the log-normal process of the underlying asset when the volatility is small.

That is, they approximate the distribution of the average price by the log-normal

distribution which is obtained by the first order stochastic expansion around the

volatility parameter being zero. This method gives relatively accurate values, but

those are not accurate enough for practical purpose when the volatility parameter is

large. Hence, they propose another method where the arithmetic average is replaced

by the geometric average which follows the log-normal distribution with its mean

and variance adjusted to match the mean and variance of the arithmetic average.

Although their second approach gives more accurate values, it is not general enough

to be applied to the other processes and the other types of financial claims. Our
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method is valid in much more general situation and gives the formula for the expan-

sion upto the higher orders which includes their formula as a special case. Moreover,

the method gives numerical values which are accurate enough for practical purpose.

Following this approach, we can evaluate various types of contingent claims in the

unified fashion in a sense that we may apply the same procedure to various types

of payoffs under the general class of continuous Ito processes shown below. The

processes we consider in the paper can be expressed in the following manner. In the

simple Black-Scholes’ economy, the underlying asset processes are given by

dSδ = rSδdt+ δ
N∑
i=1

σi(S
δ, t)dw̃it

where 0 < δ < 1, w̃it is a one-dimensional standard Brownian motion and r is

a positive constant. In the term structure model of interest rates, the stochastic

processes of instantaneous forward rates are given by

f ε(t, T ) = f(0, T ) + ε2
∫ t

0
bε(v, T )dv + ε

∫ t

0

N∑
i=1

σε
i (v, T )dw̃i(v)

where

bε(v, T ) =
N∑
i=1

σε
i (v, T )

∫ T

v
σε
i (v, y)dy,

and in particular,

rε(t) = f(0, t) + ε2
∫ t

0
bε(v, t)dv + ε

∫ t

0

N∑
i=1

σi(v, t)dw̃i(v).

Especially, we note that the continuous stochastic processes for spot interest rates

and forward rates are not necessarily Markovian or diffusion in the usual sense. The

stochastic process is expanded around the deterministic process where the diffusion

term (that is, δ or ε ) is zero. The expansion is taken along the polynomial order

of the volatility coefficients (that is, along δk or εk where k = 1, 2, · · · ). We obtain

stochastic differential equations which the coefficient of each term in the expansion

must satisfy. By making use of those stochastic differential equations, we can derive

the density function (or distribution function) at any date the process follows. We

can show that the coefficient of the first order follows normal distribution and the

coefficients of the higher orders are considered adjusted terms whose density can

be described as the normal density function multiplied by a polynomial function.
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Theoretically, any orders can be evaluated, but in practice, the expansion upto the

second is enough for most cases. Once the density function of the (discounted)

payoff under the equivalent martingale measure is obtained, it is easy to evaluate

the expectation of the discounted payoffs. We finally note that this approach is

justified in a rigorous fashion by making use of the theory recently developed by

Malliavin-Watanabe in the stochastic analysis.

The advantage of this method may be explained as follows. First, this is applica-

ble in the unified manner to the pricing of various types of assets and their functionals

in the economy evolved by very general class of continuous Ito processes, which are

usually very difficult to evaluate. Second, this method is computationally efficient

compare to the other methods such as the partial differential equation(PDE) ap-

proach and the Monte Carlo method since it is very fast to obtain the answer by,

for example spread sheet in ordinary PC. Third, the distributions of the underlying

assets and their functionals at any date can be obtained. This is very useful, for ex-

ample in various kinds of simulation analysis. We also note that the pricing formula

obtained by this method can be used as a control variate to improve the efficiency of

Monte Carlo simulations. We briefly discuss the other methods. The PDE method

requires tough task in implementation especially when the underlying assets follows

multifactor or complicating processes. This often happens in term structure models.

It also requires special consideration for boundary conditions as well as transforma-

tion of variables in each case and there is no unified technique. The Monte Carlo

method is easy to implement, but is not computaionally efficient. This matters

especially when fast response is required such as in forex dealing. Moreover, the

Monte Carlo simulation is quite time-consuming in the cases where the process of

zero coupon bond can not be solved explicitly in a term structure model and hence

need a special treatment.

The organization of the paper is as follows. In the second section, we explain

the basic concept of this technique in the simple Black-Scholes’ economy where

there is a constant risk-free interest rate and the underlying asset following one-

factor diffusion process. First, we show the asymptotic expansion of the underlying

asset and then, show how to evaluate basket options including ”spread” options

and average options as well as plain vanilla option by making use of this method.
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Next, we present another method, the asymptotic expansion by using a log-normal

distribution, which can be thought as a direct extension of the method proposed in

Kunitomo-Takahashi(1992). In the last part of this section, We briefly explain how

to apply the technique to options with stochastic volatilities.

In the third section, we extend this method to pricing problem of term structure

model where we take arbitrage-free based forward rate model as our basics. First,

we present a series of the asymptotic expansions of spot interest rates, instanta-

neous forward rates and zero coupon bonds as well as discount factors. Then, we

evaluate the bond options including caps, floors and swaptions, and average options

on interest rates by applying this technique.

In the forth section, in order to show that this method is also useful in the

Black-Scholes’ economy combined with term structure model, we present the pricing

formula of average options on foreign exchange rate in the (cross-currency) stochastic

interest rates economy.

In the fifth section, we show the several numerical examples. In the Black-

Scholes’ economy, first we give the numerical values of plain vanilla call options

under the square-root process of the underlying asset. Next, we present numerical

examples of average options for two types of the underlying asset process, one of

which is a square-root process and the other of which is a log-normal process. In

particular, we examine the log-normal case in detail which is widely used in prac-

tice. We numerically compare the values obtained by the asymptotic log-normal

expansion to those obtained by our original method. In a term structure model,

we present numerical examples of average options on interest rates for the constant

volatility model of instantaneous forward rates. In the final section, we discuss the

validity of our method in detail. We shall explain that our method is not an ad-hoc

approximation method because it can be rigorously justified by using the Malliavin-

Watanabe theory in stochastic analysis and we shall also emphasize that our simple

inversion technique gives the exact same formulae as those obtained by the Malliavin

calculus. In the appendix, we give the proofs of mathematical formulae freqently

appearing in the paper and show the formulae in the multi-dimensional cases.

We finally note that this technique may also be applied to the valuation of various

kinds of options in a multicurrency economy combined with term structure models,
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which are considered, in general, very difficult task.

2 The Asymptotic Expansion in the Black and

Scholes’ Economy

In this section, we present the asymptotic expansion method in the simple Black-

Scholes’ economy where the interest rate of the riskless asset is a constant and the

risky assets follow some diffusion processes whose volatility functions may depend

on the current level of the assets as well as on the current time. First, we derive

the asymptotic expansion of the density function of the normalized price of the

risky asset and that of the price of the plain vanilla call options in order to explain

our method in detail. We next consider the valuation of basket options which is a

natural extension of the plain vanilla options. Finally, we show that this technique

is also valid in the pricing of average options which is a tough task especially when

the underlying asset has a general volatility function.

2.1 The Asymptotic Expansion of Underlying Assets

We consider economy where there is one risky asset and a riskless asset. The volatil-

ity function in the risky asset process may depend on the current level of the asset

and the current time. That is, the processes of the risky asset and the riskless asset

are described as

dSδ = rSδdt+ δσ(Sδ, t)dw̃t (1.1)

dB = rBdt

where 0 < δ < 1, w̃t is a one-dimensional standard Brownian motion and r is

a positive constant. Alternatively, the integral form of the risky asset process is

expressed as

Sδ(t) = S(0) + r
∫ t

0
Sδ(s)ds+ δ

∫ t

0
σ(Sδ, s)dw̃(s).

Our first objective is to expand Sδ(t) around δ = 0 . The deterministic process

where δ = 0 is obtained by

S0(t) ≡ lim
δ→0

Sδ(t) = S(0) + r
∫ t

0
S0ds.
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Then, we easily have

S0(t) = ertS(0). (1.2)

Next, we calculate the coefficient of the first order of δ. Let

A(t) =
∂Sδ(t)

∂δ
|δ=0.

Then, we obtain the stochastic differential equation which A(t) must follow.

dA(t) = rA(t)dt+ σ(S0, t)dw̃(t)

This stochastic differential equation can be solved as

A(t) =
∫ t

0
er(t−s)σ(S0, s)dw̃(s). (1.3)

The coefficients of the second and the third orders of δ are obtained in the similar

manner. That is, let

B(t) =
∂2Sδ(t)

∂δ2
|δ=0.

Then, we obtain the stochastic differential equation of B(t).

dB(t) = rB(t)dt+ 2∂σ(S0, t)A(t)dw̃(t)

where

∂σ(S0, t) ≡ ∂σ(Sδ, t)

∂Sδ
|Sδ=S0 .

Hence, B(t) is solved as

B(t) = 2
∫ t

0
er(t−s)∂σ(S0, s)A(s)dw̃(s). (1.4)

Similarly, let

C(t) =
∂3Sδ(t)

∂δ3
|δ=0,

and then,

dC(t) = rC(t)dt+ 3∂2σ(S0, t)A(t)2dw̃(t) + 3∂σ(S0, t)B(t)dw̃(t).

Hence,

C(t) = 3
∫ t

0
er(t−s)∂2σ(S0, s)A(s)2dw̃(s) + 3

∫ t

0
er(t−s)∂σ(S0, s)B(s)dw̃(s). (1.5)

Finally, we obtain the asymptotic expansion of Sδ(t). We state the reslut in the

following proposition.
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Proposition 1.1 The asymptotic expansion of the price of the risky asset, Sδ(t) at

any particular time point, t is given by

Sδ(t) = S0(t) + δA(t) + δ2
B(t)

2
+ δ3

C(t)

6
+ o(δ3) (1.6)

where A(t), B(t) and C(t) are defined by (1.3), (1.4) and (1.5) respectively.

Here, we can easily see that A(t) follows a normal distribusion. That is,

A(t) ∼ N(0,ΣAt) (1.7)

where

ΣAt =
∫ t

0
e2r(t−s)σ(S0, s)2ds.

We next define the new variable for which we explicitly calculate the density func-

tion. Let

Xδ
t = {S

δ(t)− S0(t)

δ
} = A(t) + δ

B(t)

2
+ δ2

C(t)

6
+ · · · (1.8)

≡ g1 + δg2 + δ2g3 + · · · .

We know that

g1 ∼ N(0,ΣAt) = N(0,Σg1). (1.9)

Then, intuitively, we see that the density function of Xδ(t) can be obtained as the

normal density function combined with the adjusted terms. To obtain the explicit

functional form of the adjusted terms, we use the characteristic function method

which is explained in detail below. First, we make the following assumption which

is valid in all the subsequent analyses of this paper.

Assumption

Σg1 > 0 (1.10)

Next, we define the characteristic function of Xδ(t) as

ψ(ξ) = E[eiξX
δ
t ].

7



Then, ψ(ξ) itself can be expanded along the polynomial orders of δ .

ψ(ξ) = E[eiξ(g1+δg2+δ2g3+···)]

= E[eiξg1{1 + δ(iξ)g2 + δ2(iξ)g3 +
δ2

2
(iξ)2g22 + · · ·}]

= E[eiξg1 ] + δ(iξ)E[eiξg1g2] + δ2(iξ)E[eiξg1g3]

+
δ2

2
(iξ)2E[eiξg1g22] + · · ·

= e
(iξ)2Σg1

2 + δ(iξ)E
[
eiξxE[g2|g1 = x]

]
+ δ2(iξ)E

[
eiξxE[g3|g1 = x]

]
+

1

2
δ2(iξ)2E

[
eiξxE[g22|g1 = x]

]
+ · · · .

Next, we explicitly evaluate the expansion of this characteristic function. First, we

will show that E[g2|g1 = x] , E[g3|g1 = x] and E[g22|g1 = x] are some polynomial

functions of x , h2(x) , h3(x) , and h22(x) , respectively. We present useful formulae

to evaluate those conditional expectations.

Lemma 1.1 Suppose w̃(t) is a one-dimensional standard Brownian motion and

qi(t), i = 1, 2, 3, 4 are R1 7→ R1 non-stochastic functions. Let x denote a scalar.

Then, the following formulae for conditional expectations hold.

(1)

E

[∫ t

0

[∫ s

0
q2(u)dw̃(u)

]
q3(s)dw̃(s)|

∫ T

0
q1(u)dw̃(u) = x

]

= −
[

1

Σg1

∫ t

0
q3(s)q1(s)

∫ s

0
q2(u)q1(u)duds

]

+ x2
[

1

Σ2
g1

∫ t

0
q3(s)q1(s)

∫ s

0
q2(u)q1(u)duds

]

(2)

E

[[∫ t

0
q2(u)dw̃(u)

] [∫ t

0
q3(u)dw̃(u)

]
|
∫ T

0
q1(u)dw̃(u) = x

]

= − 1

Σg1

[∫ t

0
q2(u)q1(u)du

] [∫ t

0
q3(u)q1(u)du

]
+
∫ t

0
q3(u)q2(u)du

+ x2
1

Σ2
g1

[∫ t

0
q2(u)q1(u)du

] [∫ t

0
q3(u)q1(u)du

]

8



(3)

E

[∫ t

0

[∫ s

0
q2(u)dw̃(u)

] [∫ s

0
q3(u)dw̃(u)

]
q4(s)dw̃(s)|

∫ T

0
q1(u)dw̃(u) = x

]

= x

[
1

Σg1

∫ t

0

[∫ s

0
q2(u)q3(u)du

]
q4(s)q1(s)ds

−3
1

Σ2
g1

∫ t

0

[∫ s

0
q2(u)q1(u)du

] [∫ s

0
q3(u)q1(u)du

]
q4(s)q1(s)ds

]

+ x3
[

1

Σ3
g1

∫ t

0

[∫ s

0
q2(u)q1(u)du

] [∫ s

0
q3(u)q1(u)du

]
q4(s)q1(s)ds

]

(4)

E

[∫ t

0

∫ s

0

[∫ v

0
q2(u)dw̃(u)

]
q3(v)dw̃(v)q4(s)dw̃(s)|

∫ T

0
q1(u)dw̃(u) = x

]

= −3x

[
1

Σ2
g1

∫ t

0
q4(s)q1(s)

∫ s

0
q3(v)q1(v)

∫ v

0
q2(u)q1(u)dudvds

]

+ x3
[

1

Σ3
g1

∫ t

0
q4(s)q1(s)

∫ s

0
q3(u)q1(u)

∫ v

0
q2(u)q1(u)dudvds

]

(5)

E

[[∫ t

0

[∫ s

0
q2(u)dw̃(u)

]
q3(s)dw̃(s)

]2
|
∫ T

0
q1(u)dw̃(u) = x

]

=
[∫ t

0
Q31(s)

∫ s

0
Q21(u)duds

]2 [ 4

Σ2
g1

x4 − 6

Σ3
g1

x2 +
3

Σ2
g1

]

+
[∫ t

0
Q31(s)

∫ s

0
Q32(v)

∫ v

0
Q21(u)dudvds

] [
2

Σ2
g1

x2 − 2

Σg1

]

+
[∫ t

0
Q31(s)

2
∫ s

0
Q22(u)duds

] [
1

Σ2
g1

x2 − 1

Σg1

]

+

[∫ t

0
Q33(s)

[∫ s

0
Q21(u)du

]2
ds

] [
1

Σ2
g1

x2 − 1

Σg1

]

+
∫ t

0
Q33(s)

∫ s

0
Q22(u)duds

where

Qij(s) ≡ qi(s)qj(s).

Proof.

See appendix.
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The formulae for multi-dimensional cases are also given by Lemma 1.1’ in the ap-

pendix whose proof is quite similar to that of Lemma 1.1 and hence it is omitted.

Hence, we can evaluate the conditional expectations by using Lemma 1.1. First,

by applying formula(1) to E[g2|g1 = x], we have

E[g2|g1 = x] = cx2 + f (1.11)

where

c =
1

Σ2
g1

∫ t

0
er(t−s)σ(S0, s)∂σ(S0, s)

∫ s

0
e2r(t−v)σ(S0, v)2dvds,

and

f = −cΣg1 .

Second, we obtain E[g3|g1 = x] by using formula(3) and formula(4) . First,

we note that

g3 =
C(t)

6

=
1

2
ert
∫ t

0

[
ers∂2σ(S0, s)

] [∫ v

0
σ(S0, v)dw̃(v)

]2
dw̃(s)

+ ert
∫ t

0
∂σ(S0, s)

∫ s

0
∂σ(S0, v)

∫ v

0
e−ruσ(S0, u)dw̃(u)dw̃(v)dw̃(s).

Hence, applying formula(3) and formula(4) to the first and second term of

E[g3|g1 = x] respectively, we obtain

E [g3|g1 = x] =
1

2
ert[x3c11 + xf11] + ert[x3c12 + xf12] (1.12)

where

c11 ≡ 1

Σ2
g1

e3rt
∫ t

0

[∫ s

0
e−2rvσ(S0, v)2dv

]2
∂2σ(S0, s)σ(S0, s)ds,

f11 ≡ 1

Σg1

ert
∫ t

0

[∫ s

0
e−2rvσ(S0, v)2dv

]
∂2σ(S0, s)σ(S0, s)ds− 3Σg1c11,

c12 ≡ 1

Σ3
g1

e3rt
∫ t

0

[
e−rsσ(S0, s)σ(S0, s)

]
∫ s

0

[
e−rvσ(S0, v)σ(S0, v)

] ∫ v

0

[
e−2ruσ(S0, u)2

]
dudsdt,

and

f12 ≡ −3Σg1c12.

Then, we can write

E [g3|g1 = x] = c1x
3 + f1x (1.13)

10



where

c1 ≡ 1

2
ertc11 + ertc12,

and

f1 ≡ 1

2
ertf11 + ertf12.

Similarly, by using (5), we can show that for some constants c2, f2 and k2,

E
[
g22|g1 = x

]
= c2x

4 + f2x
2 + k2. (1.14)

Therefore, we obtain the characteristic function as

ψ(ξ) = e
(iξ)2Σg1

2 + δ(iξ)E
[
eiξxh2(x)

]
+ δ2(iξ)E

[
eiξxh3(x)

]
+

δ2

2
(iξ)2E

[
eiξxh22(x)

]
+ · · · .

We need to evaluate the expectations such as E
[
eiξxh2(x)

]
, E

[
eiξxh3(x)

]
, and

E
[
eiξxh22(x)

]
to obtain ψ(ξ) .

In the final step to obtain the density function of Xδ(t) , we need to inverse ψ(ξ)

(inverse the Fourier transformation). We make use of the following formula which is

given by Fujikoshi etal.(1982) to summarize both steps of evaluating characteristic

function and implementing the inverse-Fourier transformation.

Lemma 1.2 Suppose that x⃗ follows N-dimensional normal distribution with mean

0⃗ and variance-covariance matrix Σ . Then, for any polynomial functions h(·) and

g(·) ,

F−1
[
g(−iξ⃗)E

[
h(x⃗)eiξ

⊤x⃗
]]

<ω⃗>
= g

[
∂

∂ω⃗

]
h(ω⃗)n[ω⃗; 0⃗,Σ], (1.15)

where

F−1
[
g(−iξ⃗)E

[
h(x⃗)eiξ

⊤x⃗
]]

<ω⃗>
= (

1

2π
)N
∫
RN

e−iξ⊤ω⃗g(−iξ⃗)E
[
h(x⃗)eiξ

⊤x⃗
]
dξ⃗,

the expectation E [·] is taken over x , and F−1 [·]<ω⃗> denotes F−1 [·] being evaluated

at ω⃗ .

Proof. It holds that

(
1

2π
)N
∫
RN

e−iξ⊤ω⃗E
[
h(x⃗)eiξ

⊤x⃗
]
dξ⃗ = h(ω⃗)n[ω; 0⃗,Σ]

11



Differenciating both sides with respect to the elements of ω⃗ , we obtain the result.

Finally, we obtain the asymptotic expansion of the density function of Xδ
t , fXδ

t
.

That is,

fXδ
t

∼ n[x; 0,Σg1 ] + δ

[
− ∂

∂x
{h2(x)n[x; 0,Σg1 ]}

]

+ δ2
[
− ∂

∂x
{h3(x)n[x; 0,Σg1 ]}

]
+

1

2
δ2
[
∂2

∂x2
{h22(x)n[x; 0,Σg1 ]}

]
+ · · · .

where

Xδ
t =

Sδ(t)− S0(t)

δ
,

and

n[x; 0,Σg1 ] =
1√

2πΣg1

exp

[
− x2

2Σg1

]
.

Using polynomial functions of h2(x) , h3(x) , and h22(x) , we can obtain more explicit

form of the density function. We state this result as the following theorem.

Theorem 1.1 The density function of Xδ
t = Sδ(t)−S0(t)

δ
, fXδ

t
as δ → 0 can be

expressed as

fXδ
t

= n[x; 0,Σg1 ] (1.16)

+ δ

[
{ c

Σg1

x3 + (
f

Σg1

− 2c)x}n[x; 0,Σg1 ]

]

+ δ2
[
{ c2
2Σ2

g1

x6 + (
f2

2Σ2
g1

− 9c2
2Σg1

+
c1
Σg1

)x4

+ (
k2

2Σ2
g1

− 5f2
2Σg1

+
f1
Σg1

− 3c1 + 6c2)x
2 + (−f1 −

k2
2Σg1

+ f2)}n[x; 0,Σg1 ]

]
+ o(δ2).

2.2 Plain Vanilla Options

We next, show how to evaluate plain vanilla options with general volatility functions

by using the density function of Xδ
t obtained previously. First, we define the payoffs

of plain vanilla options as

V (T ) = (S(T )−K)+ (1.17)

or

V (T ) = (K − S(T ))+.

12



Then, from the well-known martingale technique, the value at the initial date is

given by

V (0) = e−rTE∗[V (T )] (1.18)

where the expectation is taken under the equivalent martingale measure. In the

following, we only consider the asymptotic expansion of a call option because that

of a put option is obtained in the similar manner. First, we note that by using Xδ
t ,

the V (T ) can be expressed as

V (T ) = δ

[
S0(T )−K

δ
+Xδ

t

]+
= δ

[
y +Xδ

t

]+
where

y ≡ S0(T )−K

δ
.

Hence, using E[g2|g1 = x] = cx2 + f , E[g3|g1 = x] = c1x
3 + f1x and E[g22|g1 =

x] = c2x
4 + f2x

2 + k2 where c, f, c1, f1, c2, f2 and k2 are defined in the previous

subsection, together with the valuation formula, we can obtain the initial value of

the call option. That is,

V (0) = e−rT δE∗[(y +Xδ
T )

+]

= e−rT δ
[
y
∫ ∞

−y
fXδ

T
(x)dx+

∫ ∞

−y
xfXδ

T
(x)dx

]

∼ e−rT δ

[
y
∫ ∞

−y
n[x; 0,Σg1 ]dx+ δy

∫ ∞

−y

−∂{(cx2 + f)n[x; 0,Σg1 ]}
∂x

dx

+ δ2y
∫ ∞

−y

−∂{(c1x3 + f1x)n[x; 0,Σg1 ]}
∂x

dx

+
1

2
δ2y

∫ ∞

−y

∂2{(c2x4 + f2x
2 + k2)n[x; 0,Σg1 ]}
∂x2

dx

+
∫ ∞

−y
xn[x; 0,Σg1 ]dx+ δ

∫ ∞

−y
x
−∂{(cx2 + f)n[x; 0,Σg1 ]}

∂x
dx

+ δ2
∫ ∞

−y
x
−∂{(c1x3 + f1x)n[x; 0,Σg1 ]}

∂x
dx

+
1

2
δ2
∫ ∞

−y
x
∂2{(c2x4 + f2x

2 + k2)n[x; 0,Σg1 ]}
∂x2

dx

]
.

In the following theorem, we present an more explicit formula which may be con-

vienient to evaluate the value of the call option.

13



Theorem 1.2 The asymptotic expansion of the price of a call option with the gen-

eral volatility function is given by

V (0) = e−rT

δyN(
y

Σ
1
2
g1

) + δ
∫ ∞

−y
xn[x; 0,Σg1 ]dx (1.19)

+ δ2
∫ ∞

−y
(cx2 + f)n[x; 0,Σg1 ]dx

+ δ3
∫ ∞

−y
(c1x

3 + f1x)n[x; 0,Σg1 ]dx+
1

2
δ3(c2y

4 + f2y
2 + k2)n[y : 0,Σg1 ]

]
+ o(δ3).

Proof. From (1.19), the straightforward calculation shows the result.

In order to evaluate the integrals in (1.19) and those wnich may appear in the

coefficients of δk, k ≥ 4, the following formulae are useful. We omit the proofs

because they are easily obtained from integration by parts.∫ ∞

−y
xn[x; 0,Σg1 ]dx = Σg1n[y; 0,Σg1 ]∫ ∞

−y
x2n[x; 0,Σg1 ]dx = Σg1N(

y

Σ
1
2
g1

)− yΣg1n[y; 0,Σg1 ]∫ ∞

−y
x3n[x; 0,Σg1 ]dx = (2Σ2

g1
+ Σg1y

2)n[y; 0,Σg1 ]∫ ∞

−y
x4n[x; 0,Σg1 ]dx = 3Σ2

g1
N(

y

Σ
1
2
g1

)− (3Σ2
g1
y + Σg1y

3)n[y; 0,Σg1 ]∫ ∞

−y
x5n[x; 0,Σg1 ]dx = (8Σ3

g1
+ 4Σ2

g1
y2 + Σg1y

4)n[y; 0,Σg1 ]∫ ∞

−y
x6n[x; 0,Σg1 ]dx = 15Σ3

g1
N(

y

Σ
1
2
g1

)− (15Σ3
g1
y + 5Σ2

g1
y3 + Σg1y

5)n[y; 0,Σg1 ]∫ ∞

−y
x7n[x; 0,Σg1 ]dx = (48Σ4

g1
+ 24Σ3

g1
y2 + 6Σ2

g1
y4 + Σg1y

6)n[y; 0,Σg1 ]

2.3 Basket Options

Next, we consider the pricing of basket options (including so called ”spread” options)

which is a natural extension of plain vanilla options by using our method. First, we

formally define ”basket”, I(t) as

I(t) =
N∑
j=1

αjSj(t) (1.20)
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where Sj(t) denotes the the price of the j th risky asset which is a component of

the basket. We note that, as a special case, the ”spread” is defined by αj1 = 1 ,

αj2 = −1, j2 ̸= j1 and j = 0 for j ̸= j1, j2 in I(t). That is,

I(t) = Sj1(t)− Sj2(t).

Then, the payoffs of the basket options are expressed as

V (T ) = (I(T )−K)+ (1.21)

or

V (T ) = (K − I(T ))+.

In what follows, we consider call options. That is,

V (T ) = (I(T )−K)+.

For the pricing, we consider the Black-Sholes’ economy where there are risky assets,

each of which may depend on N independent Brownian motions.

dSδ
j (t) = rSδ

j (t)dt+ δ
N∑
i=1

σi(t, S
δ
j (t))dw̃i(t) (1.22)

dB(t) = rB(t)dt

where r is a positive constant and 0 < δ < 1 .

Note: δ can differ in j that is, δ , but if we redefine δ such that δ = min[δi]i , then

we have the same expression of the processes as above.

Following the steps in the previous subsection, we can show for each j,

S0
j (t) ≡ lim

δ→0
Sδ
j (t) = ertSj(0)

Aj(t) ≡
∂Sδ

j (t)

∂δ
|δ=0 =

∫ t

0
er(t−s)

N∑
i=1

σ0
ij(t)dw̃i(s)

Bj(t) ≡
∂2Sδ

j (t)

∂δ2
|δ=0 = 2

∫ t

0
er(t−s)

N∑
i=1

∂σ0
ij(s)Aj(s)dw̃i(s)

and

Cj(t) ≡
∂3Sδ

j (t)

∂δ3
|δ=0 = 3

∫ t

0
er(t−s)

N∑
i=1

∂2σ0
ij(s)Aj(s)

2dw̃i(s)

+3
∫ t

0
er(t−s)

N∑
i=1

∂σ0
ij(s)Bj(s)dw̃i(s).
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Then, we obtain the asymptotic expansion of each risky asset, Sδ
j (t), j = 1, 2, · · · , N .

Sδ
j (t) = S0

j (t) + δAj(t) + δ2
Bj(t)

2
+ δ3

Cj(t)

6
· · · .

As the ”basket”, Iδj (t) is a linear combination of risky assets Sδ
j (t) ,j = 1, 2, · · · , N ,

we can easily obtain the asymptotic expansion of a basket.

Iδj (t) ∼
N∑
j=1

αjS
0
j (t) + δ

N∑
j=1

αjAj(t) +
δ2

2

N∑
j=1

αjBj(t) +
δ3

6

N∑
j=1

αjCj(t) + · · ·

Next, as in the previous subsection, we define Xδ(t) for which we explicitly

obtain the density function. Let

Xδ(t) ≡ Iδ(t)− I0(t)

δ
∼ g1 + δg2 + δ2g3 + · · · (1.23)

where

g1 =
∫ t

0
er(t−s)σ0

I (s)
⊤dw̃(s), σ0

I (s) ≡

 N∑
j=1

αjσ
0
ij(s)


i

and

g2 = ert
N∑
j=1

αj

∫ t

0

[∫ s

0
e−rvσ0

j (v)
⊤dw̃(v)

]
∂σ0

j (s)
⊤dw̃(s).

We can easily see g1 follows the normal distribution,

g1 ∼ N(0,Σg1) (1.24)

where

Σg1 ≡
∫ t

0
e2r(t−s)σ0

I (s)
⊤σ0

I (s)ds.

For the pricing of the call option, we need to evaluate conditional expectations

such as E[g2|g1 = x] , E[g3|g1 = x] and E[g22|g1 = x]. By using formulae appear-

ing in Lemma 1.1, we can evaluate those expectations, for example, by applying

formula(1),

E[g2|g1 = x] = cx2 + f (1.25)

c ≡ ert
N∑
j=1

αjcj

and

f ≡ ert
N∑
j=1

αjfj
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where

cj =
1

Σ2
g1

e2rt
∫ t

0

[∫ s

0
e−2rvσ0

I (v)
⊤σ0

j (v)dv
]
e−rsσ0

I (s)
⊤∂σ0

j (s)ds

and

fj = −Σg1cj.

Therefore, applying the pricing formula in Theorem 1.2 by replacing y by y ≡
I0(T )−K

δ
, we can obtain the initial value of the basket (call) option.

2.4 Average Options

We next consider more complicating example, the average options commonly known

as ”Asian Options”, in the simple Black-Scholes’ economy with a general volatility

function. The payoffs of the average options are defined as

V (T ) = (Zδ(T )−K)+ (1.26)

or

V (T ) = (K − Zδ(T ))+

where

Zδ(T ) ≡ 1

T

∫ T

0
Sδ(t)dt.

Then, the value at the initial date is expressed as, by using the martingale technique,

V (0) = e−rTE∗[V (T )].

In what follows, we evaluate the call option as an example. In this case, we consider

the asymptotic expansion of the functional of the risky asset, Zδ(T ) .

Zδ(T ) = Z0(T ) +
1

T

∫ T

0
A(t)dt+ δ

1

T

∫ T

0

B(t)

2
dt
∫ T

0

C(t)

6
dt+ · · · (1.27)

where

Z0(T ) ≡ lim
δ→0

Zδ(T ) =
1

T

∫ T

0
S0(t)dt.

We define Xδ
T for which we obtain the density function.

Xδ
T =

Zδ(T )− Z0(T )

δ
,
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Then, the asymptotic expansion of Xδ
T is given by

Xδ
T = g1 + δg2 + δ2g3 + · · · .

where

g1 =
∫ T

0
A(t)dt,

g2 =
∫ T

0

B(t)

2
dt

and

g3 =
∫ T

0

C(t)

6
dt.

We note that

g1 =
∫ T

0

1

T

[
er(T−s) − 1

r

]
σ(S0, s)dw̃(s). (1.28)

Then, we can see that g1 follows a normal distribution. In fact,

g1 ∼ N(0,Σg1) (1.29)

where

Σg1 =
∫ T

0

1

T 2

[
er(T−s) − 1

r

]2
σ(S0, s)2ds.

Following the same method as in the previous sebsection, we can express the asymp-

totic expansion of the density function as

fXδ
T

∼ n[x; 0,Σg1 ]

+ δ
−∂{E[g2|g1 = x]n[x; 0,Σg1 ]}

∂x

+ δ2
−∂{E[g3|g1 = x]n[x; 0,Σg1 ]}

∂x

+
1

2
δ2
∂2{E[g22|g1 = x]n[x; 0,Σg1 ]}

∂x2
+ · · · .

Then, we need to evaluate conditional expectations such as E[g2|g1 = x] , E[g3|g1 =
x] and E[g22|g1 = x] . Using the formula(1) in Lemma 1.1, we can show

E[g2|g1 = x] = cx2 + f (1.30)

where

c =
1

Σ2
g1

1

T 3

∫ T

0

∫ t

0
er(t−s)

[
er(T−s) − 1

r

]
σ(S0, s)∂σ(S0, s)
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∫ s

0
er(s−v)

[
er(T−v) − 1

r

]
σ(S0, v)2dvdsdt,

and

f = −cΣg1 .

Next, using formula(3) and formula(4) in Lemma 1.1, we can obtain

E[g3|g1 = x] = c1x
3 + f1x (1.31)

c1 = c11 + c12,

f1 = f11 + f12,

c11 =
1

2T 4r3
1

Σ3
g1

∫ T

0
ert
∫ t

0

[∫ s

0
e−ru{er(T−u) − 1}σ(S0, u)2du

]2
[
ers{er(T−s) − 1}∂2σ(S0, s)σ(S0, s)

]
dsdt,

f11 =
1

2T 2r

1

Σg1

∫ T

0
ert
∫ t

0

[∫ s

0
e−2rvσ(S0, v)2dv

]
,[

ers{er(T−s) − 1}∂2σ(S0, s)σ(S0, s)
]
dsdt− 3Σg1c11,

c12 =
1

T 4r3
1

Σ3
g1

∫ T

0
ert
∫ t

0

[
{er(T−s) − 1}∂σ(S0, s)σ(S0, s)

]
∫ s

0

[
{er(T−v) − 1}∂σ(S0, v)σ(S0, v)

]
∫ v

0

[
e−ru{er(T−u) − 1}σ(S0, u)2

]
dudvdsdt,

and

f12 = −3Σg1c12.

We can also show

E[g22|g1 = x] = c2x
4 + f2x

2 + k2 (1.32)

where c2 , f2 and k2 are defined by using the following formula.

(5)′

E

[∫ T

0

∫ t

0

[∫ s

0
q2(u)dw̃(u)

]
q3(s)dw̃(s)dt

]2
|
∫ T

0
q1(u)dw̃(u) = x


=

[∫ T

0

∫ t

0
Q31(s)

∫ s

0
Q21(u)dudsdt

]2 [
4

Σ2
g1

x4 − 6

Σ3
g1

x2 +
3

Σ2
g1

]

+

[∫ T

0

∫ t

0
Q31(s)

∫ s

0
Q32(v)

∫ v

0
Q21(u)dudvdsdt

] [
2

Σ2
g1

x2 − 2

Σg1

]
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+

[∫ T

0

∫ t

0
Q31(s)

2
∫ s

0
Q22(u)dudsdt

] [
1

Σ2
g1

x2 − 1

Σg1

]

+

[∫ T

0

∫ t

0
Q33(s)

[∫ s

0
Q21(u)du

]2
dsdt

] [
1

Σ2
g1

x2 − 1

Σg1

]

+
∫ T

0

∫ t

0
Q33(s)

∫ s

0
Q22(u)dudsdt

where

Qij(s) ≡ qi(s)qj(s).

Proof. The proof is a slight modification of that of formula(5) in Lemma 1.1.

Therefore, by using Theorem 1.2 where we replace y by y ≡ Z0(T )−K
δ

, we can finally

obtain the vale of the average (call) option.

2.5 Stochastic Log-normal Expansion of Average Option

In this subsection, we present another approach to pricing average options in the

simple Black-Scholes’ economy with a log-normally distributed risky asset process.

In what follows, we consider an average call option in the economy where the pro-

cesses of the risky asset and the riskless asset follow respectively

dSδ(t) = (r − q)Stdt+ δStdw̃(t) (1.33)

and

dB(t) = rBtdt.

The basic idea is that we expand the distribution of

logZδ(T )− logZ0(T )

δ
(1.34)

by using a normal distribution while we expand

Zδ(T )− Z0(T )

δ

by using a normal distribution in the original method. We will formally describe

this method. First, we define Zδ(T ) as

Zδ(T ) =
1

T

∫ T

0
Sδ(t)dt.
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Let

Z0(T ) =
1

T

∫ T

0
S0(t)dt = S(0)

eαT − 1

αT
where

α = r − q − σ2/2.

Next, we define

gδ =
1

σ
log

Z(T )

Z0(T )
(1.35)

for which we obtain the asymptotic expansion.

Then, the asymptotic expansion of gδ is given by

gδ ∼ g1 + δg2 + · · · , (1.36)

g1 =
∫ T

0

k

α
(eαT − eαu)dw̃(u) ≡

∫ T

0
a(u)dw̃(u),

g2 =
1

2

∫ T

0
kT (t)w̃(t)

2dt− 1

2

[∫ T

0
kT (t)w̃(t)dt

]2
where

k =
α

eαT − 1
,

a(u) =
k

α
(eαT − eαu)

and

kT (t) = keαt.

We easily see that g1 follows a normal distribution. That is,

g1 ∼ N(0,Σg1)

where

Σg1 = (
k

α
)2
[
Te2αT − 2eαT

eαT − 1

α
+
e2αT − 1

2α

]
.

We need to evaluate E [g2|g1 = x] to obtain the asymptotic expansion. This can be

obtained by using the formula(2) in Lemma 1.1. Thus,

E [g2|g1 = x] = cx2 + f (1.37)

where

c ≡ 1

2

[
1

Σ2
g1

∫ T

0
kT (t)

[∫ t

0
a(u)du

]2
dt− 1

]
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and

f ≡ −Σg1c+
1

2

∫ T

0
kT (t)tdt.

Therefore, by using the same technique as in the previous subsection, we have the

asymptotic expansion of the density function of gδ as

fgδ ∼ n[x; 0,Σg1 ] + σ

[
c

Σg1

x3 + (
f

Σg1

− 2c)x

]
n[x; 0,Σg1 ] + · · · .

Finally, we need to evaluate

C(0) = e−rtE∗
[
(Z(T )−K)+

]
.

This can be written as

e−rtE∗
[
(Z(T )−K)+

]
= e−rtE∗

[
(Z0(T )eσx −K)+

]
∼ e−rtZ0(T )

∫ ∞

y
eσxfg1(x)dx− e−rtK

∫ ∞

y
fg1(x)dx

where

y ≡ 1

σ
log

[
K

Z0(T )

]
.

The first term is given by

∫ ∞

y
eσxfg1(x)dx = exp

[
σ2Σg1

2

] [
1 + σ(

c

Σg1

)(σΣg1)
3

+ σ(
f

Σg1

− 2c)(σΣg1)

]
N(

−y1
Σ

1
2
g1

)

+ σ exp

[
σ2Σg1

2

] [
3σ(

c

Σg1

)(σΣg1)
2 + (

f

Σg1

− 2c)

]
×∫ ∞

y1
zn[z; 0,Σg1 ]dz

+ 3σ exp

[
σ2Σg1

2

]
(
c

Σg1

)(σΣg1)
∫ ∞

y1
z2n[z; 0,Σg1 ]dz

+ σ exp

[
σ2Σg1

2

]
(
c

Σg1

)
∫ ∞

y1
z3n[z; 0,Σg1 ]dz

where

y1 = y − σΣg1 .
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This can be simplified to

∫ ∞

y
eσxfg1(x)dx = exp

[
σ2Σg1

2

]
N(

−y1
Σ

1
2
g1

)

+ σ exp

[
σ2Σg1

2

] [
(
c

Σg1

)
∫ ∞

y1
z3n[z; 0,Σg1 ]dz

+ (
f

Σg1

− 2c)
∫ ∞

y1
zn[z; 0,Σg1 ]dz

]

+ σ2 exp

[
σ2Σg1

2

] (f − 2cΣg1)N(
−y1
Σ

1
2
g1

) + 3c
∫ ∞

y1
z2n[z; 0,Σg1 ]dz


+ σ4 exp

[
σ2Σg1

2

] cΣ2
g1
N(

−y1
Σ

1
2
g1

) + 3cΣg1

∫ ∞

y1
zn[z; 0,Σg1 ]dz

 .
The second term is given by∫ ∞

y
fg1(x)dx = N(

−y

Σ
1
2
g1

) + σ(cy2 + f)n[y; 0,Σg1 ].

Finally, we obtain the initial value of the average call option. We state the result in

the following theorem.

Theorem 1.3 The asymptotic log-normal expansion of the price of the average call

option is given by

C(0) ∼ e−rT

exp [σ2Σg1

2

]
N(

−y1
Σ

1
2
g1

)−KN(
−y

Σ
1
2
g1

) (1.38)

+ σ exp

[
σ2Σg1

2

] [
(
c

Σg1

)
∫ ∞

y1
z3n[z; 0,Σg1 ]dz + (

f

Σg1

− 2c)
∫ ∞

y1
zn[z; 0,Σg1 ]dz

]

+ σ2 exp

[
σ2Σg1

2

] (f − 2cΣg1)N(
−y1
Σ

1
2
g1

) + 3c
∫ ∞

y1
z2n[z; 0,Σg1 ]dz


+ σ4 exp

[
σ2Σg1

2

] cΣ2
g1
N(

−y1
Σ

1
2
g1

) + 3cΣg1

∫ ∞

y1
zn[z; 0,Σg1 ]dz


− σ(cy2 + f)n[y; 0,Σg1 ]

]
.

2.6 Options with a Stochastic Volatility

Wemay also apply the asymptotic expansion method to the evaluation of the options

with stochastic volatilities which He(1992) develop in an equilibrium framework. We
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assume that there exists a risk-free rate, r which is a positive constant. In general,

under the equivalent martingale measure, the processes of the underlying asset and

a state variable are defined respectively by

dSδ
1(t) = µ1(S

δ
1 , Y

δ, t)dt+ δσ⃗1(S
δ
1 , Y

δ, t)⊤d ⃗̃wt (1.39)

and

dY δ(t) = µ2(S
δ
1 , Y

δ, t)dt+ δσ⃗2(S
δ
1 , Y

δ, t)⊤d ⃗̃wt.

where 0 < δ < 1, ⃗̃wt is the standard two dimensional Brownian motion, and

σ⃗1(S
δ
1 , Y

δ, t) and σ⃗2(S
δ
1 , Y

δ, t) denote two dimensional vectors. By using vector

form, these can be rewritten as

dS⃗δ
t = µ⃗(Sδ

1 , Y
δ, t)dt+ δΣ(Sδ, Y δ, t)d ⃗̃wt (1.40)

where

S⃗δ
t =

[
Sδ
1t

Y δ
t

]
,

µ⃗(Sδ
1 , Y

δ, t) =

[
µ⃗1(S

δ
1 , Y

δ, t)
µ⃗2(S

δ
1 , Y

δ, t)

]
,

and

Σ(Sδ, Y δ, t) =

[
σ⃗1(S

δ, Y δ, t)⊤

σ⃗2(S
δ, Y δ, t)⊤

]
.

In fact, we know that

µ1(S
δ
1 , Y

δ, t) = rSδ
1t.

Next, we define Gt which satisfies a (deterministic) differential equation.

dGt = ∂µ0Gtdt (1.41)

where

∂µδ =

[
∂1µ

0
1 ∂2µ

0
1

∂1µ
0
2 ∂2µ

0
2

]
,

and

∂iµ
δ
j ≡

∂µδ
j

∂Sδ
i

|δ=0.

We derive the asymptotic expansion of S⃗δ
t . First, S⃗0

t is defined so that this solves

the differential equation.

dS⃗0
t = µ⃗(S0

t , Y
0, t)dt (1.42)
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Next, we define A⃗t as

A⃗t =
∂S⃗δ

t

∂δ
|δ=0

A⃗t must satisfy the following stochastic differential equation.

dA⃗t = ∂µ0A⃗tdt+ Σ0d ⃗̃wt

This can be solved as

A⃗t = Gt

∫ t

0
G−1

s Σ0d ⃗̃wt. (1.43)

Third, we define B⃗t as

B⃗t =
∂2S⃗δ

t

∂δ2
|δ=0.

We can show that B⃗t must satisfy the following stochastic differential equation.

dB⃗t =

 2∑
i=1

2∑
j=1

∂i∂jµ⃗0AitAjt +
2∑

i=1

∂iµ⃗0Bit

 dt+ 2
2∑

i=1

∂iΣ
0Aitd ⃗̃wt

This can be solved as

B⃗t =
∫ t

0
GtG

−1
s

 2∑
i=1

2∑
j=1

∂i∂jµ⃗0AisAjs

 ds+ 2
∫ t

0
GtG

−1
s

[
2∑

i=1

∂iΣ
0Ais

]
d ⃗̃ws. (1.44)

Hence, as in the previous sections, the stochastic expansion of S⃗δ
t is given by

S⃗δ
t ≡ S⃗0 + δg⃗1 + δ2g⃗2 + · · · (1.45)

where

g⃗1 = A⃗t and g⃗2 =
1

2
B⃗t.

We observe that

g⃗1 ∼ N (⃗0,Σg1) (1.46)

where

Σg1 ≡ Gt

∫ t

0

[
G−1

s Σ0Σ0⊤G−1⊤
s

]
dsG⊤

t .

We note that we need only the first element of the asymptotic expansion of S⃗δ
t

in order to obtain the option prices. Once the asymptotic expansion of Sδ
1t is

obtained explicitly, the same argument holds for evaluating option prices as in the

plain vanilla options and so we omit the detail arguments.

æ
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3 The Asymptotic Expansion in the Term Struc-

ture Model

In this section, we extend our result to the term structure model of interest rates.

The valuation problems in the term structure models are usually considered diffi-

cult tasks especially when the processes of state variables have multifactors and state

and time dependent volatility functions. We show that the asymptotic expansion

method is quite useful even in this situation. In what follows, we consider the gen-

eral class of arbitrage-free forward rate based model to which we apply asymptotic

expansion techinique. The stochastic processes of forward rates considered in the

section are fairly general, where the number of factors is a some positive number,

N and volatility functions are allowed to depend on the current level of forward

rates as well as on the current time and maturities. We note that in this case the

continuous stochastic processes for spot rates and interest rates are not not neces-

sarily Markovian in the usual sense. Under this general setting, we shall present the

formulae for the values of options on a coupon bond( and swaptions ) and options

on average interest rates as well as the formulae for the stochastic expansions of

(instantaneous) forward rates, spot rates, discount factors and zero coupon bonds.

3.1 The Forward Rates and Spot Rates

In the arbitrage-free forward rate based models, We first consider the processes

of an instantaneous forward rates and spot rate. Under the equivalent martingale

measure, the process of instantaneous forward rate is described as

f ε(t, T ) = f(0, T ) + ε2
∫ t

0
bε(v, T )dv + ε

∫ t

0

N∑
i=1

σε
i (v, T )dw̃i(v) (1.47)

where

σε
i (v, T ) = σε

i (v, T, f
ε(t, T )),

and

bε(v, T ) =
N∑
i=1

σε
i (v, T )

∫ T

v
σε
i (v, y)dy.

In particular, the spot rate process is described as

rε(t) = f(0, t) + ε2
∫ t

0
bε(v, t)dv + ε

∫ t

0

N∑
i=1

σε
i (v, t)dw̃i(v). (1.48)
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We will derive the asymptotic expansions for those processes. First, we note that

lim
ε→0

f ε(v, T ) = f(0, T ). (1.49)

Next, we define A
(T )
t and B

(T )
t as

A
(T )
t ≡ ∂f ε(t, T )

∂ε
|ε=0,

and

B
(T )
t ≡ ∂2f ε(t, T )

∂ε2
|ε=0.

Then, we can show

A
(T )
t =

∫ t

0

N∑
i=1

σ0
i (v, T )dw̃i(v) (1.50)

where

σ0
i (v, T ) ≡ σε

i (v, T )|ε=0.

Here, we note that f ε(t, T ) included in the σε
i (v, T ) is evaluated at ε = 0 , that is,

f ε(t, T )|ε=0 = f(0, T ).

we easily see A
(T )
t follows a normal distribution.

A
(T )
t ∼ N(0,Σ

A
(T )
t

) (1.51)

where

Σ
A

(T )
t

=
∫ t

0

N∑
i=1

σ0
i (v, T )

2dv.

We can also show that

B
(T )
t = 2

∫ t

0
b0(v, T )dv + 2

∫ t

0

N∑
i=0

A(T )
v ∂σ0

i (v, T )dw̃i(v) (1.52)

where

∂σ0
i (v, T ) ≡

∂σε
i (v, T )

∂f ε(v, T )
|ε=0.

Therefore, we obtain the asymptotic expansions of the processes of f ε(t, T ) and

rε(t) .

Proposition 1.2 The asymptotic expansion of an instantaneous forward rate is

given by

f ε(t, T ) = f(0, T ) + εA
(T )
t + ε2

1

2
B

(T )
t + o(ε2). (1.53)

In particular, that of a spot rate is given by

rε(t) = f(0, t) + εA
(t)
t + ε2

1

2
B

(t)
t + o(ε2). (1.54)
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3.2 Discount Factor and Zero Coupon Bonds

We will present, in this subsection, the asymptotic expansions of a discount fac-

tor and a zero coupon bond which are functionals of spot rates and forward rates

respectively, and play an important role in the pricing problems of term structure

models. We obtain an asymptotic expansion of the discount factor as

e−
∫ T

0
r(s)ds ∼ P (0, T ) exp

[
−ε

∫ T

0
A

(t)
t dt− ε2

∫ T

0

1

2
B

(t)
t dt

]
(1.55)

∼ P (0, T )

[
1− ε

∫ T

0
A

(t)
t dt− ε2

∫ T

0

1

2
B

(t)
t dt+ ε2

1

2
(
∫ T

0
A

(t)
t dt)

2 + · · ·
]
.

First, we note

∫ T

0
A

(t)
t dt =

∫ T

0
σ0
T (v)dw̃(v), σ

0
T (v) ≡

[∫ T

v
σ0
i (v, t)dt

]
i

(1.56)

where w̃(t) denotes N dimentional independent Brownian motion and we note that

σT (v) is a 1×N vector.

We can also show∫ T

0

1

2
B

(t)
t dt = k3(T ) +

∫ T

0

∫ t

0

[∫ s

0
σ0(v, t)dw̃(v)

]
∂σ0(s, t)dw̃(s)dt (1.57)

where

k3(T ) =
∫ T

0

∫ T

v
b0(v, t)dtdv.

Similarly, by using the well-known relation,

P (t, T ) = exp

[
−
∫ T

t
f(t, u)du

]
,

we obtain the asymptotic expansion for the value process of zero coupon bond as

P (t, T ) ∼ P (0, T )

P (0, t)
exp

[
−ε

∫ T

t
A

(u)
t du− ε2

∫ T

t

1

2
B

(u)
t du

]
(1.58)

∼ P (0, T )

P (0, t)

[
1− ε

∫ T

t
A

(u)
t du− ε2

∫ T

t

1

2
B

(u)
t du+ ε2

1

2
(
∫ T

t
A

(u)
t du)2 + · · ·

]
.

We can show ∫ T

t
A

(u)
t du =

∫ t

0
σ0
tT (v)dw̃(v), σ

0
tT (v) ≡

[∫ T

t
σ0
i (v, u)du

]
i

(1.59)
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where we note that σtT (v) is a 1×N vector. We can also show∫ T

t

1

2
B

(u)
t du = k4(t, T ) +

∫ T

t

∫ t

0

[∫ s

0
σ0(v, u)dw̃(v)

]
∂σ0(s, u)dw̃(s)du (1.60)

where

k4(t, T ) =
∫ t

0

∫ T

t
b0(v, u)dudv.

Hence, we summarize above results as a proposition.

Proposition 1.3 The asymtotic expansions of the discount factor and a zero coupon

bond are respectively given by

e−
∫ T

0
r(s)ds = P (0, T )

[
1− ε

∫ T

0
A

(t)
t dt− ε2

∫ T

0

1

2
B

(t)
t dt+ ε2

1

2
(
∫ T

0
A

(t)
t dt)

2+

]
+ o(ε2)

(1.61)

and

P (t, T ) =
P (0, T )

P (0, t)

[
1− ε

∫ T

t
A

(u)
t du− ε2

∫ T

t

1

2
B

(u)
t du+ ε2

1

2
(
∫ T

t
A

(u)
t du)2

]
+ o(ε2).

(1.62)

Moreover, we easily obtain the asymptotic expansion of a coupon bond and a swap

since thier value processes can be written as linear combinations of those of zero

coupon bonds. That is, the value process of a coupon bond or of a swap is expressed

in the form of

Pm,{Tj},{cj}(t) =
m∑
j=1

cjP (t, Tj) (1.63)

where t < T1 < · · · < Tm and cj are some constants. Hence, the asymptotic

expansions of coupon bonds and swaps are just linear combinations of those of zero

coupon bonds.

Corollary 1.1 The asymptotic expansion of a coupon bond or of a swap is a linear

combination of those of zero coupon bonds.

3.3 Options on Coupon Bonds and Swaptions

Based on the results in the previous subsection, we will explicitly derive the formula

for options on coupon bonds and swaptions. We formally define the payoffs of
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options on coupon bonds and swaptions at expiry, T as

V (T ) =
[
Pm,{Tj},{cj}(t)−K

]+
(1.64)

or

V (T ) =
[
K − Pm,{Tj},{cj}(t)

]+
.

Then, we can evaluate the value of the option at t < T by using the martingale

technique. That is,

V (t) = E∗
t

[
e−
∫ T

t
r(s)dsV (T )

]
In what follows, for simplicity, we assume T < T1 and evaluate V (0) for

V (T ) =
[
Pm,{Tj},{cj}(T )−K

]+
.

Based on the corollary in the previous subsection, we have the asymptotic expansion

of Pm,{Tj},{cj}(T ) as

Pm,{Tj},{cj}(T ) ∼
m∑
j=1

cj
P (0, Tj)

P (0, T )
exp

[
−ε

∫ Tj

T
A

(u)
T du− ε2

∫ Tj

T

1

2
B

(u)
T du

]
. (1.65)

Hence, together with the asymptotic expansion of the discount factor appearing in

the previous proposition, we can derive the asymptotic expansion of

e−
∫ T

0
r(s)ds

[
Pm,{Tj},{cj}(T )−K

]
.

e−
∫ T

0
r(s)ds

[
Pm,{Tj},{cj}(T )−K

]
∼ g0 + εg1 + ε2g2 + · · · (1.66)

where g0, g1, g2 are defined as follows.

g0 ≡
m∑
i=1

cjP (0, Tj)−KP (0, T ). (1.67)

g1 ≡
∫ T

0
σ∗
g1
(v)dw̃(v) (1.68)

where

σ∗
g1
(v) = −g0σ0

T (v) +
m∑
i=1

−cjP (0, Tj)σ0
T,Tj

(v).

We note that g1 follows a normal distribution.

g1 ∼ N(0,Σg1) (1.69)

where

Σg1 =
∫ T

0
σ∗
g1
(v)σ∗

g1
(v)⊤dv
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g2 is expressed as a rather complicating form.

g2 ≡ 1

2
g0{

∫ T

0
A(s)

s ds}2 + {
∫ T

0
A(s)

s ds}
m∑
j=1

cjP (0, Tj){
∫ Tj

T
A

(u)
T du} (1.70)

+
1

2

m∑
j=1

cjP (0, Tj){
∫ Tj

T
A

(u)
T du}2 − g0

∫ T

0

1

2
B(s)

s ds

−
m∑
j=1

cjP (0, Tj){
∫ Tj

T

1

2
B

(u)
T du}

We next define Xε
T for which we explicitly obtain the density function.

Xε
T =

e−
∫ T

0
r(s)ds

[
Pm,{Tj},{cj}(T )−K

]
− g0

ε
(1.71)

= g1 + εg2 + · · ·

We already know that g1 follows a normal distribution. Then, we need to evaluate

E[g2|g1 = x] to obtain the density function upto the second order. We can evaluate

this conditional expectation by using formula(1) andformula(2) in Lemma 1.1.

E[g2|g1 = x] = cx2 + f (1.72)

where

c ≡ 1

2

g0
Σ2

g1

[∫ T

0
σ0
T (v)σ

∗
g1
(v)⊤dv

]2

+
1

Σ2
g1

[∫ T

0
σ0
T (v)σ

∗
g1
(v)⊤dv

]
m∑
j=1

cjP (0, Tj)

[∫ T

0
σ0
T,Tj

(v)σ∗
g1
(v)⊤dv

]

+
1

2

1

Σ2
g1

m∑
j=1

cjP (0, Tj)

[∫ T

0
σ0
T,Tj

(v)σ∗
g1
(v)⊤dv

]2

− g0
Σ2

g1

[∫ T

0

∫ t

0
σ∗
g1
(s)∂σ0(s, t)⊤

∫ s

0
σ0(v, t)σ∗

g1
(v)⊤dvdsdt

]

− 1

Σ2
g1

m∑
j=1

cjP (0, Tj)

[∫ Tj

T

∫ T

0
σ∗
g1
(s)∂σ0(s, u)⊤

∫ s

0
σ0(v, u)σ∗

g1
(v)⊤dvdsdu

]

and

f ≡ −g0k3(T )−
m∑
j=1

cjP (0, Tj)k4(T, Tj)

− 1

2

g0
Σg1

[∫ T

0
σ0
T (v)σ

∗
g1
(v)⊤dv

]2
+
g0
2

[∫ T

0
σ0
T (v)σ

0
T (v)

⊤dv

]
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− 1

Σg1

[∫ T

0
σ0
T (v)σ

∗
g1
(v)⊤dv

]
m∑
j=1

cjP (0, Tj)

[∫ T

0
σ0
T,Tj

(v)σ∗
g1
(v)⊤dv

]

− 1

2

1

Σg1

m∑
j=1

cjP (0, Tj)

[∫ T

0
σ0
T,Tj

(v)σ∗
g1
(v)⊤dv

]2

+
m∑
j=1

cjP (0, Tj)
∫ T

0
σ0
T (v)σ

0
T,Tj

(v)⊤dv

+
1

2

m∑
j=1

cjP (0, Tj)

[∫ T

0
σ0
T,Tj

(v)σ0
T,Tj

(v)⊤dv

]

+
1

2

m∑
j=1

cjP (0, Tj)

[∫ T

0
σ∗
g1
(v)σ0

T,Tj
(v)⊤dv

]

+
g0
Σg1

[∫ T

0

∫ t

0
σ∗
g1
(s)∂σ0(s, t)⊤

∫ s

0
σ0(v, t)σ∗

g1
(v)⊤dvdsdt

]

+
1

Σg1

m∑
j=1

cjP (0, Tj)

[∫ Tj

T

∫ T

0
σ∗
g1
(s)∂σ0(s, u)⊤

∫ s

0
σ0(v, u)σ∗

g1
(v)⊤dvdsdu

]
.

Hence, according to Theorem 1.2 in the previous section where we replace y by

y ≡ 1

ε
g0

=
1

ε

 m∑
j=1

cjP (0, Tj)−KP (0, T )

 ,
we obtain the asymptotic expansion of V (0) which can be used as a valuation

formula.

3.4 Options on Average Interest Rates

Our method is general enough to be applied to more complicating pricing problem.

As an example, we will derive a pricing formula for options on average interest

rates under general forward rate processes. This problem was solved by the PDE

approach under the constant volatility assumption in Chapter 2 of this dissertation.

Our approach allows the problem to be evaluated under more general setting. We

first define the payoffs of options on average interest rates. The payoff of the option

on an average interest rate is given by

V (T ) = (Z(T )−K)+ (1.73)

or
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V (T ) = (K − Z(T ))+

where

Z(T ) =
1

T

∫ T

0
Lτ (t)dt,

that is, Z(T ) denoes the average of interest rates Lτ (t) from time 0 to time T and

K denotes a strike rate. Specifically, Lτ (t) represents the yield of a zero coupon

bond at time t with the time to maturity of τ years.

Lτ (t) =

[
1

P (t, t+ τ)
− 1

]
1

τ

In what follows, we evaluate the initial value of a call option whose payoff is given

by

V (T ) = (Z(T )−K)+

=
1

Tτ
(
∫ T

0

1

P (t, t+ τ)
dt− k)+

where

k = (1 +Kτ)T.

Then, by using martingale technique, we express the initial value of a call option on

average interest rates as

V (0) =
1

Tτ
E∗
[
e−
∫ T

0
r(s)ds(

∫ T

0

1

P (t, t+ τ)
dt− k)+

]
. (1.74)

To evaluate V (0) explicitly, we first expand

e−
∫ T

0
r(s)ds

∫ T

0

1

P (t, t+ τ)
dt

as

e−
∫ T

0
r(s)ds

∫ T

0

1

P (t, t+ τ)
dt ∼ P (0, T )

∫ T

0

P (0, t)

P (0, t+ τ)

×
[
1 + ε{

∫ t+τ

t
A

(u)
t du−

∫ T

0
A(s)

s ds}

+ ε2
1

2
{
∫ t+τ

t
A

(u)
t du−

∫ T

0
A(s)

s ds}2

+ ε2{
∫ t+τ

t

1

2
B

(u)
t du−

∫ T

0

1

2
B(s)

s ds}
]
dt.
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Hence, together with the asymptotic expansion of the discount function, we obtain

e−
∫ T

0
r(s)ds

[∫ T

0

1

P (t, t+ τ)
dt− k

]
∼ g0 + εg1 + ε2g2 + · · · . (1.75)

g0, g1 and g2 are given by

g0 = P (0, T )

[∫ T

0

P (0, t)

P (0, t+ τ)
dt− k

]
, (1.76)

g1 =
∫ T

0
σ0
Tτk(v)dw̃(v) (1.77)

and

g2 =
1

2
P (0, T )

∫ T

0

P (0, t)

P (0, t+ τ)

[∫ t

0
σ0
tτ (v)dw̃(v)

]2
dt (1.78)

− P (0, T )
∫ T

0

P (0, t)

P (0, t+ τ)

[∫ t

0
σ0
tτ (v)dw̃(v)

] [∫ T

0
σ0
T (v)dw̃(v)

]
dt

+
1

2
g0

[∫ t

0
σ0
T (v)dw̃(v)

]2
dt

+ P (0, T )
∫ T

0

P (0, t)

P (0, t+ τ)

[∫ t+τ

t

1

2
B

(u)
t du

]
dt− g0

[∫ T

0

1

2
B

(t)
t dt

]

where

σ0
tτ =

[∫ t+τ

t
σ0
i (v, u)du

]
i
,

σ0
T =

[∫ T

v
σ0
i (v, u)du

]
i

,

and

σ0
Tτk(v) = P (0, T )

∫ T

v

P (0, t)

P (0, t+ τ)
σ0
tτ (v)dt− P (0, T )

[∫ T

0

P (0, t)

P (0, t+ τ)
dt− k

]
σ0
T (v).

Next, We define Xε
T as

Xε(T ) =
e−
∫ T

0
r(s)ds

[∫ T
0

1
P (t,t+τ)

dt− k
]
− g0

ε
(1.79)

∼ g1 + εg2 + · · · .

We will evaluate E[g2|g1 = x] to obtain the the density function upto the second

order. We can evaluate the conditional expectation by applying formula(1) and

formula(2) in Lemma 1.1.
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E[g2|g1 = x] = cx2 + f (1.80)

where

c ≡ 1

2

1

Σ2
g1

P (0, T )
∫ T

0

P (0, t)

P (0, t+ τ)

[∫ t

0
σ0
tτ (v)σ

0
Tτk(v)

⊤dv
]2
dt

− P (0, T )
1

Σ2
g1

[∫ T

0

P (0, t)

P (0, t+ τ)

∫ t

0
σ0
tτ (v)σ

0
Tτk(v)

⊤dvdt

] [∫ T

0
σ0
T (v)σ

0
Tτk(v)

⊤dv

]

+
1

2

1

Σ2
g1

g0

[∫ t

0
σ0
T (v)σ

0
Tτk(v)

⊤dv
]2

+
P (0, T )

Σ2
g1

∫ T

0

P (0, t)

P (0, t+ τ)
×∫ t+τ

t

∫ t

0
σ0
Tτk(s)∂σ

0(s, u)⊤
∫ s

0
σ0(v, u)σ0

Tτk(v)
⊤dvdsdudt

− g0
Σ2

g1

∫ T

0

∫ t

0
σ0
Tτk(s)∂σ

0(s, t)⊤
∫ s

0
σ0(v, t)σ0

Tτk(v)
⊤dvdsdt,

and

f ≡ −1

2
P (0, T )

1

Σg1

∫ T

0

P (0, t)

P (0, t+ τ)

[∫ t

0
σ0
tτ (v)σ

0
Tτk(v)

⊤dv
]2
dt

+
1

2
P (0, T )

∫ T

0

P (0, t)

P (0, t+ τ)

∫ t

0
σ0
tτ (v)σ

0
tτ (v)

⊤dvdt

+ P (0, T )
1

Σg1

∫ T

0

P (0, t)

P (0, t+ τ)

[∫ t

0
σ0
tτ (v)σ

0
Tτk(v)

⊤dvdt
] [∫ T

0
σ0
T (v)σ

0
Tτk(v)

⊤dv

]

− P (0, T )
∫ T

0

P (0, t)

P (0, t+ τ)

∫ t

0
σ0
tτ (v)σ

0
T (v)

⊤dvdt

− 1

2

1

Σg1

g0

[∫ t

0
σ0
T (v)σ

0
Tτk(v)

⊤dv
]2

+
1

2
g0

[∫ t

0
σ0
T (v)σ

0
T (v)

⊤dv
]

+ P (0, T )

[∫ T

0
k4(t, t+ τ)

P (0, t)

P (0, t+ τ)
dt

]
− g0k3(T )

− P (0, T )

Σg1

∫ T

0

P (0, t)

P (0, t+ τ)
×∫ t+τ

t

∫ t

0
σ0
Tτk(s)∂σ

0(s, u)⊤
∫ s

0
σ0(v, u)σ0

Tτk(v)
⊤dvdsdudt

+
g0
Σg1

∫ T

0

∫ t

0
σ0
Tτk(s)∂σ

0(s, t)⊤
∫ s

0
σ0(v, t)σ0

Tτk(v)
⊤dvdsdt.
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Finally, according to Theorem 1.2 where we replace y by

y ≡ 1

ε
g0

=
1

ε
P (0, T )

[∫ T

0

P (0, t)

P (0, t+ τ)
dt− k

]
,

we obtain the asymptotic expansion of V (0) which is used as a pricing formula of

a call option on the average interest rate.

4 Average Options in a Stochastic Interest Rate

Economy

In this section, we will show that our method may be applied to the pricing problem

in a multi-currency economy combined with a term structure model. As an exam-

ple, we will derive a pricing formula of the call option on average foreign exchange

rates in a stochastic interest rate economy. Clearly, we can apply our technique

to the other cross-currency or multi-currency contingent claims such as ”differen-

tial swaps” and options on ”differential swaps”. In what follows, we consider a

cross-currency (J-currency and U-currency) economy which is represented by for-

eign exchange rate process, J-currency’s instantaneous forward rate processes and

U-currency’s instantaneous forward rate processes. Under the equivalent martingale

measure (of J-currency denominated world), those processes are given by

Sε(t) = S(0) +
∫ t

0
{rεJ(s)− rεU(s)}Sε(s)ds+ ε

∫ t

0

N∑
1

σε
iS(s)dw̃i(s), (1.81)

f ε
J(t, T ) = fJ(0, T ) + ε2

∫ t

0
bεJ(v, T )dv + ε

∫ t

0

N∑
i=1

σε
iJ(v, T )dw̃i(v), (1.82)

and

f ε
U(t, T ) = fU(0, T ) + ε2

∫ t

0
bεU(v, T )dv + ε

∫ t

0

N∑
i=1

σε
iU(v, T )dw̃i(v) (1.83)

where

σε
iS(s) ≡ σiS(s, S

ε(s)),

σε
iJ(v, T ) ≡ σiJ(v, T, f

ε
J(v, T )),
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σε
iU(v, T ) ≡ σiU(v, T, f

ε
U(v, T )),

bεJ(v, T ) =
N∑
i=1

σε
iJ(v, T )

∫ T

v
σε
iJ(v, y)dy

and

bεU(v, T ) =
N∑
i=1

σε
iU(v, T ){

∫ T

v
σε
iU(v, y)dy −

σε
iS(v)

Sε(v)
}.

In particular, both currencies’ spot rate processes are given by

rεJ(t) = fJ(0, t) + ε2
∫ t

0
bεJ(v, t)dv + ε

∫ t

0

N∑
i=1

σε
iJ(v, t)dw̃i(v) (1.84)

and

rεU(t) = fU(0, t) + ε2
∫ t

0
bεU(v, t)dv + ε

∫ t

0

N∑
i=1

σε
iU(v, t)dw̃i(v). (1.85)

Hence, the foreign exchange rate process is rewritten as

Sε(t) = S(0) +
∫ t

0
{fJ(0, s)− fU(0, s)}Sε(s)ds

+ ε2
∫ t

0

∫ s

0
{bεJ(v, s)− bεU(v, s)}dvSε(s)ds

+ ε
∫ t

0

N∑
i=1

[∫ t

v
{σε

iJ(v, s)− σε
iU(v, s)}Sε(s)ds+ σε

iS(v)
]
dw̃i(v).

We first need to evaluate explicitly

S0(t) ≡ lim
ε→0

Sε(t),

A(t) ≡ ∂Sε(t)

∂ε
|ε=0

and

B(t) ≡ ∂2Sε(t)

∂ε2
|ε=0

to obtain the asymptotic expansion of average-rate of foreign exchange rates. We

can easily evaluate S0(t) as

S0(t) = S(0) +
∫ t

0
{fJ(0, s)− fU(0, s)}S0(t)ds.

Thus, we obtain

S0(t) = S(0)
PU(0, t)

PJ(0, t)
. (1.86)
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Next, we can show that A(t) satisfies the following stochastic differential equation.

dA(t) = {fJ(0, t)− fU(0, t)}A(t)dt+
N∑
i=1

σ0
iS(t)dw̃i(t)

This can be solved as

A(t) =
∫ t

0

N∑
i=1

FU(v, t)

FJ(v, t)
σ0
iS(v)dw̃i(v) ≡

∫ t

0
σAt(v)dw̃(v), (1.87)

where

σAt(v) ≡
[
FU(v, t)

FJ(v, t)
σ0
iS(v)

]
i

,

FU(v, t) ≡
PU(0, t)

PU(0, v)

and

FJ(v, t) ≡
PJ(0, t)

PJ(0, v)
.

We can also show that B(t) satisfies a stochastic differencial equation,

dB(t) = {fJ(0, t)− fU(0, t)}B(t)dt

+ 2
[∫ t

0
{b0J(v, t)− b0U(v, t)}dvS0(t)

]
dt+ 2

N∑
i=1

∂σ0
iS(t)A(t)dw̃i(t)

where

∂σ0
iS(t) ≡

∂σε
iS

∂Sε
|ε=0.

This can be solved as

B(t) = 2
∫ t

0

[
FU(s, t)

FJ(s, t)
S0(s)

]
[
∫ s

0
{b0J(v, s)− b0U(v, s)}dv]ds (1.88)

+ 2
∫ t

0

N∑
i=1

FU(s, t)

FJ(s, t)
A(s)∂σ0

iS(s)dw̃i(s).

Next, we define ths average-rate of foreign exchange rates Zε(T ) as

Zε(T ) =
1

T

∫ T

0
Sε(t)dt.

Therefore, the asymptotic expansion of the average-rate of forign exchange rates is

given by

Zε(T ) ∼ 1

T

∫ T

0
S0(t)dt+ ε

1

T

∫ T

0
A(t)dt+ ε2

1

T

∫ T

0

1

2
B(t)dt+ · · · . (1.89)
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We note that the first term of the right hand side is easily evaluated by S0(t)

obtained above. Next, we can evaluate the second term as∫ T

0
A(t)dt =

∫ T

0
σAs,T

(s)dw̃(s), (1.90)

where dw̃(s) is a 1×N vector and σAs,T
(s) is a 1×N vector

σAs,T
(s) ≡

[
{
∫ T

s

FU(s, t)

FJ(s, t)
dt}σ0

iS(s)

]
i

.

Third, we can show∫ T

0

B(t)

2
dt = k1(T ) +

∫ T

0

∫ t

0

[∫ s

0
σAs(v)dw̃(v)

]
σBs,t(s)dw̃(s)dt, (1.91)

where

k1(T ) =
∫ T

0

∫ t

0

FU(s, t)

FJ(s, t)
S0(s)

∫ s

0
{b0J(v, s)− b0U(v, s)}dvdsdt

and

σBs,t(s) ≡
[
FU(s, t)

FJ(s, t)
∂σ0

iS(s)

]
i

.

We already know from the previous section that the asymptotic expansion of the

discount factor is given by

e−
∫ T

0
rJ (s)ds ∼ PJ(0, T )

[
1− ε

∫ T

0
A

(t)
t dt− ε2

∫ T

0

1

2
B

(t)
t dt+ ε2

1

2
(
∫ T

0
A

(t)
t dt)

2

]
.

We note that ∫ T

0
A

(t)
t dt =

∫ T

0
σ0
JT (v)dw̃(v) (1.92)

where σJT (v) is a 1×N vector,

σ0
JT (v) ≡

[∫ T

v
σ0
iJ(v, t)dt

]
i

,

and ∫ T

0

1

2
B

(t)
t dt = k2(T ) +

∫ T

0

∫ t

0

[∫ s

0
σ0
J(v, T )dw̃(v)

]
∂σ0

J(s, t)dw̃(s)dt (1.93)

where

k2(T ) =
∫ T

0

∫ T

v
b0J(v, t)dtdv.
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Therefore, we combine the asymptotic expansions of the average-rate of foreign

exchange rates and that of the discount factor, which leads to

e−
∫ T

0
rJ (s)ds(Z(T )−K) ∼ g0 + εg1 + ε2g2, (1.94)

that is useful to evaluate the average option. g0, g1 and g2 are defined respectively

as

g0 ≡
[
S(0)

T

∫ T

0

PU(0, t)

PJ(0, t)
dt−K

]
PJ(0, T ), (1.95)

g1 ≡
∫ T

0
σ∗
g1
(s)dw̃(s) (1.96)

where

σ∗
g1
(s) ≡ 1

T
PJ(0, T )σAs,T

(s)− g0σ
0
JT (s).

and

g2 = −g0
∫ T

0

1

2
B

(t)
t dt+

PJ(0, T )

T

∫ T

0

1

2
B(t)dt (1.97)

+ g0
1

2

[∫ T

0
A

(t)
t dt

]2
− PJ(0, T )

T

[∫ T

0
A(t)dt

] [∫ T

0
A

(t)
t dt

]
.

We easily see that g1 follows a normal distribution.

g1 ∼ N(0,Σg1) (1.98)

where

Σg1 ≡
∫ T

0
σ∗
g1
(s)σ∗

g1
(s)⊤ds.

As in the previous sections, we define Xε
T as

Xε
T =

e−
∫ T

0
rJ (s)ds(Z(T )−K)− g0

ε
∼ g1 + εg2 + · · · (1.99)

for which we obtain the density function.

Next, to obtain the density function of Xε
T , we need to calculate E[g2|g1 = x].

Then, we can show ,by using formula(1) and formula(2) in Lemma 1.1 again,

that

E[g2|g1 = x] = cx2 + f (1.100)
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where

c ≡ 1

2

g0
Σ2

g1

[∫ T

0
σ0
JT (v)σ

∗
g1
(v)⊤dv

]2

− 1

T

PJ(0, T )

Σ2
g1

[∫ T

0
σAv,T

(v)σ∗
g1
(v)⊤dv

] [∫ T

0
σ0
JT (v)σ

∗
g1
(v)⊤dv

]

− g0
Σ2

g1

[∫ T

0

∫ t

0
σ∗
g1
(s)∂σ0(s, T )⊤

∫ s

0
σ0
J(v, T )σ

∗
g1
(v)⊤dvdsdt

]

+
PJ(0, T )

TΣ2
g1

[∫ T

0

∫ t

0
σ∗
g1
(s)σBs,t(s)

⊤
∫ s

0
σAs(v)σ

∗
g1
(v)⊤dvdsdt

]
,

and

f ≡ 1

T
PJ(0, T )k1(T )− g0k2(T )

− 1

2

g0
Σg1

[∫ T

0
σ0
JT (v)σ

∗
g1
(v)⊤dv

]2
+
g0
2

[∫ T

0
σ0
JT (v)σ

0
JT (v)

⊤dv

]

+
1

T

PJ(0, T )

Σg1

[∫ T

0
σAv,T

(v)σ∗
g1
(v)⊤dv

] [∫ T

0
σ0
JT (v)σ

∗
g1
(v)⊤dv

]

− PJ(0, T )

T

[∫ T

0
σAv,T

(v)σ0
JT (v)

⊤dv

]

+
g0
Σg1

[∫ T

0

∫ t

0
σ∗
g1
(s)∂σ0(s, T )⊤

∫ s

0
σ0
J(v, T )σ

∗
g1
(v)⊤dvdsdt

]

− PJ(0, T )

TΣg1

[∫ T

0

∫ t

0
σ∗
g1
(s)σ⊤

Bs,t

∫ s

0
σAs(v)σ

∗
g1
(v)⊤dvdsdt

]
.

Clearly, by using the martingale technique, the initial value of the average call option

is expressed as

V (0) = E∗
[
e−
∫ T

0
r(s)ds(Z(T )−K)+

]
.

By using the the density funcion of Xε
T and applying Theorem 1.2 where y is

replaced by

y ≡ 1

ε
g0

=
1

ε

[
S(0)

T

∫ T

0

PU(0, t)

PJ(0, t)
dt−K

]
PJ(0, T ),

we can evaluate the expectation on the right hand side and obtain the pricing

formula.
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5 Numerical Examples

In this section, we will present several numerical results by applying our method

introduced in the previous sections. In the simple Black-Scholes’ economy, first we

will show the numerical examples of plain vanilla call options for the square-root

process of the underlying asset. Next, we will give numerical values of average call

options for the square-root process of the underlying asset as well as for the log-

normal process of the underlying asset which is commonly used in practice. That

is, under the equivalent martingale measure, the processes of the underlying asset

are given by

dSδ = (r − q)Sδdt+ δ(Sδ)
1
2dw̃t

or

dSδ = (r − q)Sδdt+ δSδdw̃t

where r and q denote the risk-free interest rate and a dividend yield respectively,

both of which are assumed to be positive constants in the simple Black-Scholes’

economy ,and w̃t denotes the one dimensional Brownian motion.

In the term structure model, we show the numerical results of call options on

average interest rates under the constant volatility assumption for the instantaneous

forward rates, which is examined in Chapter 2 of this dissertation by the PDE

appoach. That is, the process of instantaneous forward rates under the equivalent

martingale measure is given by

df ε(t;T ) = ε2(T − t)dt+ εdw̃t.

We easily see that the process of zero coupon bond follows a log-normal process in

this case.

Table 1.1-1.3 show the numerical values of plain vanilla call options for square-

root processes of the underlying asset which represents an equity index with no

dividend. The values obtained by the stochastic expansions upto the first and

second order are given respectively. For comparative purpose, the values by the

Monte Carlo simulations are also given, where 500,000 trials are implemented in

each case. We note that all the ”difference” or ”difference rate” appearing in Tables

1.1-1.17 are those from, or those relative to, the corresponding values by the Monte
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Carlo simulations. The spot prices and the risk-free interest rate are assumed to be

40.00 and 5 % respectively, and the term to expiry is assumed to be one year. The

volatilities(δ ) are set so that the instantaneous variances at time 0 are equivalent

to those of the log-normal process whose volatilities are 10 % in Table 1.1, 20 % in

Table 1.2, and 30 % in Table 1.3. The values of out-of-the money (strike price K=

45), at-the-money (K=40), and in-the-money(K=35) are given. We observe that the

values obtained by the stochastic expansions upto the higher order are improved.

Tables 4-10 show the numerical values of average call options when the underlying

assets follow square-root processes, where the underlying asset is an equity index

with no dividend (that is, q = 0 ) in Tables 1.4-1.6 and in Table 1.7-1.10, that

is the foreign exchange rate of Japanese yen and US dollar (that is, q is a US

Interest rate). The results given by the stochastic expansion are those from the

computation upto the second order. For comparative purpose, the values by the

Monte Carlo simulations are also shown, where 500,000 trials are implemented in

each case.

In Tables 1.4-1.6, the spot prices and the risk-free interest rate are assumed to be

40.00 and 5 % respectively, and the volatilities(δ ) are set so that the instantaneous

variances at time 0 are equivalent to those of log-normal process where the volatilities

are 30 %. The vales of out-of-the money (strike price K= 45), at-the-money (K=40),

and in-the-money(K=35) are shown for each of the time to maturities, three months,

six months and one year.

In Tables 1.7-1.10, the spot prices, the risk-free Japanese interest rate and the US

interest rate are assumed to be 100.00, 3 %, and 5 % respectively. The volatilities(δ )

are set so that the instantaneous variances at time 0 are equivalent to those of the

log-normal process where the volatilities are 10 % in Tables 1.7-1.9, and 30 % in

Table 1.10. The values of out-of-the money (K= 105 for Tables 1.7-1.9 and K=110

for Table 1.10), at-the-money (K=100 for Tables 1.7-1.10), and in-the-money(K=95

for Tables 1.7-1.9 and K=90 for Table 1.10) are shown for each of the time to

maturities, three months, six months and one year.

Tables 1.11-1.14 show the numerical values of average call options when the

underlying assets follow log-normal processes, where the underlying asset is the

foreign exchange rate of Japanese yen and US dollar. The assumptions for the
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spot prices, the risk-free Japanese and US interest rates are same as in Tables

1.7-1.10. The volatilities are assumed to be 10 % in Tables 1.11-1.13, and 30 %

in Table 1.14. The vales of out-of-the money (K= 105 for Tables 1.11-1.13 and

K=110 for Table 1.14), at-the-money (K=100 for Tables 1.11-1.14), and in-the-

money(K=95 for Tables 1.11-1.13 and K=90 for Table 1.14) are shown for each of

the time to maturities, three months, six months and one year. The results given

by the asymptotic expansion are those from the computation upto the second order

as well as from computation upto the first order. The results from the asymptotic

log-normal expansion upto the first order and the second orderare also shown. We

observe that the values from the asymptotic expansion upto the second order are

much more improved than those upto the first order for both our original method

and asymptotic log-normal expansion. Figure 1.1 and Figure 1.2 show the difference

of the distributions of the
Xδ

T

Σ0.5
g1

and gδ

Σ0.5
g1

respectively, obtained by the asymptotic

expansions from those obtained by the Monte Carlo simulations. The asymptotic

expansion in Figure 1.1 is given by our original method and that in Figure 1.2 is

given by the asymptotic log-normal expansion. We can observe that the difference

is significantly smaller in the asymptotic expansions upto the second order than

those upto the first order, which leads to the much improved values of the option

prices. We also note that, in the first order expansion, the log-normal expansion

gives the closer distribution (and hence gives better values of the options prices) than

the original method does while the second order expansion in our original method

adjusts most of the difference.

For comparative purpose, the values by the Monte Carlo simulations are shown,

where 500,000 trials are implemented in each case, and moreover, the values obtained

by the PDE method developed in Chapter 2 are given.

Finally, Tables 1.15-1.17 show the numerical values of call options on average

interest rates in the constant volatility model of the instantaneous forward rates

where the time to maturity of the underlying interest rates is one year. That is, the

average is taken over interest rates whose maturities are one year. For simplicity,

the term structure is assumed to be flat of 5 % per year. Moreover, the volatilities

of instantaneous forward rates are assumed to be 150 basis point per year (that is,

ε = 0.015 ) which is a reasonable level in practice. The vales of out-of-the money

44



(K= 5.5 % for Table 1.15 and K=6 % for Tables 1.16-1.17), at-the-money (K=5

% for Tables 1.15-1.17), and in-the-money(K=4.5 % for Table 1.15 and K=4 %

for Tables 1.16-1.17) are given for each of the time to expiries, three months, six

months and one year. Again, for comparative purpose, the values by the Monte

Carlo simulations are shown, where 500,000 trials are implemented in each case,

and the values from the PDE method in Chapter 2 are also shown.
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æ

6 The Validity of the Asymptotic Expansion Ap-

proach

The validity of the asymptotic expansion approach in this paper could be obtained

along the line based on the remarkable work by Watanabe(1987) on the Malliavin

calculus in stochastic analysis. Yoshida(1992) has also shown some useful results on

the validity of the asymptotic expansions of some functionals on continuous time

homogenous diffusion processes. In this section, We shall rigorously prove the va-

lidity of the asymptotic expansions both in the Black-Scholes’ economy and in the

term structure model and show that our simple inversion technique for the charac-

teristic functions of random variables is justified. The validity of our method will be

given by applying the results and method originally developed by Watanabe(1987)

and Yoshida(1992) to the some stochastic differential equations. In fact, it is ob-

tained by the similar arguments used by Chapter V of Ikeda and Watanabe(1989)

and Yoshida(1992). However, we should mention that those existing asymptotic

expansion methods in stochastic analysis and statistics have been developed for the

case of continuous time homogenous diffusion processes. Hence, we need to substan-

tially modify and extend their results mainly because the processes we encounter

in the Black-Scholes’ economy include the continuous diffusion processes which are

not necessarily time homogenous, and in the term structure model, the continuous

stochastic processes for spot interest rates and instantaneous forward rates are not

necessarily Markovian in the usual sense.

In the first subsection, we shall prepare the fundamental results and notations in

the Malliavin calculus and the definitions of the asymtotic expansions of the Wiener

functionals. Based on the results and the theorems, we shall give in the subsequent

subsections the proofs of the vailidty of the asymptotic expansions both in the Black-

Scholes’ economy and in the term structure model. We shall only discuss the validity

of the asymptotic expansion approach based on the one-dimensional Wiener space

without loss of generality. We only need more complicated notations in the general

case.
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6.1 Preliminary

We shall first prepare the fundamental results including Theorem 2.2 of Yoshida(1992),

the truncated version of Theorem 2.3 of Watanabe(1987) which is the key result to

show the vailidity of the asymptotic expansions in this paper. For this purpose, we

shall freely use the notations by Ikeda and Watanabe (1989) as a standard text-

book. The results in this subsection are given without any proofs. The interested

readers may see Watanabe(1984), Watanabe(1987), Ikeda and Watanabe(1989) and

Yoshida(1992) for details.

The Fundamental Results of Malliavin Calculus

• First, we formally define Wiener space (W,H, µ).

– Let W a Banach space be the totality of continuous function

w : [0, T ] → R;w(0) = 0

with the topology induced by countable system of norms

∥ w ∥n= max0≤t≤n|w(t)|;n = 1, 2, · · · .

– Let µ Wiener measure.

– H denotes the Cameron-Martin subspace of W , a Hilbert space.

That is, h(t) ∈ H is in W and is absolutely continuous on [0, T ] with

square integrable derivative ḣ(t) endowed with an inner product defined

by

< h1, h2 >H=
∫ T

0
ḣ1(s)ḣ2(s)ds.

• A function f : W 7→ R is called a polynomial functional if there exist an

n ∈ N , h1, h2, · · · , hn ∈ H and a real polynomial p(x1, x2, · · · , xn) of n-

variables such that

f(w) = p([h1](w), [h2](w), · · · , [hn](w))

where hi ∈ H and

[hi](w) =
∫ T

0
ḣsdw̃s.
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• P denotes the totality of all polynomial functions.

– We note P is dense in L2.

• Wiener-Chaos decomposition of L2 is defined by

L2 = C0 ⊕ C1 ⊕ C2 · · · .

– Note that Pn is dense in Cn where n denotes the order of polynomial

functions.

• Let F Wiener functional W → R.

• We define Jn(F ) as a projection of F to Cn, then

F =
∞∑
n=0

Jn(F ).

• The Ornstein-Uhlenbeck semigroup {Tt}t is defined by

Tt(F ) =
∞∑
n=0

e−tnJn(F ).

• The Ornstein-Uhlenbeck operator L is defined by

L(F ) =
∞∑
n=0

(−n)Jn(F )

and we can show

L(F ) =
d

dt
|t=0Tt(L).

• The norm ∥ · ∥p,s, s ∈ R, p ∈ (1,∞) is defined by

∥ F ∥p,s=∥ (I − L)
s
2F ∥p .

• H derivative of F in the direction of h ∈ H is denoted by

DhF (w) =
∂

∂ε
|ε=0F (w + εh)

Then, H derivative of F is defined by

DhF (w) =< DF, h >H .
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• Hence we can show

L(F (w)) = D2F (W )− [DF ](w).

• Meyer(1983) shows the equivalence between the norm ∥ · ∥p,s and Lp norm

of H derivative. That is, for p ∈ (1,∞) and s ∈ {1, 2, · · ·}, there exists

constants cp,s and Cp,s such that

cp,s ∥ DsF ∥p≤∥ F ∥p,s≤ Cp,s

s∑
l=0

∥ DlF ∥p .

Due to this result, we can identify the ∥ · ∥p,s finiteness of a Wiener functional.

• The Sobolev space of Wiener functionals is defined by making use of the norm

∥ · ∥p,s as follows.

Ds
p : the completion of P with respect to ∥ · ∥p,s which is a Banach space

D−s
q : the dual of Ds

p where s ∈ R, p > 1 and 1
p
+ 1

q
= 1

D∞ = ∩s>0 ∩1<p<∞ Ds
p

(the set of Wiener test functionals)

D̃
−∞

= ∪s>0 ∩1<p<∞ D−s
p

(the set of generalized Wiener functionals)

• The relation among those spaces are given. For 1 ≤ p < p1 and 0 < s < s1,

Ds1
p ⊂ Ds

p ⊂ D0
p = Lp ⊂ D−s

p ⊂ D−s1
p

Ds1
p1 ⊂ Ds

p1 ⊂ D0
p1 = Lp1 ⊂ D−s

p1 ⊂ D−s1
p1 .

• The Malliavin-covariance of is defined by F σ(F ) =< DF,DF >H .

The Asymptotic Expansion

Next, we rigorously define the asymptotic expansion of Wiener functional

Xδ(w), δ ∈ (0, 1).
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• For k > 0 , Xδ(w) = O(δk) in Ds
p as δ ↓ 0 means that

limsupδ↓0
∥ Xδ ∥p,s

δk
<∞.

• If, for all p > 1, s > 0 and every k = 1, 2, · · ·,

Xδ(w)− (g1 + δg2 + · · ·+ δk−1gk) = O(δk)

in Ds
p as δ ↓ 0,

then we can say that Xδ(w) has the asymptotic expansion :

Xδ(w) ∼ g1 + δg2 + · · ·

in D∞ as δ ↓ 0 with g1, g2, · · · ∈ D∞.

• If, for every k = 1, 2, · · ·, there exists s > 0

such that, for all p > 1, Xδ(w), g1, g2, · · · ∈ D̃
−s

p and

Xδ(w)− (g1 + δg2 + · · ·+ δk−1gk) = O(δk)

in D−s
p as δ ↓ 0,

then we can say that Xδ(w) ∈ D̃
−∞

has the asymptotic expansion :

Xδ(w) ∼ g1 + δg2 + · · ·

in D−∞ as δ ↓ 0 with g1, g2, · · · ∈ D−∞.

Finally, we state a simple version of Theorem 2.2 of Yoshida(1992) which is a

truncated version of Theorem 2.3 of Watanabe(1987). The validity of the asymptotic

expansion in this paper is obtained by showing that the conditions of this theorem

are met.

Theorem 1.4 Yoshida(1992)

Let ψ(x) be a smooth function such that 0 ≤ ψ(x) ≤ 1 for x ∈ R,ψ(x) = 1

for |x| ≤ 1/2 and ψ = 0 for |x| ≥ 1. Suppose a set of conditions given below is

satisfied.

Conditions
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1. Xδ(w) ∈ D∞

2. Xδ(w) has the asymptotic expansion:

Xδ(w) ∼ g1 + δg2 + · · ·

in D∞ as δ ↓ 0 with g1, g2, · · · ∈ D∞.

3. {ηδc(w); ε ∈ (0, 1]} is O(1) in D∞ as δ ↓ 0 where c > 0.

4. There exists c0 > 0 such that for c > c0 and any p > 1,

supδ∈(0,1)E[1{|ηδc |≤1}

(
det σ(Xδ)

)−p
] <∞.

That is, the Malliavin covariance of Xδ(w) is uniformly non-degenerate.

5. For any n ≥ 1,

lim
δ→0

δ−nP{|ηδc | >
1

2
} = 0 .

6. ϕδ(x) is a smooth function in (x, δ) on R × [0, 1] with all derivatives of poly-

nomial growth order in x uniformly in δ.

Then, ψ(ηδc)ϕ
δ(Xδ)IB(X

δ) has the asymptotic expansion:

ψ(ηδc)ϕ
δ(Xδ)IB(X

δ) ∼ Φ0 + δΦ1 + · · ·

in D̃
−∞

as δ ↓ 0 where B is a Borel set and Φ0,Φ1, · · · are determined by the

formal Taylor expansion.

6.2 The Validity in the Black-Scholes’ Economy

Now we give the proof of validity of our method. For ease of exposition, we consider

a one dimensional stochastic differentail equation. The validity of the multidimen-

tional case could be obtained by almost the same argument although it is more
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tedious. We begin with the definition of a stochastic differential equation. That is,

for the fixed T < 0 and δ ∈ (0, 1),

Sδ
T = S0 +

∫ T

0
µ(Sδ

s , s)ds+
∫ T

0
δσ(Sδ

s , s)dw̃s (1.101)

where µ(Sδ
s , s) and σ(Sδ

s , s) are R × [0, T ] → R and Borel measurable in (Sδ, s).

Moreover, they are C∞(R → R) for s ∈ [0, T ] with bounded derivatives of any

orders in the first arguments. That is, for the first arguments there exists M > 0

such that

sup0≤s≤T |
∂kµ(Ss, s)

∂Sk
| < M (1.102)

and

sup0≤s≤T |
∂kσ(Ss, s)

∂Sk
| < M

for any k = 1, 2, 3, · · ·. These conditions imply that there exists some positve K

such that for all s ∈ [0, T ],

|µ(Sδ, s)| < K(1 + |Sδ
s |) (1.103)

|σ(Sδ, s)| < K(1 + |Sδ
s |)

or

|µ(S1δ, s)− µ(S2δ, s)| < K|S1δ − S2δ| (1.104)

|σ(S1δ, s)− σ(S2δ, s)| < K|S1δ − S2δ|.

Hence the standard argument(e.g. Ikeda and Watanabe(1989)) shows the existence

of the unique strong solution which has continuous sample paths and is in Lp for

any 1 ≤ p < ∞. In the remaining of the section, we will discuss the validity of the

asymptotic expansion of ϕ(Xδ
T )IB(X

δ
T ) where Xδ

T is defined by Xδ
T =

Sδ
T−S0

T

δ
and

B is a Borel set. We will also discuss the validity of the asymptotic expansion of

ϕ(Zδ)IB(Z
δ). Zδ is defined by

Zδ =
1

δ

∫ T

0
f(Sδ

s)ds (1.105)

where f(x) is a C∞(R → R) function. First, we show the Sδ
T is a smooth Wiener

functional in the sense of Malliavin.
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Lemma 1.3 Sδ
T is in D∞ and has the asymptotic expansion

Sδ
T ∼ S0

T + δg1T + δ2g2T + · · · (1.106)

is in D∞ as δ ↓ 0 with g1T , g2T , · · · ∈ D∞.

Proof. First, we prove Sδ
T in D∞. We define Y δ by

dY δ = ∂µ(Sδ, t)Y δdt+ δ∂σ(Sδ, t)Y δdwt, Y
δ
0 = 1

where ∂µ and ∂σ denotes the ∂µ
∂Sδ and ∂σ

∂Sδ respectively. We easily see Y δ has

the unique strong solution and Y δ ∈ Lp. Let W
δ
t = Y

(δ)−1
t . Then, W δ

t satisfies the

stochastic differential equation

dW δ = −{∂µ(Sδ, t)− δ2∂σ(Sδ, t)2}W δdt− δ∂σ(Sδ, t)W δdwt,W
δ
0 = 1.

W δ
t has also the unique strong solution and Y (δ)−1 ∈ Lp.

In the first step, we calculate the first order H-derivative of Sδ
T . For any h ∈ H,

we note that DhS
δ
T satisfies

DhS
δ
T =

∫ T

0
δ∂σ(Sδ, s)DhS

δ
sdw(s) +

∫ T

0
∂µ(Sδ, s)DhS

δ
sds+

∫ T

0
δσ(Sδ, s)ḣsds.

Thus for h ∈ H,

DhS
δ
T =

∫ T

0
Y δ
T Y

(δ)−1
s δσ(Sδ, s)ḣsds.

We note

|DhS
δ
T | ≤ δ|Y δ

T |
[∫ T

0
|Y (δ)−1

s |2K2(1 + |Sδ
s |)2ds

] 1
2
[∫ T

0
|ḣs|2ds

] 1
2

.

Then,

E
[
|DhS

δ
T |2
]
≤ δ2E

[
|Y δ

T |2{
∫ T

0
|Y (δ)−1

s |2K2(1 + |Sδ
s |)2ds}

]
M2

h

where

Mh =

[∫ T

0
|ḣs|2ds

] 1
2

<∞.

Likewise for any 2 < p <∞, we can show

E
[
|DhS

δ
T |p
]
≤ (δKMh)

pT ( p−2
p

)E

[
|Y δ

T |p{
∫ T

0
|Y δ−1|p(1 + |Sδ

s |)pds}
]
.
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By using Hölder inequality for expectations:

E[|xsys|] ≤ E[|xs|p]
1
pE[|ys|q]

1
q

where p > 1, q > 1, 1
p
+ 1

q
= 1, the inequality,

(|x|+ |y|)p ≤ 2(p−1)(|x|p + |y|p)

for p ≥ 1 and Fubini’s theorem, we can evaluate the right hand side of the last

equation as

E

[
|Y δ

T |p{
∫ T

0
|Y (δ)−1|p(1 + |Sδ

s |)pds}
]

≤ E
[
|Y δ

T |2p
] 1
2 E

[
(
∫ T

0
{|Y (δ)−1|(1 + |Sδ

s |)}pds)2}
] 1

2

≤ E
[
|Y δ

T |2p
] 1
2 T

1
2E

[∫ T

0
|Y (δ)−1|2p(1 + |Sδ

s |)2pds
] 1

2

≤ E
[
|Y δ

T |2p
] 1
2 T

1
2{
∫ T

0
E
[
|Y (δ)−1|4p

] 1
2 E

[
(1 + |Sδ

s |)4p
] 1
2 ds}

1
2

≤ E
[
|Y δ

T |2p
] 1
2 T

1
2{
∫ T

0
E
[
{|Y (δ)−1|4p

] 1
2 E

[
2(4p−1)(1 + |Sδ

s |4p)
] 1
2}

1
2 .

Hence, by Sδ
s , Y

δ
s , Y

(δ)−1
s ∈ Lp for s ∈ [0, T ] and any 1 < p < ∞, we have

E
[
|DhS

δ
T |p
]
<∞ for any p > 1. Therefore, we conclude Sδ

T ∈ ∩1<p<∞D1
p.

As for the second order H-derivative, D2
h1,h2

Sδ
T satisfies a stochastic integral

equation.

D2
h1,h2

Sδ
T =

∫ T

0
δ∂σ(Sδ, s)D2

h1,h2
Sδ
sdws +

∫ T

0
∂µ(Sδ, s)D2

h1,h2
Sδ
sds

+

[∫ T

0
δ∂2σ(Sδ, s)Dh1S

δ
sDh2S

δ
sdws

+
∫ T

0
∂2µ(Sδ, s)Dh1S

δ
sDh2S

δ
sds+

∫ T

0
δ∂σ(Sδ, s)Dh1S

δ
sh2sds

]
.

Then, we can obtain the second order H-derivative by

D2
h1,h2

Sδ
T =

∫ T

0
Y δ
T Y

δ−1
s [∂2µ(Sδ, s)Dh1S

δ
sDh2S

δ
sds

+ δ∂2σ(Sδ, s)Dh1S
δ
sDh2S

δ
sdws + δ∂σ(Sδ, s)Dh1S

δ
s ḣ2sds].
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To show the Lp-boundedness of the second order H-derivative, we first note for any

p > 1,

|D2
h1,h2

Sδ
T |p ≤ 3p−1|

∫ T

0
Y δ
T Y

δ−1
s ∂2µ(Sδ, s)Dh1S

δ
sDh2S

δ
sds|p

+ |
∫ T

0
Y δ
T Y

δ−1
s |δ∂2σ(Sδ, s)Dh1S

δ
sDh2S

δ
sdws|p

+ |
∫ T

0
Y δ
T Y

δ−1
s δ∂σ(Sδ, s)Dh1S

δ
s ḣ2sds]|p.

By the boundedness of ∂2µ(Sδ, s) and Lp-boundedness of Y δ
T , Y

δ−1
s , Dh1S

δ
s , and

Dh2S
δ
s , the similar argument as before shows the Lp-boundedness of the first term

in the last equation. It is also easily seen

|
∫ T

0
Y δ
T Y

δ−1
s δ∂σ(Sδ, s)Dh1S

δ
s ḣ2sds]|p ≤

[∫ T

0
|Y δ

T Y
δ−1
s δ∂σ(Sδ, s)Dh1S

δ
s |2ds

] p
2

Mp
h2

where

Mh2 =

[∫ T

0
|ḣ2s|2ds

] 1
2

.

Then, again we can show Lp-boundedness of the last term in the last equation by

the boundedness of ∂σ(Sδ, s) and Lp-boundedness of Y
δ
T , Y

(δ)−1
s , and Dh1S

δ
s .

As for the second term, we first note

E

[
|
∫ T

0
Y δ
T Y

δ−1
s δ∂2σ(Sδ, s)Dh1S

δ
sDh2S

δ
sdws|p

]

≤ E
[
|Y δ

T |2p
] 1
2 E

[
|
∫ T

0
Y δ−1
s δ∂2σ(Sδ, s)Dh1S

δ
sDh2S

δ
sdws|2p

] 1
2

.

Clearly, the first part is bounded for any p > 1. As for the second part, we first

state the following well-known (local) martingale inequality(e.g. Theorem III-3.1 of

Ikeda and Watanabe (1989)). There exists a positive constant cp, 0 < p < ∞ such

that for every square integrable continuous local martingale Ms,

E[(max0≤s≤t|Ms|)2p] ≤ cpE[< M,M >p
t ].

Then, by using this inequality, we evaluate the second part as

E

[
|
∫ T

0
Y (δ)−1
s δ∂2σ(Sδ, s)Dh1S

δ
sDh2S

δ
sdws|2p

] 1
2
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≤ (cp)
1
2E

[
{
∫ T

0

[
Y (δ)−1
s δ∂2σ(Sδ, s)Dh1S

δ
sDh2S

δ
s

]2
ds}p

] 1
2

≤ (cp)
1
2T

p−2
2 E

[∫ T

0

[
Y (δ)−1
s δ∂2σ(Sδ, s)Dh1S

δ
sDh2S

δ
s

]2p
ds

] 1
2

.

Hence, we can see this part is also bounded for any p > 1 by the boundedness of

∂σ(Sδ, s) and Lp-boundedness of Y (δ)−1
s ,Dh1S

δ
s and Dh2S

δ
s . Therefore, we have

Sδ
T ∈ ∩1<p<∞D2

p.

Repeating this argument, we can show the boundedness of higher order H-derivatives

with Lp estimates of Sδ
T . Finally, we conclude Sδ ∈ D∞.

Next, we prove the second part of this lemma. The coefficients of the asymptotic

expansion of Sδ
T is given by the Taylor formula. For instance,

g1T =
∫ T

0
YTY

−1
s σ(S0, s)ds

g2T =
∫ T

0

1

2
YTY

−1
s {∂2µ(S0, s)g21sds+ σ(S0, s)g1sdws}

and

g3T =
∫ T

0
YTY

−1
s {∂2µ(S0, s)g1sg2sds+

1

6
∂3µ(S0, s)g31sdws + ∂σ(S0, s)g2sdws}

where Yt = Y 0
t is the solution of the differential equation

dY = ∂µ(S0, t)Y dt, Y0 = 1.

That is, Yt = exp(
∫ t
0 µ(S

0, s)ds). By the boundedness of YT , Y
−1
s , σ(S0, s) on [0, T ] ,

it is easily seen E[|g1s|p] < ∞, s ∈ [0, T ] for any 1 < p < ∞. Given g1s ∈ Lp, we

can easily see by the (local) martingale inequality E[|g2s|p] <∞ for any 1 < p <∞.

Likewise, gks ∈ Lp is obtained recursively given gjs ∈ Lp, j = 1, 2, · · · k − 1. Hence

g1T , g2T , · · · ∈ ∩1<p<∞D0
p. Next, we note Dhg1T = YT

∫ T
0 Y −1

s σ(S0, s)ḣsds and

Dk
h1,···,hk

g1 = 0 for k = 2, 3, · · ·. Thus, clearly, g1T ∈ D∞. We also have

Dhg2T = YT

∫ T

0
Y −1
s ∂2µ(S0, s)g1sDhg1sds+

∫ T

0
∂σ(S0

s , s)Dhg1sdws+
∫ T

0
∂σ(S0, s)ḣsds,

D2
h1,h2

g2T =
∫ T

0
YTY

−1
s ∂2µ(S0, s)Dh1g1sDh2g1sds+

∫ T

0
∂σ(S0, s)Dh1g1sḣ2sds.

and Dk
h1,···,hk

g2T = 0fork = 3, 4, · · ·. Then, given g1s ∈ D∞ for any s ∈ [0, T ], we

can easily conclude g2T ∈ D∞.
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Recursively we can show the Lp-boundedness of any order H-derivatives of gkT , k =

3, 4, · · ·. Therefore, we have proven the second part.

Next, we define Xδ
T by Xδ

T =
Sδ
T−S0

T

δ
. By the above lemma, we easily see Xδ

T is

in D∞ and has the asymptotic expansion

Xδ
T ∼ g1T + δg2T + · · ·

is in D∞ as δ ↓ 0 with g1, g2, · · · ∈ D∞. We also have the first order H-derivative

as

DhXT =
∫ T

0
Y δ
T Y

δ−1
s σ(Sδ, s)ḣsds.

Then, the Malliavin covariance σ(Xδ
T ) =< DXδ

T , DX
δ
T >H is given by∫ T

0
{Y δ

T Y
δ
s σ(S

δ, s)}2ds. (1.107)

Note

σ(Xδ
T ) → Σg1 =

∫ T

0
{YTYsσ(S0, s)}2ds (1.108)

as δ ↓ 0 where Σg1 denotes the variance of g1. Next, we consider the uniform

non-degeneracy of Malliavin covarince, which is the important step of the applica-

tion of Theorem 2.2 of Yoshida(1992). First, we make the following assumption.

Assumption 1

Σg1 =
∫ T

0
{YTYsσ(S0, s)}2ds > 0 (1.109)

Next, we define ηδc by for any c > 0,

ηδc = c
∫ T

0
|Y δ

T (Y
δ
s )

−1σ(Sδ
s)− YTY

−1
s σ(S0

s )|2ds.

Hence, we have the following lemma.

Lemma 1.4 Under Assumption 1, Malliavin covariance σ(Xδ
T ) is uniformly non-

degenerate. That is, there exists c0 > 0 such that for c > c0 and any p > 1,

supδ∈(0,1]E
[
1{ηδc≤1}{det σ(Xδ

T )}−p
]
<∞. (1.110)
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Proof. Let ξδs,t = Y δ
t (Y

δ
s )

−1σ(Sδ
s) and ξs,t = YtY

−1
s σ(S0

s ).

Then, |ηδc | ≤ 1 implies
∫ T
0 |ξδs,T − ξs,T |2ds ≤ 2

c
.

Note

|σ(Xδ
T )− Σg1 | = |

∫ T

0
(ξδs,T )

2 − (ξs,T )
2ds|

≤
∫ T

0
|ξδs,T − ξs,T |2ds+ 2

∫ T

0
|ξs,T ||ξδs,T − ξs,T |ds

≤ 2

c
+ 2Σ

1
2
g1(

2

c
)
1
2 .

Hence we can take c0 > 0 such that for c > c0,

0 < Σg1 − |σ(Xδ
T )− Σg1 | < σ(Xδ

T )

holds uniformly for δ ∈ (0, 1]. Thus, (1.110) is concluded.

æ Next, we present two inequalities which are useful to show the truncation by

ψ(ηδc) is negligible in the asymptotic expansion.

Lemma 1.5 • (A)There exist positive constants ai; i = 1, 2 independent of δ

such that

P (sup0≤s≤T |Sδ
s − S0

s | > a0) ≤
a1
a0

(a0 + C)exp(− a2a
2
0

(a0 + C)2
δ−2) (1.111)

for all a0 > 0.

• (B)There exist positive constants ai; i = 1, 2 independent of δ such that

P (sup0≤s≤T |Y δ
s − Ys| > a0) ≤

a1
a0

(a0 + C)exp(− a2a
2
0

(a0 + C)2
δ−2) (1.112)

for all a0 > 0.

Proof.

• (A)

Sδ
T = S0 +

∫ T

0
µ(Sδ, s)ds+

∫ T

0
σ(Sδ, s)dws

S0
T = S0 +

∫ T

0
µ(S0, s)ds

Using the Lipschitz continuity of µ(Sδ, t) in the first argument,

|Sδ
t − S0

t | ≤ K
∫ t

0
|Sδ

s − S0
s |ds+ sup0≤s≤t|

∫ s

0
δσ(Sδ, u)dwu|.
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Let us recall the useful Gronwall’s inequality(e.g. Elliott(1982) pp.192): Sup-

pose α(t) is a Lebesgue integrable function on [a, b], and that B and H are

constants such that

α(t) ≤ B +H
∫ t

a
α(s)ds

for all t ∈ [a, b]. Then, α(t) ≤ BeH(t−a).

Then, by the Gronwall’s inequality,

sup0≤s≤T |Sδ
s − S0

s | ≤ sup0≤s≤T |
∫ s

0
δσ(Sδ, u)dwu|eKT .

Note that by the method of time change(e.g. Ikeda and Watanabe(1989)

pp.197) there exists a Brownian motionB(t) such thatB(At) =
∫ t
0 δσ(S

δ, s)dws

where At =
∫ t
0 δ

2σ(Sδ, s)2ds. Then,

sup0≤s≤T |Sδ
s − S0

s | ≤ sup0≤s≤T |B(As)|eKT .

Let τ = inf{s; |Sδ
s − S0

s | > a0}.
Then, noting τ < T implies {sup0≤s≤τ<T |B(As)|eKT > a0}, we have

P ({sup0≤s≤T |Sδ
s − S0

s | > a0}) = P ({τ < T, sup0≤s≤τ |B(As)|eKT > a0}).

We also note for s ≤ τ ,

|Sδ
s | − |S0

s | ≤ |Sδ
s − S0

s | ≤ a0.

Then, we have

|Sδ
s | ≤ a0 + |S0

s | ≤ a0 + sup0≤s≤T |S0
s |.

Hence,

|σ(Sδ, s)| ≤ (1 + |Sδ
s |) ≤ (a0 + C)

where C ≡ 1 + sup0≤s≤T |S0
s |. Thus, As for s ∈ [0, τ ] is evaulated as

As =
∫ s

0
δ2σ(Sδ, u)2du ≤ δ2T (a0 + C)2.

Therefore,

P ({τ < T, sup0≤s≤τ |B(As)|eKT > a0})

≤ P ({sup0≤u≤δ2K2T (a0+C)2|B(u)|eKT > a0}).
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Using the reflection principle and the inequality

1√
2π

∫ ∞

a0
e

−x2

2 dx <
1√
2π
a−1
0 e

−a20
2 ,

we obtain

P ({sup0≤s≤T |Sδ
s − S0

s | > a0}) ≤ 2P ({MaxB(δ2K2T (a0 + C)2) > a0e
−KT})

= 4P ({B(δ2K2T (a0 + C)2) > a0e
−KT})

≤ 4eKT δK
√
T√

2π

(a0 + C)

a0
×

exp(− e−2KTa20
2K2T (a0 + C)2

δ−2).

Finally, defining appropriately a1 and a2, we conclude the result. That is,

a1 =
4eKT δK

√
T√

2π

and

a2 =
e−2KT

2K2T
.

• (B)

dY δ = ∂µ(Sδ, t)Y δdt+ ∂σ(Sδ, t)Y δdwt

dY = ∂µ(S0, t)Y dt

By the smoothness and the boundedness of the derivatives of µ(Sδ, s) in the

first argument and the boundedness of Ys on [0, T ], there exist positive M

and M1 such that

|∂µ(Sδ, s)Y δ
s − ∂µ(S0, s)Y | ≤ ||∂µ(Sδ, s)||Y δ

s − Ys|+

|Ys||∂µ(Sδ, s)− ∂µ(S0, s)| ≤ M |Y δ
s − Ys|+M1|Sδ

s − S0
s |.

Thus, we have

|Y δ
s − Ys| ≤

[
M1Tsup0≤s≤T |Sδ

s − S0
s |+ sup0≤s≤T |

∫ s

0
δ∂σ(Sδ, u)Y δ

u dwu|
]

+ M
∫ s

0
|Y δ

u − Yu|du.

Then, by the Gronwall’s inequality, there exists a positive M2 such that

sup0≤s≤T |Y δ
s −Ys| ≤M2

[
sup0≤s≤T |Sδ

s − S0
s |+ sup0≤s≤T |

∫ s

0
δ∂σ(Sδ, u)Y δ

u dwu|
]
.
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Let ε = a0
2M2

and τ = inf{s; |Sδ
s − S0

s | > ε or |Y δ
s − Ys| > a0}. Then, we have

P ({sup0≤s≤T |Y δ
s − Ys| > a0})

= P ({sup0≤s≤T |Y δ
s − Ys| > a0, sup0≤s≤T |Sδ

s − S0
s | ≤ ε})

+ P ({sup0≤s≤T |Y δ
s − Ys| > a0, sup0≤s≤T |Sδ

s − S0
s | > ε})

≤ P ({sup0≤s≤T |Y δ
s − Ys| > a0, sup0≤s≤T |Sδ

s − S0
s | ≤ ε})

+ P ({sup0≤s≤T |Sδ
s − S0

s | > ε})

≤ P ({τ < T, sup0≤s≤T |Sδ
s − S0

s | ≤ ε,

(a0 −M2ε) ≤M2sup0≤s≤τ |
∫ s

0
∂σ(Sδ, u)Y δ

u dwu|})

+ P ({sup0≤s≤T |Sδ
s − S0

s | > ε})

= P ({τ < T, sup0≤s≤T |Sδ
s − S0

s | ≤ ε,
a0
2

≤M2sup0≤s≤τ |B(δ2
∫ s

0
∂σ(Sδ, u)2Y δ2

u du)|})

+ P ({sup0≤s≤T |Sδ
s − S0

s | > ε})

The second term in the last equation is equivalent to (A). Hence, what we

have to do is to evaluate the first term. We first note 0 ≤ s ≤ τ and

sup0≤s≤T |Sδ
s − S0

s | implies |Y δ
s − Ys| ≤ a0 for s ∈ [0, τ ]. Then, for s ∈ [0, τ ],

we have

|Y δ
s | ≤ a0 + C

where C ≡ sup0≤s≤TYs. Together with |∂σ(Sδ, u)| ≤M , we can show

δ2
∫ s

0
∂σ(Sδ, u)2Y δ2

u du ≤ δ2TM2(a0 + C)2.

Thus,

P ({τ < T, sup0≤s≤T |Sδ
s − S0

s | ≤ ε,
a0
2

≤M2sup0≤s≤τ |B(δ2
∫ s

0
∂σ(Sδ, u)2Y δ2

u du)|})

≤ P ({ a0
2M2

≤ sup[0≤u≤δ2TM2(a0+C)2]|B(u)|}).

Therefore, repeating the same argument as in (A), we can conclude there exists

positive constants ai1, i = 1, 2 independent of δ such that

P ({τ < T, sup0≤s≤T |Sδ
s − S0

s | ≤ ε,

61



a0
2

≤M2sup0≤s≤τ |B(δ2
∫ s

0
∂σ(Sδ, u)2Y δ2

u du)|})

≤ a11
a0

(a0 + C)exp(− a21a
2
0

(a0 + C)2
δ−2).

We now can show the truncation is negligible by utilizing the above large devi-

ation inequalities.

Lemma 1.6 For c > 0, ηδc is O(1) in D∞ and for c0 > 0 , there exist some constants

ci, i = 1, 2, 3, such that

P ({|ηδc | > c0}) ≤ c1exp(−c2δ−c3) (1.113)

Proof. the result follows from the inequalities (A) and (B) in the previous lemma.

First, we note

|ηδc | = c
∫ T

0
|Y δ

T Y
(δ)−1
s σ(Sδ

s)− YTY
−1
s σ(S0

s )|2ds

≤ cTsup0≤s≤T

[
Y δ
T Y

(δ)−1
s σ(Sδ

s)− YTY
−1
s σ(S0

s )
]2
.

Then, |ηδc | > c0 implies

{|ηδc | > c0} ⊂ {sup0≤s≤T

[
Y δ
T Y

(δ)−1
s σ(Sδ

s)− YTY
−1
s σ(S0

s )
]
> (

c0
cT

)
1
2}

Let c4 =
c0
cT

1
2 .

{|ηδc | > c0} ⊂ {sup0≤s≤T |YTY −1
s ||σ(Sδ, s)− σ(S0, s)| > c4

3
}

∪ {sup0≤s≤T |Y δ−1
s ||σ(Sδ

s , s)||Y δ
T − YT | >

c4
3
}

∪ {sup0≤s≤T |YT ||σ(Sδ
s , s)||Y δ−1

s − Y −1
s | > c4

3
}

By the boundedness of |YTY −1
s |, the Lipschitz continuity of σ(Sδ, s) in the first

argument and Lemma 1.5, the first term of the right hand side implies that there

exist c11, c21, and c31 such that

P ({sup0≤s≤T |YTY −1
s ||σ(Sδ, s)− σ(S0, s)| > c4

3
})

≤ P ({sup0≤s≤T |Sδ
s − S0

s | > c5}) ≤ c11exp(−c21δ−c31)
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where c5 = c4
3Ksup0≤s≤T |YTY −1

s | . We note that for any c03 > 0, |Y (δ)−1
s − Y −1

s | > c03

is implied by |Y (δ)−1| > max(|c03 + Y −1
s |, |c03 − Y −1

s |). Then, by Y −1
s > 0 for

0 ≤ s ≤ T ,

{|Y δ−1
s | > m1} ⊂ {|Y δ−1

s − Y −1
s | > c03}

where m1 = c03 + sup0≤s≤TY
−1
s . We also note that for any c01 > 0, |Sδ

s − S0
s | > c01

is implied by |Sδ
s | > max(|c01 + S0

s |, |c01 − S0
s |), which is also implied by |Sδ

s | >
c01 + sup0≤s≤T |S0

s |. Hence, by |σ(Sδ, s)| ≤M(1 + |Sδ
s |),

{|σ(Sδ, s)| > m2} ⊂ {|Sδ
s − S0

s | > c01}.

where m2 = K(1 + c01 + sup0≤s≤T |S0
s |). Therefore, as for the second term,

{sup0≤s≤T |Y δ−1
s ||σ(Sδ

s , s)||Y δ
T − YT | >

c4
3
}

⊂ {|Y δ
t − Yt| >

c4
3m1m2

}, sup0≤s≤T |Y (δ)−1| ≤ m1, sup0≤s≤T |σ(Sδ, s)| ≤ m2}

∪ {sup0≤s≤T |Y δ−1
s ||σ(Sδ

s , s)||Y δ
T − YT | >

c4
3
, sup0≤s≤T |Y (δ)−1| > m1}

∪ {sup0≤s≤T |Y δ−1
s ||σ(Sδ

s , s)||Y δ
T − YT | >

c4
3
, sup0≤s≤T |σ(Sδ

s , s)| > m2}

⊂ {|Y δ
T − YT | >

c4
3m1m2

} ∪ {sup0≤s≤T |Y δ−1
s − Y −1

s | > c03}

∪ {sup0≤s≤T |Sδ
s − S0

s | > c01}.

Then, by Lemma 1.5 , there exist c12, c22, c32 > 0 such that

P ({sup0≤s≤t|Y δ−1
s ||σ(Sδ

s , s)||Y δ
t − Yt| >

c4
3
}) < c12exp(−c22δ−c32).

The similar argemnt holds for the third term. Thus, the result is concluded.

Therefore, the conditions of Theorem 2.2 of Yoshida(1992) are satisfied, which

leads to the desired result.

Proposition 1.4 For a smooth function ϕδ(x) with all derivatives of polynomial

growth orders,

ψ(ηδc)ϕ
δ(Xδ

T )IB(X
δ
T ) has the asymptotic expansion:

ψ(ηδc)ϕ
δ(Xδ

T )IB(X
δ
T ) ∼ Φ0 + δΦ1 + · · · (1.114)

in D̃
−∞

as δ ↓ 0 where B is a Borel set, ψ(x) is a smooth function such that

0 ≤ ψ(x) ≤ 1 for x ∈ R,ψ(x) = 1 for |x| ≤ 1/2 and ψ = 0 for |x| ≥ 1, and

Φ0,Φ1, · · · are determined by the formal Taylor expansion.
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Finally, we obtain the asymptotic expansion of the expectation of ϕδ(Xδ
T )IB(X

δ
T ).

Theorem 1.5 The asymptotic expansion of E[ϕδ(Xδ)IB(X
δ)] is given by

E[ϕδ(Xδ)IB(X
δ)] ∼ E[ψ(ηδc)ϕ

δ(Xδ)IB(X
δ)] (1.115)

∼ E[Φ0] + δE[Φ1] + · · ·

as δ ↓ 0.

Proof. The first assertion follows from uniform integrability of {|ϕδ(x)|p; δ ∈
(0, 1]}, p ≥ 1 and the Lemma 1.6, and the second assertion is obtained by Proposi-

tion 1.4.

We next consider the validity of the asymptotic expansion of

Zδ ≡ Zδ
T

δ
=

1

δ

∫ T

0
f(Xδ

s )ds

where f(x) is a smooth function that is, C∞(R → R). Then, the expansion of Zδ
T

is formally given by

Zδ
T ∼

∫ T

0
f(S0

s )ds+ δ
∫ T

0
∂f(S0

s )g1sds

+ δ2
∫ T

0
{1
2
∂2f(S0

s )g
2
1s + ∂f(S0

s )g2s}ds

+ δ3
∫ T

0
{1
6
∂3f(S0

s )g
3
1s + ∂2f(S0

s )g1sg2s + ∂f(S0
s )g3s}ds+ · · ·

≡ Z0
T + δgZ1T + δ2gZ2T + δ3gZ3T + · · · .

By the smoothness of f(x), Xδ
T ∈ D∞ and g1, g2, g3, · · · ∈ D∞, we can easily

see ZT ∈ D∞ and Zδ
T has the asymptotic expansion is in D∞ as δ ↓ 0 with

gZkT , k = 1, 2, · · ·. æ Next, the Malliavin covariance of Zδ,σ(Zδ) is given by

σ(Zδ) =
∫ T

0

[
{
∫ T

u
∂f(Sδ

s)Y
δ
s ds}Y δ−1

u σ(Sδ
u, u)

]2
du.

We note σ(Zδ) → ΣgZ1T
as δ ↓ 0 where

ΣgZ1T
=
∫ T

0

[
{
∫ T

u
∂f(S0

s )Ysds}Y −1
u σ(S0

u, u)

]2
du.

If we define ηδZc as before by

ηδZc = c
∫ T

0

[
{
∫ T

u
∂f(Sδ

s)Y
δ
s ds}Y δ−1

u σ(Sδ
u, u)− {

∫ T

u
∂f(S0

s )Ysds}Y −1
u σ(S0

u, u)

]2
du,
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then we can have Lemma 1.4 and Lemma 1.6 for ηδZc instead of ηδc in a similar

way by making use of Lemma 1.5 and smoothness of f(x). Consequently, we can

apply Theorem 2.2 of Yoshida(1992) to ψ(ηδZc )ϕ(Zδ)IB, and the same results as in

Proposition 1.4 and Theorem 1.5 hold for Zδ as follows.

• Proposition 1.4’

For a smooth function ϕδ(x) with all derivatives of polynomial growth orders,

ψ(ηδZc )ϕδ(Zδ)IB(Z
δ) has the asymptotic expansion:

ψ(ηδZc )ϕδ(Zδ)IB(Z
δ) ∼ Φ0 + δΦ1 + · · · (1.116)

in D̃−∞ as δ ↓ 0 where B is a Borel set, ψ(x) is a smooth function such

that 0 ≤ ψ(x) ≤ 1 for x ∈ R,ψ(x) = 1 for |x| ≤ 1/2 and ψ = 0 for |x| ≥ 1,

and Φ0,Φ1, · · · are determined by the formal Taylor expansion.

• Theorem 1.5 ’

The asymptotic expansion of E[ϕδ(Zδ)IB(Z
δ)] is given by

E[ϕδ(Zδ)IB(Z
δ)] ∼ E[ψ(ηδc)ϕ

δ(Zδ)IB(Z
δ)] (1.117)

∼ E[Φ0] + δE[Φ1] + · · ·

as δ ↓ 0.

Our next objective is to show that the resulting formulae is equivalent to those

from our method which is based on the simple inversion technique for the character-

istic function. To do so, we only discuss the case of Xδ
T because the same argument

holds for the asymptotic expansion of Zδ. In particular, we explicitly derive the

formula of asymptotic distribution function or density function and that of the ex-

pectation of Xδ
T in a certain range and show they are equivalent to those by our

simple method. We start with the explicit evaluation of the expectation in Theorem

1.5 . We first observe that in Proposition 1.4 , Φ0,Φ1 and Φ2 are given by

Φ0 = ϕ0(g1)IB(g1)

Φ1 =

[
∂ϕδ

∂δ
|δ=0(g1) + ∂ϕ(g1)g2

]
IB(g1) + ϕ0(g1)∂IB(g1)g2
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Φ2 =

[
∂ϕδ

∂δ
|δ=0(g1) + ∂ϕδ(g1)g2

]
∂IB(g1)g2

+

[
1

2

∂2ϕδ

∂δ2
|δ=0(g1) + {∂

2ϕδ(x)

∂x∂δ
|δ=0,x=g1}g2 + ∂ϕ0(g1)g3 +

1

2
∂2ϕ0(g1)g

2
2

]
IB(g1)

+ ϕ0(g1){
1

2
∂2IB(g1)g

2
2 + ∂IBg3}.

Hence we have the follwing proposition.

Proposition 1.5 E [Φi] , i = 0, 1, 2 are given respectively by

E [Φ0] =
∫
B
ϕ0(x)n[x, 0,Σg1 ]dx, (1.118)

E [Φ1] =
∫
B
{∂ϕ
∂δ

|δ=0(x)n[x : 0,Σg1 ]

+ ϕ0(x)

[
−∂E[g2|g1 = x]n[x : 0,Σg1 ]

∂x

]
}dx

and

E [Φ2] =
∫
B
−∂ϕ

δ

∂δ
|δ=0(x)

∂

∂x
{E[g2|g1 = x]n[x : 0,Σg1 ]}

+
1

2

∂2ϕδ

∂δ2
|δ=0(x)n[x : 0,Σg1 ]

+
1

2
ϕ0(x)

∂2

∂x2
{E[g22|g1 = x]n[x : 0,Σg1 ]}

+ ϕ0(x)
∂

∂x
{−E[g3|g1 = x]n[x : 0,Σg1 ]}.

Proof. It is easily seen the formula for E [Φ0].

The expectation of the first term of Φ1 is given by

E

[
{∂ϕ
∂δ

|δ=0(g1) + ∂ϕ(g1)g2}IB(g1)
]

=
∫
B
{∂ϕ
∂δ

|δ=0(x) + ∂ϕ(x)E[g2|g1 = x]}n[x, 0,Σg1 ]dx.

As for the expectation of ϕ0(g1)∂IB(g1)g2, by noting ϕ0(g1)g2 ∈ D∞ and using the

integration by parts formula for Wiener functional(see Ikeda and Watanabe(1989)

for the detail.), we have

E
[
ϕ0(g1)∂IB(g1)g2

]
= E

[
ϕ0(g1)g2∂IB(g1)

]
= E [G(w)IB(g1)]

= E [E[G(w)|g1 = x]IB(g1)]
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=
∫
B
E[G(w)|g1 = x]n[x : 0,Σg1 ]dx

≡
∫
B
p1(x)dx

for some smooth Wiener functional G(w). To obtain p1(x), taking Bx = (−∞, x],

we can see

E
[
ϕ0(g1)∂IBx(g1)g2

]
=

∫ ∞

−∞
ϕ0(y)E[g2|g1 = y]∂IBx(y)n[y : 0,Σg1 ]dy

= −
∫ ∞

−∞
ϕ0(y)E[g2|g1 = y]δx(y)n[y : 0,Σg1 ]dy

= −ϕ0(x)E[g2|g1 = x]n[x : 0,Σg1 ]

where δx(y) denotes the delta function of y at x. Then,

p1(x) =
∂

∂x

[
−ϕ0(g1)E[g2|g1 = x]n[x : 0,Σg1 ]

]
.

Hence, we have the explicit formula for E [Φ1] as

E [Φ1] =
∫
B
{∂ϕ
∂δ

|δ=0(x)n[x : 0,Σg1 ] + ϕ0(x)

[
−∂E[g2|g1 = x]n[x : 0,Σg1 ]

∂x

]
}dx.

Similarly, we can write E [Φ2] as

E [Φ2] =
∫
B
p2(x)dx

=
∫
B
p21(x)dx+

∫
B
p22(x)dx+

∫
B
p23(x)dx.

Then, p21(x) is given in the similar way as in E [Φ1] by

p21(x) =
∂

∂x

[
−{∂ϕ

δ

∂δ
|δ=0(x)E[g2|g1 = x] + ∂ϕ(x)E[g22|g1 = x]}n[x : 0,Σg1 ]

]
.

p22(x) is also easily obtained by

p22(x) =

[
1

2

∂2ϕδ

∂δ2
|δ=0(x) + {∂

2ϕδ(x)

∂x∂δ
|δ=0}E[g2|g1 = x] + ∂ϕ0(x)E[g3|g1 = x]

+
1

2
∂2ϕ0(x)E[g22|g1 = x]

]
n[x : 0,Σg1 ].

To obtain p23(x), as for the term E
[
1
2
ϕ0(g1)∂

2IB(g1)g
2
2

]
, taking B = Bx = (−∞, x],

we have

E
[
1

2
ϕ0(g1)∂

2IBx(g1)g
2
2

]
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=
∫ ∞

−∞
∂2IBx(y){

1

2
ϕ0(y)E[g22|g1 = y]n[y : 0,Σg1 ]}dy

=
∂

∂x

∫ ∞

−∞
δx(y){

1

2
ϕ0(y)E[g22|g1 = y]n[y : 0,Σg1 ]}dy

=
∂

∂x
{1
2
ϕ0(x)E[g22|g1 = x]n[x : 0,Σg1 ]}

=
∫ x

−∞

∂2

∂y2
{1
2
ϕ0(y)E[g22|g1 = y]n[y : 0,Σg1 ]}dy.

For the second term, we obtain as before

E
[
ϕ0(g1)∂IBxg3

]
=
∫ x

−∞

∂

∂y
{−ϕ0(y)E[g3|g1 = y]n[y : 0,Σg1 ]}dy.

Hence, p23(x) is given by

p23(x) =
∂2

∂x2
{1
2
ϕ0(x)E[g22|g1 = x]n[x : 0,Σg1 ]}

+
∂

∂x
{−ϕ0(x)E[g3|g1 = x]n[x : 0,Σg1 ]}.

Finally collecting and rearranging each term of p21(x), p22(x) and p23(x), we conclude

p2(x) = −∂ϕ
δ

∂δ
|δ=0(x)

∂

∂x
{E[g2|g1 = x]n[x : 0,Σg1 ]}

+
1

2

∂2ϕδ

∂δ2
|δ=0(x)n[x : 0,Σg1 ]

+
1

2
ϕ0(x)

∂2

∂x2
{E[g22|g1 = x]n[x : 0,Σg1 ]}

+ ϕ0(x)
∂

∂x
{−E[g3|g1 = x]n[x : 0,Σg1 ]}.

In particular, if we take ϕδ(x) ≡ 1 and B = (−∞, x], then

P ({Xδ
T ≤ x}) ∼

∫ x

−∞
n[y : 0,Σg1 ]dy + δ

∫ x

−∞

−∂E[g2|g1 = y]n[y : 0,Σg1 ]

∂y
dy

+ δ2
[∫ x

−∞

1

2

∂2

∂y2
{E[g22|g1 = y]n[y : 0,Σg1 ]}

+
∂

∂y
{−E[g3|g1 = y]n[y : 0,Σg1 ]}

]
dy + · · ·

= N

 x

Σ
1
2
g1

+ δ{−E[g2|g1 = x]n[x : 0,Σg1 ]}

+ δ2
[
1

2

∂

∂x
E[g22|g1 = x]n[x : 0,Σg1 ]− E[g3|g1 = x]n[x : 0,Σg1 ]

]
+ · · · .
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Moreover, if we take ϕδ(x) = x+ y for a constant y and B = [−y,∞), then

E
[
(x+ y)+

]
∼

∫ ∞

−y
x n[x : 0,Σg1 ]dx

+ δ
∫ ∞

−y
x
−∂E[g2|g1 = x]n[x : 0,Σg1 ]

∂x
dx

+ δ2
∫ ∞

−y
x

[
∂

∂x
{−E[g3|g1 = x]n[x : 0,Σg1 ]}

+
1

2

∂2

∂x2
{E[g22|g1 = x]n[x : 0,Σg1 ]}

]
dx+ · · · .

These are exactly equivalent to the formulae by our simple inversion technique

for the characteristic function. Hence we have confirmed the assertion. æ

æ

6.3 The Validity in the Term Structure Model

Next, we shall show the validity of our method in an arbitrage-free pricing model

based on a family of the instantaneous forward rates processes whch obeys the

stochastic integral equation.

f (ε)(s, t) = f(0, t) + ε2
∫ s

0

[
n∑

i=1

σi(f
(ε)(v, t), v, t)

∫ t

v
σi(f

(ε)(v, y), v, y)dy

]
dv

+ ε
∫ s

0

n∑
i=1

σi(f
(ε)(v, t), v, t)dw̃i(v), (1.119)

where 0 < ε ≤ 1 and 0 ≤ s ≤ t ≤ T ≤ T̄ . The volatility function σi(f
(ε)(s, t), s, t)

depends not only on s and t, but also on f (ε)(s, t) in the general case.

First, we make the follwing two assumptions.

Assumption I : The volatility functions {σi(f (ε)(s, t), s, t)} are non-negative,

bounded, Lipschitz continuous, and smooth in its first argument, and all derivatives

are bounded uniformly in ε, where f (ε)(s, t) are properly defined in (ε, s, t, f (ε)(s, t))

∈ (0, 1]× {0 < s ≤ t ≤ T} × R1. The initial forward rates f(0, t) are also Lipschitz

continuous with respect to t.

Assumption II : For any 0 < t ≤ T,

Σt =
∫ t

0

n∑
i=1

σ
(0)
i (v, t)2dv > 0, (1.120)
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where

σ
(0)
i (v, t) = σi(f

(ε)(v, t), v, t)|ε=0.

The conditions we have made in Assumption I can exclude the possiblity of ex-

plosions for the solution of (1.119) 1 . They are quite strong and could be relaxed

considerably, which may be interesting from the view of stochastic analysis. For

practical purposes, however, we can often use the truncation arguments as an ex-

ample given by Heath, Jarrow, and Morton (1992). Assumption II ensures the key

condition of non-degeneracy of the Malliavin-covariance in our problem, which is

essential for the validity of the asymptotic expansion approach as we shall see in the

following derivations. Under these assumptions we can get the stochastic expansions

of the forward rates and spot interest rates processes. We show this in the follwing

two steps.

[Step 1] : We set n = 1 and ε = 1 in (1.119) in Step 1. The starting point

of our discussion is the result by Morton (1989) on the existence and uniqueness of

the solution of the stochastic integral equation (1.119) for forward rate processes.

Theorem 1.6 : Under Assumption I, there exists a jointly continuous process

{f (ε)(s, t), 0 ≤ s ≤ t ≤ T} satisfying (1.119) with ε = 1. There is at most one

solution of (1.119) with ε = 1.

We shall consider the H−derivatives of the forward rate processes {f (1)(s, t)}.
For any h ∈ H, we successively define a sequence of random variables {ξ(n)(s, t)} by

the integral equation:

ξ(n+1)(s, t) =
∫ s

0

[
∂σ(f (1)(v, t), v, t)

∫ t

v
σ(f (1)(v, y), v, y)dyξ(n)(v, t)

]
dv

+
∫ s

0

[
σ(f (1)(v, t), v, t)

∫ t

v
∂σ(f (1)(v, y), v, y)ξ(n)(v, y)dy

]
dv

+
∫ s

0
∂σ(f (1)(v, t), v, t)ξ(n)(v, t)dw̃(v)

+
∫ s

0
σ(f (1)(v, t), v, t)ḣvdv (1.121)

1 For example, Morton (1989) has shown that there does not exist any meaningful solution when
the volatility function is proportional to the forward rate process.
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where the initial condition is given by ξ(0)(s, t) = 0. Then we have the next result

by using the standard method in stochastic analysis.

Lemma 1.7 : For any p > 1 and 0 ≤ s ≤ t ≤ T,

E[|ξ(n)(s, t)|p] <∞ , (1.122)

and as n→ ∞
E[ sup

0≤s≤t≤T
|ξ(n+1)(s, t)− ξ(n)(s, t)|2] → 0 . (1.123)

Proof. [i] We use the induction argument for n. We have (1.122) when n = 1

because σ(·) is bounded and ḣv is a square-integrable function in (1.121). Suppose

(1.122) hold for n = m. Then there exist positive constants Mi(i = 1, · · · , 4) such

that

|ξ(m+1)(s, t)|p ≤ M1

∫ s

0
|ξ(m)(v, t)|pdv +M2[ sup

0≤u≤s
|
∫ u

0
ξ(m)(v, t)dw̃(v)|]p

+M3

∫ s

0

∫ t

v
|ξ(m)(v, y)|pdydv +M4[

∫ s

0
|ḣv|2dv]p/2 . (1.124)

By a (local) martingale inequality (e.g. Theorem III-3.1 of Ikeda and Watanabe

(1989)), the expectation of the second term on the right hand side of (1.124) is less

than

M
′

3E[
∫ s

0
|ξ(m)(v, t)|2dv]p/2 ≤M

′′

3

∫ s

0
E[|ξ(m)(v, t)|]pdv ,

where M
′
3 and M

′′
3 are positive constants. Because ḣv is square-integrable, we

have (1.122) when n = m+ 1.

[ii] From (1.121), there exist positive constants Mi(i = 5, 6, 7) such that for

0 ≤ s ≤ t,

|ξ(n+1)(s, t)− ξ(n)(s, t)|2 ≤ M5[
∫ s

0
|ξ(n)(v, t)− ξ(n−1)(v, t)|dv]2 (1.125)

+ M6[
∫ s

0

∫ t

v
|ξ(n)(v, t)− ξ(n−1)(v, t)|dydv]2

+ M7[
∫ s

0
∂σ(f (1)(v, t), v, t)|ξ(n)(v, t)− ξ(n−1)(v, t)|dw̃(v)]2

≡
3∑

i=1

I
(n)
i (s, t) ,
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where we have defined I
(n)
i (s, t) by the last equality. By using the Cauchy-

Schwartz inequality,

E[ sup
0≤u≤s

I
(n)
1 (u, t)] ≤M5s

∫ s

0
E[|ξ(n)(v, t)− ξ(n−1)(v, t)|2]dv .

By repeating the above argument to the second term of (1.125), we have

I
(n)
2 (u, t) ≤ M6u

∫ u

0
[
∫ t

v
|ξ(n)(v, y)− ξ(n−1)(v, y)|dy]2dv (1.126)

≤ M6ut
∫ u

0

∫ t

v
|ξ(n)(v, y)− ξ(n−1)(v, y)|2dydv .

Then

E[ sup
0≤u≤s

I
(n)
2 (u, t)] ≤M6st

∫ s

0

∫ t

v
E[|ξ(n)(v, y)− ξ(n−1)(v, y)|2]dydv . (1.127)

For the third therm of (1.125), we have

E[ sup
0≤u≤s

I
(n)
3 (u, t)] ≤M

′

7

∫ s

0
E[|ξ(n)(v, t)− ξ(n−1)(v, t)|2]dv (1.128)

because of the boundedness of ∂σ(·), where M ′
7 is a positive constant. By using

(1.126), (1.127), and (1.128), we have

E[ sup
0≤u≤s

|ξ(n+1)(u, t)− ξ(n)(u, t)|2] ≤ M8

(∫ s

0
E[ sup

0≤v≤u
|ξ(n)(v, t)− ξ(n−1)(v, t)|2]du

+
∫ s

0

∫ t

u
E[ sup

0≤v≤u
|ξ(n)(v, y)− ξ(n−1)(v, y)|2]dydu

)

where M8 is a positive constant. By defining a sequence of {u(n)(s, t)} by

u(n+1)(s, t) = E[ sup
0≤u≤s

|ξ(n+1)(u, t)− ξ(n)(u, t)|2] ,

we have the relation

u(n+1)(s, t) ≤M9

∫ s

0
[
∫ t

u
u(n)(u, y)dy + u(n)(u, t)]du ,

where M9 is a positive constant. If we have an inequality

u(n+1)(s, t) ≤ 1

(n+ 1)!
[M9(t+ 1)s]n+1 , (1.129)
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we can show (1.123) as n → +∞. We use the induction argument for n ≥ 1.

When n = 1, there exists a positive constant M9 such that

u(1)(s, t) = E[ sup
0≤u≤s

|ξ(1)(u, t)− ξ(0)(u, t)|2]

= E[ sup
0≤u≤s

|
∫ s

0
σ(f (1)(u, t), u, t)ḣvdu|2]

≤ M9(1 + t)s

because σ(·) is bounded and ḣv is square- integrable. Suppose (1.129) hold for

n = m. Then

u(m+1)(s, t) ≤ M9

∫ s

0
[
∫ t

u
u(m)(u, y)dy + u(m)(u, t)]du

≤ M9

∫ s

0
[
∫ t

u
Mm

9 (t+ 1)m
sm

m!
dy +Mm

9 (t+ 1)m
sm

m!
]du

≤ Mm+1
9 (t+ 1)m+1 sm+1

(m+ 1)!
.

Because of (1.123), we have

∞∑
n=1

P{ sup
0≤s≤t≤T

|ξ(n+1)(u, t)− ξ(n)(u, t)| > 1

2n
}

≤
∞∑
n=1

1

n!
[4M9(T + 1)s]n < +∞ .

Then by the Borel-Cantelli lemma, the sequence of random variables {ξ(n)(s, t)}
converges uniformly on 0 ≤ s ≤ t ≤ T. Hence we can establish the existence of the

H−derivative of f (1)(s, t), which is given by the solution of the stochastic integral

equation:

Dhf
(1)(s, t) =

∫ s

0

[
∂σ(f (1)(v, t), v, t)

∫ t

v
σ(f (1)(v, y), v, y)dyDhf

(1)(v, t)
]
dv

+
∫ s

0

[
σ(f (1)(v, t), v, t)

∫ t

v
∂σ(f (1)(v, y), v, y)Dhf

(1)(v, y)dy
]
dv
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+
∫ s

0
∂σ(f (1)(v, t), v, t)Dhf

(1)(v, t)dw̃(v)

+
∫ s

0
σ(f (1)(v, t), v, t)ḣvdv . (1.130)

Next, we examine the existence of higer order moments of Dhf
(1)(s, t) satisfying

(1.130). To do this, we prepare the following inequality.

Lemma 1.8 : Suppose for k0 > 0, k1 > 0, AN > 0 and 0 < s ≤ t ≤ T, a function

uN(s, t) satisfies (i) 0 < uN(s, t) ≤ AN and (ii)

uN(s, t) ≤ k0 + k1

[∫ s

0
uN(v, t)dv +

∫ s

0

∫ t

v
uN(v, y)dydv

]
. (1.131)

Then,

uN(s, t) ≤ k0e
k1(1+t)s . (1.132)

Proof. By substituting (i) into the right hand side of (1.131), we have

uN(s, t) ≤ k0 + ANk1

[∫ s

0
ds+

∫ s

0

∫ t

v
dydv

]
(1.133)

≤ k0 + ANk1(1 + t)s .

By repeating the substitution of (1.133) into the right hand side of (1.131), we

have

uN(s, t) ≤ k0
n∑

k=0

1

k!
[k1(1 + t)]k +

1

(n+ 1)!
AN [k1(1 + t)s]n+1 .

Then we have (1.132) by taking n→ +∞.

In order to use Lemma 1.8, we consider the truncated random variable

ζN(s, t) =
[
Dhf

(1)(s, t)
]
IN(s, t) , (1.134)

where IN(s, t) = 1 if

sup0≤v≤s,v≤y≤t|Dhf
(1)(v, y)| ≤ N

and IN(s, t) = 0 otherwise. By using the boundedness conditions in Assumption

I and ḣs being square-integrable, we can show that there exist positive constants

Mi(i = 10, · · · , 13) such that
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|ζN(s, t)|p ≤ M10

∫ s

0
|ζN(v, t)|pdv +M11|

∫ s

0
ζN(v, t)dw̃(v)|p (1.135)

+ M12

∫ s

0

∫ t

v
|ζN(v, y)|pdydv +M13|

∫ s

0
σ(v, t)ḣvdv|p .

≡
4∑

i=1

JN
i (s, t) ,

where we have defined JN
i (s, t)(i = 1, · · · , 4) by the last equality. By using a

(local) martingale inequality (e.g. Theorem III-3.1 of Ikeda and Watanabe (1989)),

we have

E[JN
2 (s, t)] ≤ M

′

11E[
∫ s

0
|ζN(v, t)|2dv]p/2 (1.136)

≤ M
′′

11E[
∫ s

0
|ζN(v, t)|pdv] ,

where M
′
11 and M

′′
11 are positive constants. Also by the Cauchy-Schwartz in-

equality, we have

JN
4 (s, t) ≤M13[

∫ s

0
σ(f (1)(v, t), v, t)2dv

∫ s

0
|ḣv|2dv]p/2 , (1.137)

which is bounded because σ(·) is bounded and ḣv is square-integrable. If we set

uN(s, t) = E[|ζN(s, t)|p], then we can directly apply Lemma1.8. By taking the limit

of the expectation function uN(s, t) as N → ∞, we have the following result.

Lemma 1.9 : For any p > 1,

E[|Dhf
(1)(s, t)|p] < +∞ , (1.138)

By this lemma and the equivalence of two norms stated in Step 1, we can establish

that

f (1)(s, t) ∈ ∩1<p<+∞D1
p .

Then by repeating the above procedure, we can derive the higher orderH−derivatives

of f (1)(s, t). Hence we can obtain the following result.

Theorem 1.7 : Suppose Assumption I hold for the forward rate processes. Then

for 0 < s ≤ t ≤ T

f (1)(s, t) ∈ D∞ . (1.139)
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[Step 2] : Let a stochastic process {Y (ε)(s, t), 0 ≤ s ≤ t ≤ T} be the solution

of the stochastic integral equation:

Y (ϵ)(s, t) = 1 + ε2
∫ s

0

[
∂σ(f (ε)(v, t), v, t)

∫ t

v
σ(f (ε)(v, y), v, y)dy

]
Y (ε)(v, t)dv

+ ε
∫ s

0
∂σ(f (ε)(v, t), v, t)Y (ε)(v, t)dw̃(v) . (1.140)

Since the coefficients of Y (ε)(s, t) on the right hand side of (1.140) are bounded

by Assumption I, we can obtain the next result.

Lemma 1.10 : For any 1 < p < +∞, 0 < ε ≤ 1, and 0 < s ≤ t ≤ T,

E[|Y (ε)(s, t)|p] + E[|Y (ε)−1(s, t)|p] < +∞ . (1.141)

Proof. : We define a sequence of random variables {Y (ε)
n (s, t)} by

Y
(ϵ)
n+1(s, t) = 1 + ε2

∫ s

0

[
∂σ(f (ε)(v, t), v, t)

∫ t

v
σ(f (ε)(v, y), v, y)dy

]
Y (ε)
n (v, t)dv

+ ε
∫ s

0
∂σ(f (ε)(v, t), v, t)Y (ε)

n (v, t)dw̃(v) ,

where the initial condition is given by Y
(ε)
0 (s, t) = 1. Then by the same argument as

in the proof of Lemma 1.7, we have

E[|Y (ε)
n (s, t)|p] <∞ ,

and as n→ ∞

E[ sup
0≤s≤t≤T

|Y (ε)
n+1(s, t)− Y (ε)

n (s, t)|2] → 0 .

Hence we can establish the existence of the random variables {Y (ε)(s, t)} satis-

fying (1.140). Then by the same argument as (1.134)-(1.137), we have

E[|Y (ε)(s, t)|p] <∞

for any p > 1. Let Z(ε)(s, t) = Y (ε)−1(s, t). Then we can show that

d[Z(ε)(s, t)Y (ε)(s, t)] = 0
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and

Z(ϵ)(s, t) = 1 − ε2
∫ s

0

[
∂σ(f (ε)(v, t), v, t)

∫ t

v
σ(f (ε)(v, y), v, y)dy

]
Z(ε)(v, t)dv

− ε
∫ s

0
∂σ(f (ε)(v, t), v, t)Z(ε)(v, t)dw̃(v)

by using Itô’s formula and Z(ε)(0, t) = 1. Hence by the similar argument as on

Y (ε)(s, t), we can establish

E[|Z(ε)(s, t)|p] <∞

for any p > 1.

Now we consider the asymptotic behavior of a functional

F (ε)(s, t) =
1

ε
[f (ε)(s, t)− f (0)(0, t)] (1.142)

as ε→ 0. By using the stochastic process {Y (ε)(s, t)}, the H−derivative of F (ε)(s, t)

can be represented as

DhF
(ε)(s, t) =

∫ s

0
Y (ε)(s, t)Y (ε)−1(v, t)C(ε)(v, t)dv ,

where

C(ϵ)(v, t) = σ(f (ε)(v, t), v, t)ḣv + εσ(f (ε)(v, t), v, t)

×
∫ t

v
∂σ(f (ε)(v, y), v, y)Dhf

(ε)(v, y)dy .

Let

a(ε)v (s, t) = Y (ε)(s, t)Y (ε)−1(v, t)C(ε)(v, t) ,

and

η(ε)c (s, t) = c
∫ s

0
|εY (ε)(s, t)Y (ε)−1(v, t)σ(f (ε)(v, t), v, t) (1.143)

×
∫ t

v
∂σ(f (ε)(v, y), v, y)Dhf

(ε)(v, y)dy|2dv

+ c
∫ s

0
|Y (ε)(s, t)Y (ε)−1(v, t)σ(f (ε)(v, t), v, t)− σ(f (0)(v, t), v, t)|2dv .

Then the condition in Assumption II is equivalent to the non-degeneracy condi-

tion:

Σt =
∫ s

0
a(0)v (v, t)2 dv > 0
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because Y (0)(v, t) = 1 for 0 ≤ v ≤ s ≤ t. The next lemma shows that the truncation

by η(ε)c (s, t) is negligible.

Lemma 1.11 : For 0 < s ≤ t ≤ T and any n ≥ 1,

lim
ε→0

ε−nP{|η(ε)c (s, t)| > 1

2
} = 0 . (1.144)

Proof. : We re-write (1.143) as η(ε)c (s, t) = η
(ε)
1 + η

(ε)
2 . By using Assumption I,

Lemma1.9, and the Markov inequality, it is straightforward to show that for any

p > 1 and c1 > 0 there exists a positive constant c2 such that

P{|η(ε)1 | > c1} ≤ c2ε
2p . (1.145)

By the Lipschitz continuity of the volatility function σ(·), there exist positive

constants M14 and M15 such that

|η(ε)2 | ≤M14|f (ε)(s, t)− f (0)(0, t)|+M15|Y (ε)(s, t)Y (ε)−1(v, t)− 1| . (1.146)

Then by Lemma 10.5 of Ikeda and Watanabe (1989), for a positive c3 and suffi-

ciently small ε > 0, there exist positive constants c4 and c5 such that

P{ sup
0≤s≤t≤T

|f (ε)(s, t)− f (0)(0, t)| > c3} ≤ c4exp(−c5ε−2) . (1.147)

For the second term of the right hand side of (1.146) for ηε2, we re-write

η
(ε)
22 =M15Y

(ε)(v, t)−1|Y (ε)(s, t)− Y (ε)(v, t)| ,

where

Y (ε)(s, t)− Y (ε)(v, t) = ε2
∫ s

v

[
∂σ(f (ε)(u, t), u, t)

∫ t

u
σ(f (ε)(u, y), u, y)dy

]
×

Y (ε)(u, t)du+ ε
∫ s

v
∂σ(f (ε)(u, t), u, t)Y (ε)(u, t)dw̃(u) .

Then by Lemma1.10, for any p ≥ 1 and c6 > 0 there exists a positive constant c7

such that

P{|η(ε)22 | > c6} ≤ c7ε
2p . (1.148)
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By using (1.145), (1.147), and (1.148), we have (1.144).

Finally, by the similar argument as in the Black-Sholes’ economy, we shall obtain

a truncated version of the non-degeneracy condition of the Malliavin-covariance for

the spot interest rates and forward rates processes, which is the key step to show

the validity.

Lemma 1.12 : Under Assumptions I and II, the Malliavin-covariance σ(F (ε)) of

F (ε) is uniformly non-degenerate in the sense that there exists c0 > 0 such that for

any c > c0 and any p > 1

sup
ε

E[I(|η(ε)c | ≤ 1)σ(F (ε))−p] < +∞ , (1.149)

where I(·) is the indicator function.

Hence the validity of the asymptotic expansions of the distribution function or

the density function of a spot rate and an instantaneous forward rate is obtained

under the assumptions I and II because we have proved that a set of conditions

in Theorem 2.2 of Yoshida(1992) is satisfied. That is, let ψ : R → R be a smooth

function such that 0 ≤ ψ(x) ≤ 1, ψ(x) = 1 for |x| ≤ 1
2
, and ψ(x) = 0 for |x| ≥ 1

as before. Then the composite functional ψ(η(ε))IA(F
(ε)) is well-defined for any

A ∈ B in the sense that it is in D̃
−∞

, where B is the Borel σ−field in R and

IA(·) is the indicator function. Hence by using Theorem 2.2 of Yoshida(1992), it

has a proper asymptotic expansion as ε → 0 uniformly in D̃
−∞

. Then we have a

proper asymptotic expansion for the density function of our interest by taking the

expectation operations.

Also it is straightforward to obtain the similar non-degeneracy conditions as

Σg1 > 0 for the discounted coupon bond price process and the average interest rate

process given before.

Finally, we mention that the same argument as in the Black-Sholes economy

holds to show the equivalence between the formulae by the Schwartz’s type dis-

tributiion theory for the generalized Wiener functionals and the formulae by the

simple inversion technique for the characteristic functions of random variables.
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æ

7 Appendix

7.1 The Proof of Lemma 1.1

In this subsection, we present the proof of the formulae appearing in Lemma 1.1.

We use the following notation in the proof.

δ(u, s) =

{
1 if u = s
0 otherwise

(1)

E

[∫ t

0

[∫ s

0
q2(u)dw̃(u)

]
q3(s)dw̃(s)|

∫ T

0
q1(u)dw̃(u) = x

]

E

[∫ t

0

[∫ s

0
q2(u)dw̃(u)

]
q3(s)dw̃(s)|

∫ T

0
q1(u)dw̃(u) = x

]

=
∫ t

0

∫ s

0
q2(u)q3(s)E

[
dw̃(u)dw̃(s)|

∫ T

0
q1(u)dw̃(u) = x

]

=
∫ t

0

∫ s

0
q2(u)q3(s)

[
{δ(u, s)ds− dsq1(s)Σ

−1
g1
q1(u)du}

+ q1(s)dsΣ
−1
g1
x2Σ−1

g1
q1(u)du

]
= − 1

Σg1

∫ t

0
q3(s)q1(s)

∫ s

0
q2(u)q1(u)duds

+ x2
1

Σ2
g1

∫ t

0
q3(s)q1(s)

∫ s

0
q2(u)q1(u)duds

(2)

E

[[∫ t

0
q2(u)dw̃(u)

] [∫ t

0
q3(u)dw̃(u)

]
|
∫ T

0
q1(u)dw̃(u) = x

]
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E

[[∫ t

0
q2(u)dw̃(u)

] [∫ t

0
q3(u)dw̃(u)

]
|
∫ T

0
q1(u)dw̃(u) = x

]

=
∫ t

0

∫ t

0
q2(u)q3(s)E

[
dw̃(u)dw̃(s)|

∫ T

0
q1(u)dw̃(u) = x

]

=
∫ t

0

∫ t

0
q2(u)q3(s)

{
δ(u, s)du+ q1(u)duΣ

−1
g1
(x2 − Σg1)Σ

−1
g1
q1(s)ds

}
= − 1

Σg1

[∫ t

0
q2(u)q1(u)du

] [∫ t

0
q3(u)q1(u)du

]
+
∫ t

0
q3(u)q2(u)du

+ x2
1

Σ2
g1

[∫ t

0
q2(u)q1(u)du

] [∫ t

0
q3(u)q1(u)du

]

Note: We use the following relation in (1) and (2).

E

[
dw̃(u)dw̃(s)|

∫ T

0
q1(u)dw̃(u) = x

]
= Cov. [dw̃(u), dw̃(s)|x] + E [dw̃(u)|x]E [dw̃(s)|x]

=
[
δ(u, s)du− q1(u)duΣ

−1
g1
q1(s)ds

]
+
[
Σ−1

g1
xq1(u)du

] [
Σ−1

g1
xq1(s)ds

]

(3)

E

[∫ t

0

[∫ s

0
q2(u)dw̃(u)

] [∫ s

0
q3(u)dw̃(u)

]
q4(s)dw̃(s)|

∫ T

0
q1(u)dw̃(u) = x

]

We first note that, for s > u and s > v ,

E

[
dw̃(u)dw̃(v)dw̃(s)|

∫ T

0
q1(u)dw̃(u) = x

]
= Cov. [dw̃(u), dw̃(v)|x]E [dw̃(s)|x] + Cov. [dw̃(u), dw̃(s)|x]E [dw̃(v)|x]

+ Cov. [dw̃(v), dw̃(s)|x]E [dw̃(u)|x] + E [dw̃(u)|x]E [dw̃(v)|x]E [dw̃(s)|x]

=
[
δ(u, v)du− q1(u)duΣ

−1
g1
q1(v)dv

] [
Σ−1

g1
xq1(s)ds

]
+

[
δ(u, s)ds− q1(u)duΣ

−1
g1
q1(s)ds

] [
Σ−1

g1
xq1(v)dv

]
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+
[
δ(v, s)ds− q1(v)dvΣ

−1
g1
q1(s)ds

] [
Σ−1

g1
xq1(u)du

]
+

[
Σ−1

g1
xq1(u)du

] [
Σ−1

g1
xq1(v)dv

] [
Σ−1

g1
xq1(s)ds

]
= x3

[
Σ−3

g1
q1(u)q1(v)q1(s)dudvds

]
+ x

[
δ(u, v)Σ−1

g1
q1(s)duds

]
− 3x

[
Σ−2

g1
q1(u)q1(v)q1(s)dudvds

]
.

Hence, we can conclude

E

[∫ t

0

[∫ s

0
q2(u)dw̃(u)

] [∫ s

0
q3(u)dw̃(u)

]
q4(s)dw̃(s)|

∫ T

0
q1(u)dw̃(u) = x

]

=
∫ t

0

∫ s

0

∫ s

0
q2(u)q3(v)q4(s)E

[
dw̃(u)dw̃(v)dw̃(s)|

∫ T

0
q1(u)dw̃(u) = x

]

= x

[
1

Σg1

∫ t

0

[∫ s

0
q2(u)q3(u)du

]
q4(s)q1(s)ds

−3
1

Σ2
g1

∫ t

0

[∫ s

0
q2(u)q1(u)du

] [∫ s

0
q3(u)q1(u)du

]
q4(s)q1(s)ds

]

+ x3
[

1

Σ3
g1

∫ t

0

[∫ s

0
q2(u)q1(u)du

] [∫ s

0
q3(u)q1(u)du

]
q4(s)q1(s)ds

]
.

(4)

E

[∫ t

0

∫ s

0

[∫ v

0
q2(u)dw̃(u)

]
q3(v)dw̃(v)q4(s)dw̃(s)|

∫ T

0
q1(u)dw̃(u) = x

]

By using the formula of E
[
dw̃(u)dw̃(v)dw̃(s)|

∫ T
0 q1(u)dw̃(u) = x

]
derived in (3),

we obtain

E

[∫ t

0

∫ s

0

[∫ v

0
q2(u)dw̃(u)

]
q3(v)dw̃(v)q4(s)dw̃(s)|

∫ T

0
q1(u)dw̃(u) = x

]

=
∫ t

0

∫ s

0

∫ v

0
q2(u)q3(v)q4(s)E

[
dw̃(u)dw̃(v)dw̃(s)|

∫ T

0
q1(u)dw̃(u) = x

]
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=
∫ t

0

∫ s

0

∫ v

0
q2(u)q3(v)q4(s)

[
x3Σ−3

g1
q1(u)q1(v)q1(s)dudvds− 3xΣ−2

g1
q1(u)q1(v)q1(s)dudvds

]
= −3x

[
1

Σ2
g1

∫ t

0
q4(s)q1(s)

∫ s

0
q3(v)q1(v)

∫ v

0
q2(u)q1(u)dudvds

]

+ x3
[

1

Σ3
g1

∫ t

0
q4(s)q1(s)

∫ s

0
q3(u)q1(u)

∫ v

0
q2(u)q1(u)dudvds

]
.

(5)

E

[[∫ t

0

[∫ s

0
q2(u)dw̃(u)

]
q3(s)dw̃(s)

]2
|
∫ T

0
q1(u)dw̃(u) = x

]

We first note that, for s > v and s
′
> u ,

E

[
dw̃(s)dw̃(s

′
)dw̃(v)dw̃(u)|

∫ T

0
q1(u)dw̃(u) = x

]
= Cov.

[
dw̃(s), dw̃(s

′
)|x
]
Cov. [dw̃(v), dw̃(u)|x]

+ Cov. [dw̃(s), dw̃(v)|x]Cov.
[
dw̃(s

′
), dw̃(u)|x

]
+ Cov. [dw̃(s), dw̃(u)|x]Cov.

[
dw̃(s

′
), dw̃(v)|x

]
+ Cov.

[
dw̃(s), dw̃(s

′
)|x
]
E [dw̃(u)|x]E [dw̃(v)|x]

+ Cov. [dw̃(s), dw̃(v)|x]E
[
dw̃(s

′
)|x
]
E [dw̃(u)|x]

+ Cov. [dw̃(s), dw̃(u)|x]E
[
dw̃(s

′
)|x
]
E [dw̃(v)|x]

+ Cov.
[
dw̃(s

′
), dw̃(v)|x

]
E [dw̃(s)|x]E [dw̃(u)|x]

+ Cov.
[
dw̃(s

′
), dw̃(u)|x

]
E [dw̃(s)|x]E [dw̃(v)|x]

+ Cov. [dw̃(v), dw̃(u)|x]E [dw̃(s)|x]E
[
dw̃(s

′
)|x
]

+ E [dw̃(s)|x]E
[
dw̃(s

′
)|x
]
E [dw̃(v)|x]E [dw̃(u)|x]

=
∑

3terms

[
δ(i, j)di− q1(i)diΣ

−1
g1
q1(j)dj

] [
δ(k, l)dk − q1(k)dkΣ

−1
g1
q1(l)dl

]
+

∑
6terms

[
δ(i, j)di− q1(i)diΣ

−1
g1
q1(j)dj

] [
Σ−1

g1
xq1(k)dk

] [
Σ−1

g1
xq1(l)dl

]
+

[
Σ−1

g1
xq1(s)ds

] [
Σ−1

g1
xq1(s

′
)ds

′] [
Σ−1

g1
xq1(v)dv

] [
Σ−1

g1
xq1(u)du

]
= q1(u)q1(v)q1(s

′
)q1(s)dudvds

′
ds
[
Σ−4

g1
x4 − 6Σ−3

g1
x2 + 3Σ−2

g1

]
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+ δ(v, s
′
)q1(u)q1(s)duds

[
Σ−2

g1
x2 − Σ−1

g1

]
+ δ(v, u)q1(s

′
)q1(s)ds

′
ds
[
Σ−2

g1
x2 − Σ−1

g1

]
+ δ(u, s)q1(v)q1(s

′
)dvds

′ [
Σ−2

g1
x2 − Σ−1

g1

]
+ δ(s, s

′
)q1(u)q1(v)dudv

[
Σ−2

g1
x2 − Σ−1

g1

]
+ δ(v, s

′
)dvδ(u, s)du

+ δ(u, v)duδ(s, s
′
)ds.

where

i, j, k, l ∈ {s, s′ , v, u}

and

i ̸= j ̸= k ̸= l.

Here, we use δ(v, s) = 0 and δ(u, s
′
) = 0 under our assumption, s > v and

s
′
> u . We also note that δ(v, s

′
)δ(u, s) = 0 under our assumption, s > v and

s
′
> u .

Hence,

E

[[∫ t

0

[∫ s

0
q2(u)dw̃(u)

]
q3(s)dw̃(s)

]2
|
∫ T

0
q1(u)dw̃(u) = x

]

=
∫ t

0

∫ t

0

∫ s

0

∫ s
′

0
q3(s)q2(v)q3(s

′
)q2(u)×

E

[
dw̃(s)dw̃(s

′
)dw̃(v)dw̃(u)|

∫ T

0
q1(u)dw̃(u) = x

]

=
∫ t

0

∫ t

0

∫ s

0

∫ s
′

0
[q1(s)q3(s)]

[
q1(s

′
)q3(s

′
)
]
[q1(v)q2(v)] [q1(u)q2(u)] dudvds

′
ds[

Σ−4
g1
x4 − 6Σ−3

g1
x2 + 3Σ−2

g1

]
+

∫ t

0

∫ s

0

∫ v

0
[q1(s)q3(s)] [q2(v)q3(v)] [q1(u)q2(u)] dudvds

[
Σ−2

g1
x2 − Σ−1

g1

]
+

∫ t

0

∫ s

0
[q1(s)q3(s)]

2 q2(u)
2duds

[
Σ−2

g1
x2 − Σ−1

g1

]
+

∫ t

0

∫ s

0

∫ s

0
[q1(s)q3(s)] [q1(v)q2(v)] [q1(u)q2(u)] dudvds

[
Σ−2

g1
x2 − Σ−1

g1

]
+

∫ t

0

∫ s
′

0

∫ u

0

[
q1(s

′
)q3(s

′
)
]
[q2(u)q3(u)] [q1(v)q2(v)] dvduds

′ [
Σ−2

g1
x2 − Σ−1

g1

]
+

∫ t

0

∫ s

0
q3(s)

2q2(u)
2duds

=
[∫ t

0
Q31(s)

∫ s

0
Q21(u)duds

]2 [ 4

Σ2
g1

x4 − 6

Σ3
g1

x2 +
3

Σ2
g1

]
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+
[∫ t

0
Q31(s)

∫ s

0
Q32(v)

∫ v

0
Q21(u)dudvds

] [
2

Σ2
g1

x2 − 2

Σg1

]

+
[∫ t

0
Q31(s)

2
∫ s

0
Q22(u)duds

] [
1

Σ2
g1

x2 − 1

Σg1

]

+

[∫ t

0
Q33(s)

[∫ s

0
Q21(u)du

]2
ds

] [
1

Σ2
g1

x2 − 1

Σg1

]

+
∫ t

0
Q33(s)

∫ s

0
Q22(u)duds

where

Qij(s) ≡ qi(s)qj(s).

7.2 Lemma 1.1’

In this subsection, we show the multi-dimensional version of the formulae appearing

in Lemma 1.1.

Lemma 1.1’ (1) Let ⃗̃wt be N dimensional Brownian motion. Let x⃗ be

k dimensional vector. Suppose q1(t) be R1 7→ Rk×N non-stochastic function.

Suppose also q2(t) and q3(t) R1 7→ Rm×N non-stochastic functions.

Then,

E

[∫ t

0

[∫ s

0
q2(u)d ⃗̃wu

]⊤
q3(s)d ⃗̃ws|

∫ T

0
q1(u)d ⃗̃wu = x⃗

]

= trace
∫ t

0

∫ s

0
Σ−1

g1
q1(s)q3(s)

⊤q2(u)q1(u)
⊤Σ−1

g1

[
x⃗x⃗⊤ − Σg1

]
duds.

(2) Let ⃗̃wt be N dimensional Brownian motion. Let x⃗ be k dimensional

vector. Suppose q1(t) be R1 7→ Rk×N non-stochastic function. Suppose also q⃗2(t)

and q⃗3(t) R1 7→ RN non-stochastic functions.

Then,

E

[[∫ t

0
q⃗2(u)d ⃗̃wu

] [∫ t

0
q⃗3(s)d ⃗̃ws

]
|
∫ T

0
q1(u)d ⃗̃wu = x⃗

]

=
∫ t

0
q⃗2(u)q⃗3(u)

⊤du+
[∫ t

0
q⃗2(u)q1(u)

⊤du
]
Σ−1

g1

[
x⃗x⃗⊤ − Σg1

]
Σ−1

g1

[∫ t

0
q1(s)q⃗3(s)

⊤ds
]
.
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(3) Let ⃗̃wt be N dimensional Brownian motion. Let x⃗ be k dimensional

vector. Suppose q1(t) be R1 7→ Rk×N non-stochastic function. Suppose also q⃗2(t) ,

q⃗3(t) and q⃗4(t) be R1 7→ RN non-stochastic functions.

Then,

E

[∫ t

0

[∫ s

0
q⃗2(u)d ⃗̃wu

] [∫ s

0
q⃗3(u)d ⃗̃wu

]
q⃗4(s)d ⃗̃ws|

∫ T

0
q1(u)d ⃗̃wu = x⃗

]

=
∫ t

0

∫ s

0

∫ s

0

[
q⃗2(v)q⃗1(v)

⊤Σ−1
g1

[
x⃗x⃗⊤ − Σg1

]
Σ−1

g1
q1(u)q⃗3(u)

⊤q⃗4(s)q1(s)
⊤Σ−1

g1
x⃗

− q⃗4(s)q1(s)
⊤Σ−1

g1
q1(v)

[
q⃗3(v)

⊤q⃗2(u) + q⃗2(v)
⊤q⃗3(u)

]
q1(u)

⊤Σ−1
g1
x⃗
]
dudvds

+
∫ t

0

∫ s

0
q⃗4(s)q1(s)

⊤q⃗2(u)q⃗3(u)
⊤Σ−1

g1
x⃗duds

(4) Let ⃗̃wt be N dimensional Brownian motion. Let x⃗ be k dimensional

vector. Suppose q1(t) be R1 7→ Rk×N non-stochastic function. Suppose also q⃗2(t) ,

q⃗3(t) and q⃗4(t) be R1 7→ RN non-stochastic functions.

Then,

E

[∫ t

0

∫ s

0

[∫ v

0
q⃗2(u)d ⃗̃wu

]
q⃗3(v)d ⃗̃wv q⃗4(s)d ⃗̃ws|

∫ T

0
q1(u)d ⃗̃wu = x⃗

]

=
∫ t

0

∫ s

0

∫ v

0

[
q⃗2(u)q1(u)

⊤Σ−1
g1
x⃗
] [
x⃗⊤Σ−1

g1
q1(v)q⃗3(v)

⊤
] [
q⃗4(s)q1(s)

⊤Σ−1
g1
x⃗
]
dudvds

−
∫ t

0

∫ s

0

∫ v

0

[
q⃗2(u)q1(u)

⊤
] [
Σ−1

g1
q1(v)q⃗3(v)

⊤
] [
q⃗4(s)q1(s)

⊤
]
Σ−1

g1
x⃗dudvds

−
∫ t

0

∫ s

0

∫ v

0

[
q⃗3(v)q1(v)

⊤
] [
Σ−1

g1
q1(s)q⃗4(s)

⊤
] [
q⃗2(u)q1(u)

⊤
]
Σ−1

g1
x⃗dudvds

−
∫ t

0

∫ s

0

∫ v

0

[
q⃗4(s)q1(s)

⊤
] [
Σ−1

g1
q1(u)q⃗2(u)

⊤
] [
q⃗3(v)q1(v)

⊤
]
Σ−1

g1
x⃗dudvds

(5) Let ⃗̃wt be N dimensional Brownian motion. Let x⃗ be k dimensional

vector. Suppose q1(t) be R1 7→ Rk×N non-stochastic function. Suppose also q⃗2(t)

and q⃗3(t) be R1 7→ RN non-stochastic functions.
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Then,

E

[[∫ t

0

[∫ s

0
q⃗2(u)d ⃗̃wu

]
q⃗3(s)d ⃗̃ws

]2
|
∫ T

0
q1(u)d ⃗̃wu = x⃗

]

=
∫ t

0

∫ t

0

∫ s

0

∫ v

0

[
q⃗2(u)q1(u)

⊤Σ−1
g1

[
x⃗x⃗⊤ − Σg1

]
Σ−1

g1
q1(s)q⃗3(s)

⊤×

q⃗2(u
′
)q1(u

′
)⊤Σ−1

g1

[
x⃗x⃗⊤ − Σg1

]
Σ−1

g1
q1(v)q⃗3(v)

⊤

− q⃗2(u)q1(u)
⊤Σ−1

g1

[
q1(v)q⃗3(v)

⊤q⃗2(u
′
)q1(u

′
) + q1(v)q⃗2(v)

⊤q⃗3(u
′
)q1(u

′
)⊤
]
×

Σ−1
g1

[
x⃗x⃗⊤ − Σg1

]
Σ−1

g1
q1(s)q⃗3(s)

⊤

− q⃗3(s)q1(s)
⊤Σ−1

g1

[
q1(v)q⃗3(v)

⊤q⃗2(u
′
)q1(u

′
) + q1(u

′
)q⃗2(u

′
)⊤q⃗3(v)q1(v)

⊤
]
×

Σ−1
g1
x⃗x⃗⊤Σ−1

g1
q1(u)q⃗2(u)

⊤
]
du

′
dudvds

+ 2
∫ t

0

∫ s

0

∫ u

0
q⃗3(s)q1(s)

⊤Σ−1
g1

[
x⃗x⃗⊤ − Σg1

]
Σ−1

g1
q1(u

′
)q⃗2(u

′
)⊤q⃗3(u)q⃗2(u)

⊤du
′
duds

+
∫ t

0

∫ s

0
q⃗3(s)q1(s)

⊤Σ−1
g1

[
x⃗x⃗⊤ − Σg1

]
Σ−1

g1
q1(s)q⃗3(s)

⊤q⃗2(u)q⃗2(u)
⊤du

′
duds

+
∫ t

0

[∫ s

0
q⃗2(u)q1(u)

⊤du
]
Σ−1

g1

[
x⃗x⃗⊤ − Σg1

]
Σ−1

g1

[∫ s

0
q1(u)q⃗2(u)

⊤du
]
q⃗3(s)q⃗3(s)

⊤ds

+
∫ t

0

∫ s

0
q⃗3(s)q⃗3(s)

⊤q⃗2(u)q⃗2(u)
⊤duds
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Figure 1.1: Errors in the Expansion around the Normal distribution
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Table 1.1: Plain Vanilla Call Options-Square root process -(vol. = 10% )

Strike price 45 40 35
(1)Monte Carlo 0.5771 2.7226 6.7676
(2)Stochastic Expansion(second) 0.5763 2.7228 6.7640
Diff. Rate% -0.144 0.007 -0.053
(3)Stochastic Expansion(first) 0.5548 2.7398 6.7796
Diff. Rate% -3.865 0.632 0.178

Table 1.2: Plain Vanilla Call Options-Square root process -(vol. = 20% )

Strike price 45 40 35
(1)Monte Carlo 2.0005 4.1841 7.4802
(2)Stochastic Expansion(second) 1.9979 4.1858 7.4855
Diff. Rate% -0.130 0.041 0.071
(3)Stochastic Expansion(first) 1.9460 4.2231 7.5776
Diff. Rate% -2.724 0.932 1.303

Table 1.3: Plain Vanilla Call Options-Square root process -(vol. = 30% )

Strike price 45 40 35
(1)Monte Carlo 3.5347 5.7069 8.6453
(2)Stochastic Expansion(second) 3.5379 5.7105 8.6502
Diff. Rate% 0.091 0.064 0.057
(3)Stochastic Expansion(first) 3.4573 5.7674 8.8191
Diff. Rate% -2.189 1.067 2.010
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Table 1.4: Average Call Options on Equity -Square root process -(T=0.25y)

Strike price 45 40 35
(1)Monte Carlo 0.1559 1.4985 5.2659
(2)Stochastic Expansion 0.1562 1.4983 5.2679
Difference 0.00029 -0.00020 0.00210
Diff. Rate% 0.18 -0.01 0.04

Table 1.5: Average Call Options on Equity-Square root process-(T=0.50y)

Strike price 45 40 35
(1)Monte Carlo 0.5221 2.1758 5.6468
(2)Stochastic Expansion 0.5228 2.1788 5.6516
Difference 0.00078 0.00301 0.00482
Diff. Rate % 0.15 0.14 0.09

Table 1.6: Average Call Options on Equity-Square root process-(T=1.0y)

Strike price 45 40 35
(1)Monte Carlo 1.2802 3.1848 6.3845
(2)Stochastic Expansion 1.2813 3.1873 6.3881
Difference 0.00112 0.00255 0.00362
Diff. Rate % 0.09 0.08 0.06
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Figure 1.2: Errors in the Expansion around the Log-normal distribution
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Table 1.7: Average Call Options on FX-Square root process- (T=0.25y)

Strike price 105 100 95
(1)Monte Carlo 0.0416 1.0217 4.7672
(2)Stochastic Expansion 0.0419 1.0215 4.7698
Difference 0.00031 -0.00025 0.00254
Diff. Rate % 0.75 -0.02 0.05

Table 1.8: Average Call Options on FX-Square root process-(T=0.50y)

Strike price 105 100 95
(1)Monte Carlo 0.1721 1.3625 4.6858
(2)Stochastic Expansion 0.1730 1.3654 4.6931
Difference 0.00090 0.00286 0.00730
Diff. Rate % 0.52 0.21 0.16

Table 1.9: Average Call Options on FX-Square root process-(T=1.0y,Vol.=10%)

Strike price 105 100 95
(1)Monte Carlo 0.4443 1.7700 4.6525
(2)Stochastic Expansion 0.4426 1.7709 4.6585
Difference -0.00166 0.00090 0.00600
Diff. Rate % -0.37 0.05 0.13

Table 1.10: Average Call Options on FX-Square root process(T=1.0y,Vol.=30%)

Strike price 110 100 90
(1)Monte Carlo 2.7995 6.18088 11.7334
(2)Stochastic Expansion 2.8045 6.1881 11.7464
Difference 0.00502 0.007221 0.00130
Diff. Rate % 0.18 0.12 0.11
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Table 1.11: Average Options on FX -Log-normal process- (T=0.25y)

Strike price 105 100 95
(1)Stochastic Expansion(normal)(1st) 0.0384 1.0199 4.7738

Diff. Rate % -15.97 -0.19 0.16
(2)Stochastic Expansion(normal)(2nd) 0.0452 1.0220 4.7650

Diff. Rate % -1.09 -0.02 -0.02
(3)Stochastic Expansion(log-normal)(1st) 0.0434 1.0114 4.7472

Diff. Rate % -5.29 -1.03 -0.40
(4)Stochastic Expansion(log-normal)(2nd) 0.0454 1.0215 4.7657

Diff. Rate % -0.65 -0.03 -0.01
(5)Finite difference(Crank-Nicholson method) 0.0457 1.0216 4.7659

Diff. Rate % 0.01 -0.02 -0.00
(6)Monte Carlo simulation method 0.0457 1.0218 4.7660

Table 1.12: Average Options on FX -Log-normal process- (T=0.50y)

Strike price 105 100 95
(1)Stochastic Expansion(normal)(1st) 0.1620 1.3610 4.7040

Diff. Rate % -11.96 -0.53 0.53
(2)Stochastic Expansion(normal)(2nd) 0.1830 1.3660 4.6800

Diff. Rate % -0.54 -0.16 0.01
(3)Stochastic Expansion(log-normal)(1st) 0.1753 1.3457 4.6483

Diff. Rate % -4.96 -1.67 -0.67
(4)Stochastic Expansion(log-normal)(2nd) 0.1830 1.3655 4.6804

Diff. Rate % -0.54 -0.20 -0.02
(5)Finite difference(Crank-Nicholson method) 0.1831 1.3656 4.6788

Diff. Rate % -0.49 -0.19 -0.01
(6)Monte Carlo simulation method 0.1840 1.3682 4.6793

94



Table 1.13: Average Options on FX -Log-normal process- (T=1.00y,Vol.=10%)

Strike price 105 100 95
(1)Stochastic Expansion(normal)(1st) 0.4180 1.7590 4.6750

Diff. Rate % -10.30 -0.61 0.81
(2)Stochastic Expansion(normal)(2nd) 0.4640 1.7720 4.6410

Diff. Rate % -0.43 -0.12 0.08
(3)Stochastic Expansion(log-normal)(1st) 0.4428 1.7329 4.5773

Diff. Rate % -4.98 -2.13 -1.31
(4)Stochastic Expansion(log-normal)(2nd) 0.4640 1.7713 4.6328

Diff. Rate % -0.43 -0.08 -0.10
(5)Finite difference(Crank-Nicholson method) 0.4640 1.7715 4.6315

Diff. Rate % -0.43 -0.09 -0.13
(6)Monte Carlo simulation method 0.4660 1.7699 4.6375

Table 1.14: Average Options on FX -Log-normal process- (T=1.00y,Vol.30%)

Strike price 110 100 90
(1)Stochastic Expansion(normal)(1st) 2.6107 6.1516 11.8900

Diff. Rate % -12.22 -0.76 2.61
(2)Stochastic Expansion(normal)(2nd) 2.9699 6.1910 11.5751

Diff. Rate % -0.14 -0.12 -0.11
(3)Stochastic Expansion(log-normal)(1st) 2.6563 5.7746 11.0569

Diff. Rate % -10.68 -6.84 -4.58
(4)Stochastic Expansion(log-normal)(2nd) 2.9505 6.1727 11.5571

Diff. Rate % -0.79 -0.42 -0.26
(6)Monte Carlo simulation method 2.9740 6.1985 11.5874
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Table 1.15: Average Options on 1-Year Interest Rate(T=0.25y)

Strike rate % 5.50 5.00 4.50
(1)Stochastic Expansion 5.36 25.12 63.98
Difference (bp) -0.034 0.002 0.080
Diff. rate % -0.56 0.01 0.13
(2)Finite difference 5.36 24.99 63.81
Difference (bp) 0.026 -0.13 -0.09
Diff. rate % -0.48 -0.52 -0.14
(3)Monte Carlo 5.39 25.12 63.90
(4)European call 16.30 38.05 71.76
(3)/(4) % 33 66 89

Table 1.16: Average Options on 1-Year Interest Rate(T=0.50y)

Strike rate % 6.00 5.00 4.00
(1)Stochastic expansion 2.69 32.10 111.54
Difference (bp) 0.005 0.121 -0.010
Diff. rate % 0.20 0.38 -0.09
(2)Finite difference 2.68 31.98 111.34
Difference (bp) -0.0066 0.002 -0.21
Diff. rate % -0.25 -0.16 0.23
(3)Monte Carlo 2.69 31.98 111.55
(4)European call 13.86 50.47 119.64
(3)/(4) % 19 63 93

Table 1.17: Average Options on 1-Year Interest Rate(T=1.00y)

Strike rate % 6.00 5.00 4.00
(1)Stochastic expansion 8.13 41.37 112.30
Difference (bp) 0.040 -0.030 -0.010
Diff. rate % 0.49 0.07 -0.01
(2)Finite difference 8.06 41.32 112.25
Difference (bp) -0.03 -0.017 -0.060
Diff. rate % -0.37 -0.04 -0.05
(3)Monte Carlo 8.09 41.34 112.31
(4)European call 28.14 67.26 129.60
(3)/(4) % 29 62 87
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Chapter 2

A Variable Reduction Technique
for Pricing Average-Rate Options

1 Introduction

“Average-rate options”, commonly known as Asian options, are contingent claims

whose payoffs depend on the arithmetic average of some underlying index (e.g., stock

prices, exchange rates or interest rates) over a fixed time horizon. While no average-

rate options are traded as standardized option contracts in any organized options or

futures exchange in the world, these options, especially those with the underlying

being exchange rates or interest rates, are extremely popular in the over-the-counter

market among institutional investors.

There are many economic reasons why average-rate options are so popular. For

example, if a corporation expects to receive or pay foreign currency claims on a

regular basis, then a foreign currency option based on an average of exchange rates

represents one way to reduce its average foreign currency exposure. Similar argu-

ment can be made for an interest rate option based on an average of short term

LIBOR rates or an average of constant maturity yields (CMS). Since the average

of the underlying tends to be much less volatile than the underlying itself, average-

rate options are priced more cheaply than the standard (plain vanilla) options. This

reduces significantly the hedging costs for corporations in need of average-rate op-

tions. In addition, by its very design, the payoff of the average-rate options is less

dependent on the closing price of the underlying near the expiration date. Thus, it

reduces the significance of market impact or price manipulation at the maturity of
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the option.

The pricing and hedging of average-rate options raise some interesting issues.

First, these options are path-dependent, i.e., the value of an average-rate option at

any point in time depends upon the value of the underlying at that time as well as

the history of the underlying up to that time. More specifically, if the underlying

follows a Markov-diffusion process, then the value of an average-rate option depends

on the current underlying as well as the average of the underlying at that time. Thus,

when applying standard option pricing techniques (such as the binomial method or

the partial differential equation method), a second state variable (in addition to the

underlying itself) is often necessary. This makes the pricing problem much more

complicated. Second, the arithmetic average is not lognormally distributed when

the underlying follows a standard lognormal process. In fact, it is impossible to

find analytically the probability distribution of the arithmetic average when the

underlying is lognormally distributed. Due to the above reasons, it is well known

that no analytical solution exists for the price of European calls or puts written

on the arithmetic average when the underlying index follows a lognormal process.1

Consequently, numerical techniques must be relied upon in order to determine the

value of average-rate options.

There are several types of numerical techniques that have become popular for

valuing average-rate options. The first one, which perhaps is also the most simple

and commonly used one, is the Monte Carlo simulations method as discussed in

Kemma and Vorst (1990) for the case when the underlying is a lognormal process.

The Monte Carlo simulations method is convenient and flexible. In particular, it is

applicable as long as the underlying follows a Markov-diffusion process. For example,

it can be applied to a square root process for interest rates as well. However, in

terms of the computing time required, this method is not very efficient.

The second type of numerical techniques for average-rate options explores the

idea that an arithmetic average can be reasonably approximated by a geometric av-

erage with an appropriately adjusted mean and variance. This technique includes i)

the modified-strike method (Vorst, 1990), which replaces the arithmetic average by

1 Geman and Yor (1993) have developed a semi-analytical valuation method using the Laplace
transformation technique.
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a geometric average with an adjustment in the strike price to correct the mean bias;

ii) the modified-geometric method (Kunitomo and Takahashi, 1992), which replaces

the arithmetic average by a geometric average with its mean and variance adjusted

to match the mean and variance of the arithmetic average; iii) the geometric condi-

tioning method, which replaces the arithmetic average by its conditional expectation

conditioning on the geometric average (Curran, 1992); and iv) the Edgeworth series

expansion method (Turnbull and Wakeman, 1991), which applies an expansion of

the distribution of the arithmetic average around the distribution of the geometric

average (which is lognormal). The above mentioned methods have been shown to

be reliable whenever the volatility of the underlying is not too large (e.g., less than

30%). However, numerical errors can become significant when the volatility is high.

The third type of numerical techniques for average-rate options addresses the

arithmetic average in a more direct way. Specifically, these techniques put forward

various discrete time models (e.g., binomial trees or grids) to approximate the contin-

uous time value of the average-rate options. Hull and White (1993) have developed

an extended Binomial method in which they construct a binomial tree with a vector

of average rates stacking at each node. Conditioning on the current value of the

average rate, they apply the standard recursive valuation method for each level of

average rates chosen in the vector of average rates. A similar idea has been carried

out by Dewynne and Wilmott (1993) in solving numerically the partial differential

equation for average-rate options. Carverhill and Clewlon (1990) have developed

another approach using the Fourier transformation technique. Their approach in-

volves calculating the distribution function of the arithmetic average through the

Fast Fourier Transform technique. All of the three methods mentioned above require

intensive computing time, as they have to handle more or less a two-dimensional

valuation problem.

In this paper we propose a new valuation technique, called the variable reduc-

tion technique, for average-rate options. This method has many advantages over

the various techniques described above. The main idea of our method is quite

simple. Basically, this method transforms the valuation problem of an average-

rate option into an evaluation of a conditional expectation that is determined by a

one-dimensional Markov process (as suppose to a two-dimensional Markov process
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commonly known).2 This transformation is extremely useful since numerically it is

much easier to handle a one-dimensional valuation problem than a two-dimensional

problem. Alternatively, we can also derive a partial differential equation that the

value function of an average-rate option must satisfy. In this case, the PDE is a

second order parabolic one with one state variable and one time variable. Standard

numerical techniques can be applied to evaluate the conditional expectation or to

solve numerically the partial differential equation that determines the value of an

average-rate option.

Compared to the geometric approximation technique, our variable reduction

technique works directly with the arithmetic average, and therefore will not en-

counter the cited approximation errors when the volatility of the underlying is rel-

atively large. Furthermore, compared to the methods proposed by Hull and White

(1993) and Dewynne and Wilmott (1993), our technique has reduced the dimen-

sionality by one, which certainly will make our pricing more efficient in terms of

computing time. Finally, there is no doubt that this technique is more favorable

than the Monte Carlo method when the underlying is a lognormal process. Unfor-

tunately, when the underlying is not lognormal, the variable reduction technique is

no longer applicable for average-rate options.

The rest of the paper is organized as follows. In the next section, we illustrate

the variable reduction technique in the simple Black-Scholes’ economy in which

there is one risky asset and one riskless bond. While much of the analysis in the

paper assumes continuous averaging or continuous fixing, we will briefly discuss in

this section the implementation of discrete averaging. In Section 3, we apply the

variable reduction technique to average-rate options where the underlying index is

an interest rate (for example, LIBOR rates with a constant maturity). Numerical

comparisons of different methods are presented in Section 4. We conclude the paper

in Section 5.

2 Ingersoll (1987) has shown that an average-strike option, i.e., an option whose strike price is the
average of the underlying over a fixed horizon, can be handled by factoring out the average-strike
and thereby reducing the two-state variables problem into a one-state variable problem. Wilmott,
Dewynne and Howison (1993) have provided a similar variable reduction technique to the partial
differential equation that the value of an average-strike option must be satisfied. However, Wilmott,
Dewynne and Howison (1993) claim that the same technique doesn’t work for average-rate options.
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2 Average-Rate Options in the Black and Scholes’

Economy

To illustrate the idea of the variable reduction technique, we first consider the Black

and Scholes’ economy (Black and Scholes, 1973) in which there is one riskless bond

and one risky asset, and the prices of the riskless bond and risky asset are determined

as follows,

Bt = ert

St = S0e
(µ−q− 1

2
σ2)t+σwt , t ≥ 0

and w is a standard Brownian motion defined on a probability space, coefficients r,

µ, q and σ are constants, and q is the implicit payout rate. The risky asset here could

be a stock, foreign currency or commodity. The payout rate therefore would be the

dividend yield, the foreign riskless rate, and the convenience yield, respectively. We

assume that there exists a risk neutral probability or equivalent martingale measure

Q under which the price of the risky asset is determined by

St = S0e
(r−q− 1

2
σ2)t+σw̃t

where w̃ is a standard Brownian motion under Q.

An average-rate European call option is defined to be an option that gives the

holder the right (but not the obligation) to receive at the expiration date the arith-

metic average of the price of the underlying asset over a finite time horizon for a

fixed strike price. A similar definition can be made for an average-rate European

put option. In this paper we will not consider average-strike options whose strike

price is a fixed percentage of the average of the price of the risky asset over a fixed

time horizon. However, the variable reduction technique works for average-strike

options as well as shown in Ingersoll (1987) and Wilmott, Dewynne and Howison

(1993). However, none of these two works were able to extend their approaches to

average-rate options. In fact, Wilmott, Dewynne and Howison claimed that their

variable reduction technique doesn’t work for average-rate options.

Following Cox and Ross (1975) and Harrison and Kreps (1979), the price at time

t of an average-rate call option, C(t), with a maturity date T and a strike price K
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can be evaluated by

C(t) = e−r(T−t) E∗
t

[
(
1

T
AT −K)+

]
(2.1)

where E∗
t denotes the conditional expectation under the risk neutral probability

distribution, or equivalently, the equivalent martingale measure Q, conditional on

the information set at time t, and

At =
∫ t

0
Sudu

A similar definition can be made for an average-rate put option.

We note that

dSt = rStdt+ σStdw̃t

dAt = Stdt

under the risk neutral probability distribution Q, and therefore S and A together

form a two dimensional Markov process under Q. Thus, the value of an average-

rate call option at t (< T ) must be a function of St, At and t, i.e., C = C(S,A, t).

Moreover, since e−rtC must be a martingale under Q, the drift of e−rtC under Q

must be zero. This leads to the partial differential equation for C,

σ2

2
S2CSS + (r − q)SCS + SCA + Ct − rC = 0 (2.2)

This is a second-order partial differential equation (PDE) with two space variables

and one time variable. Moveover, the second order partial derivative with respect to

A is degenerate. Numerical solutions of this partial differential equation is possible

but cumbersome as well as time-consuming.

We now introduce the variable reduction method which transforms (2.2) into a

PDE with only one state variable and one time variable. To motivate our transfor-

mation, let us re-write the valuation equation (2.1) as follows,

C(t) = e−r(T−t)E∗
t

[ 1
T
At −K +

1

T

∫ T

t
Sudu

]+
=

St

T
e−r(T−t) E∗

t

[
xt +

∫ T

t

Su

St

du
]+

where we have introduced a new state variable x determined by

xt =
1

S
(At − TK)
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Since Su/St (u > t) is independent of the history of S up to t, the conditional

expectation in the above equation must be a function of xt. Thus, C can be written

as a function of xt and t multiplied by St, i.e.,

C(St, At, t) = Stf(xt, t)

for some function f of x and t only:

f(x, t) =
e−r(T−t)

T
E∗

t

[
x+

∫ T

t

Su

St

du
]+

A simple calculation shows

CS = f − xfx

CSS =
1

S
x2fxx

CA = fx

Ct = Sft

Substituting these relations into the above PDE for C, we get

S ×
[
σ2

2
x2fxx + (1− αx)fx + ft − qf

]
= 0

where α = r − q. Since St > 0 for all t, we obtain the partial differential equation

for f ,
1

2
σ2x2fxx + (1− αx)fx + ft − qf = 0 (2.3)

The boundary condition is given by

f(x, T ) =
1

T
max[x, 0] (2.4)

The value of the call option at time t is then given by Stf(xt, t). In other words,

the variable reduction technique has helped us to factor out S from the call price.

We summarize our results in the following proposition.

Proposition 2.1 The value of an average-rate call option is determined by Stf(xt, t),

where f satisfies the PDE (2.3) and the boundary condition (2.4), and where xt =

(At − TK)/St.
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It is useful to note that the stochastic process x is a diffusion process by itself,

i.e.,

dxt = (1− αxt + σ2xt)dt− σxtdw̃t

This explains why we are able to factor out S from the PDE (2.2) to get the PDE

(2.3). Moreover, if we introduce a pseudo probability measure Q′ in such a way that

dxt = (1− αxt)dt− σxtdw
′
t

where w′ is a standard Brownian motion under Q′, then (2.3) is equivalent to the

statement that under Q′, the discounted value (f) is a martingale, while the discount

rate is the implicit payout rate q, i.e.,

f(xt, t) = E
′

t

[
e−q(T−t)

T
max[xT , 0]]

]
(2.5)

where the expectation is taken under Q′. The above formula is also called the

Feynman-Kac representation of the partial differential equation (2.3), see Karatzas

and Shreve (1988).

For readers who are familiar with the Harrison and Kreps’ argument, it can be

shown that ert/Ste
qt is a martingale under Q′, i.e., the riskless asset price discounted

by the risky asset price (after adjusted by the payout rate) is a martingale under

Q′. Thus, Q′ is the equivalent martingale measure when the risky asset is chosen as

a numeraire. Moreover, the martingale argument allow us to claim that

Ct

Steqt
= E

′

t

[
AT

T
−K

ST eqT

]+

Introducing xt as we did above and realizing that x is a Markov process by itself

under Q′, we can immediately conclude that the right-hand side of the above equa-

tion must be a function of xt and t. In other words, S can be factored out using the

martingale argument as well.

We also note that when xt ≥ 0 (t < T ), one can easily obtain an explicit formula

for f ,

f(x, t) =
1

T
e−r(T−t)x+

e−q(T−t) − e−r(T−t)

T (r − q)
(2.6)

However, for xt < 0, we must utilize standard numerical techniques such as the

finite difference method or the Monte carlo simulations method to evaluate f from

104



the PDE (2.3) or from the conditional expectation that defines f in (2.5). Note that

if we are to apply the finite difference method, then we need to use the boundary

conditions (2.6), limx→−∞ f(x, t) = 0 for small values of x and (2.4) for large value

of x.

Our variable reduction technique can also be applied to average-rate options

where the averaging is taken at a discrete set of time points, i.e., discrete averaging

or discrete fixing. For illustrations, we assume that averaging takes place at points

0 = t1 < t2 < t · · · < tn = T . For simplicity, let us consider evaluating the option

exactly on the points where averaging takes place.3 Define

Atk ≡
k∑

i=1

Sti ,

xtk ≡ Atk − nK

Stk

, k = 1, 2, · · · , n

Applying the same variable reduction technique, we can show that

Ctk = e−r(tn−tk)
Stk

n
E∗

tk

xtk + n∑
i=k+1

Sti

Stk

+
≡ Stkf(xtk , tk)

where

f(xtk , tk) =
e−r(tn−tk)

n
E∗

tk

xtk + n∑
i=k+1

Sti

Stk

+ , k = 1, 2, · · · , n− 1

f(xtn , tn) =
1

n
x+tn

It then follows that

f(xtk , tk) = e−r(tk+1−tk)E∗
tk

[
Stk+1

Stk

f(xtk+1
, tk+1)

]
(2.7)

xtk+1
=

Stk

Stk+1

xtk + 1

We note that

Stk+1

Stk

= e(r−q−σ2

2
)∆tk+σ

√
∆ϵ

Stk

Stk+1

= e−(r−q−σ2

2
)∆tk−σ

√
∆ϵ

3 A similar approach can be used to value the option at times other than those averaging points.
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where ϵ is a random variable distributed as N(0, 1), and ∆tk = tk+1 − tk. Thus,

(2.7) can be solved recursively by numerical integrations.4

Alternatively, we can also determine f by

f(xtk , tk) =
e−q(tn−tk)

n
E

′

t

[
max[xtn , 0]

]
This formula is useful if we would like to value f by Monte-Carlo simulation. Note

that in this case we will be simulating the process x under the probability measure

Q′.

It is important to note that as in the case of continuous averaging, the valuation

problem here is also a one-dimensional problem. We have avoided the complexity of

the two dimensional problem encountered by Hull and White (1993) and Dewynne

and Wilmott (1993).

Before leaving this section, we point out that all of our analyses so far are equally

applicable when σ and r are functions of t. This suggests that we can value average-

rate options when we have a deterministic term structure of volatilities and interest

rates.

3 Average-Rate Options on Interest Rates

We now apply the variable reduction technique to value average-rate options on in-

terest rates related derivative instruments. Such instruments are commonly traded

in the over-the-counter (OTC) markets, and have played an important role in sat-

isfying various needs of institutional investors or borrowers. Among those interest

rates related derivative instruments, options on the average of CMT or CMS rates

(constant maturity treasury yields or constant maturity swap rates) have been some-

what popular. Those option contracts can also be imbedded in a swap transaction

to serve as speculative or hedging purposes for the investors or the issuers.

In this section we present the variable reduction technique for pricing the average-

rate options on CMS rates. First, let us define an option on the average of CMS

rates (with a fixed time to maturity). Let Lτ (t) denote the yield at time t for a zero

4 Specifically, we can fix a set of grid points for x, and evaluate f over these points recursively.
For those points that are not on the grids, a second order interpolation can be used to find the
value of f on these points.
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coupon bond with a time to maturity of τ years.5 Then, the average of Lτ (t) in a

prespecified time period [0, T ] is given by

Z(T ) =
1

T

∫ T

0
Lτ (t)dt

where τ is a fixed real number, e.g., 0.25, 0.5, or 1. Let P (t, T ) denote the price at

time t of a zero coupon bond maturing at time T . Then, we can re-express Lτ (t) as

Lτ (t) =

(
1

P (t, t+ τ)
− 1

)
1

τ

The payoff of a European call option on the average rates at the expiration date T

with a strike price K is given by

C(T ) = max[Z(T )−K, 0]

while the payoff for a European put option is given by

C(T ) = max[K − Z(T ), 0]

In the rest of this section, we determine the arbitrage-free value of such European

call or put options by using the similar technique introduced in the previous section.

Note that once the call price is obtained, the value of a put option can be easily

derived through the “put-call parity”, which will be shown later in this section.

3.1 Arbitrage-Free Forward Rate Processes

To evaluate an average-rate option on interest rates with a constant maturity, we

employ the Heath-Jarrow-Morton’s model as our basic model for term structure of

interest rates. This model is based on an explicit specification of the instantaneous

forward rates and a restriction of no arbitrage, see Heath, Jarrow, and Morton

(1992) for details. In this setting, the instantaneous forward rate process under the

equivalent martingale measure is described as

f(t, T ) = f(0, T ) +
N∑
i=1

∫ t

0

(
σi(s, T )

∫ T

s
σi(s, u)du

)
ds+

N∑
i=1

∫ t

0
σi(s, T )dw̃i(s)

5 For simplicity, we will not consider pricing average rate options based on par yields.
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where w is anN -dimensional standard Brownian motions. In the above specification,

the diffusion term or the volatility process σ can be chosen by the user (subject to

a regularity condition) while the drift is completely determined by the choice of σ,

due to the no arbitrage condition. In particular, the spot rate process, r(t) = f(t, t),

is given by

r(t) = f(0, t) +
N∑
i=1

∫ t

0

(
σi(s, t)

∫ t

s
σi(s, u)du

)
ds+

N∑
i=1

∫ t

0
σi(s, t)dw̃i(s)

Given the spot rate, any interest rate contingent claim can be priced through the

well-known property that the value process relative to the money market account is a

martingale under the equivalent martingale measure or the risk neutral probability:

V (t)

B(t)
= Et

[
V (T )

B(T )

]

where B(t) = exp[
∫ t
0 r(s)ds], and B(t) denotes the value process of the money market

account.

3.2 A Constant Volatility Model

For simplicity, we shall specify a one-factor model of forward rates (with a constant

volatility) in order to evaluate the average-rate options under consideration. That

is, we set N = 1 in the forward rate process described above. The volatility function

in the forward rate process is given by σ1(s, t) = σ, where σ is a positive constant.

This model is known to be a continuous time version of the Ho and Lee (1986)’s

model. Specifically, the forward rate process can be described as

f(t, T ) = f(0, T ) + σ2(Tt− t2

2
) + σw̃(t)

and the spot rate process is given by

r(t) = f(0, t) +
σ2t2

2
+ σw̃(t)

A straightforward calculation shows that the price at time t of a zero coupon bond

maturing at time T is given by

P (t, T ) =
P (0, T )

P (0, t)
exp

[
−σ

2

2
Tt(T − t)− σ(T − t)w̃(t)

]
(2.8)
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3.3 Pricing Average-Rate Options on Interest Rates

We will evaluate the average-rate options on interest rates under a term structure

model with a constant volatility. As in the average rate options under the Black-

Scholes’ economy, we will show that the valuation problem can be simplified to a

partial differential equation with a single state variable and a time variable, after a

simple transformation of variables. It is much easier to solve this equation numer-

ically, for example, by the finite difference method. Moreover, in the spacial case

where the option is deep-in-the money, an explicit valuation formula is obtained.

As mentioned before, we will consider only the call option case, as the put option

can be priced through a “put-call parity”.

First, we will rewrite our valuation problem in terms of zero coupon bonds.

Then, the final payoff of the call option is re-expressed as

C(T ) = max[Z(T )−K, 0]

= max[
1

T

∫ T

0
{ 1

P (t, t+ τ)
− 1}1

τ
dt−K, 0 ]

=
1

Tτ
max[

∫ T

0

1

P (t, t+ τ)
dt− k, 0 ]

where τ is a positive constant and k = (1 +Kτ)T .

By using the expression (2.8), the reciprocal of the price of a zero coupon bond

with τ years to maturity, 1
P (t,t+τ)

, is described as

1

P (t, t+ τ)
=

P (0, t)

P (0, t+ τ)
exp

[
σ2

2
(t+ τ)tτ + στw̃(t)

]

Hence, the price of the average-rate call option at time t (before the maturity date

T ) is given by

C(t) = E∗
t

[
exp

(
−
∫ T

t
r(u)du

)
C(T )

]

=
1

Tτ

P (0, T )

P (0, t)
e−

σ2(T3−t3)
6 E∗

t

[
e−σ

∫ T

t
w̃(u)du × C(T )

]
(2.9)

where we use the relation, exp(−
∫ T
t f(0, u)du) = P (0, T )/P (0, t), and where

C(T ) = max

[∫ T

0

P (0, u)

P (0, u+ τ)
exp[

σ2

2
(u+ τ)uτ + στw̃(u)]du− k, 0

]
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Our main objective is to evaluate the conditional expectation in (2.9). Although

it is a fairly tough task to evaluate this expectation directly, if the new variable

defined below is introduced, the problem becomes much easier to handle. We will

give this transformation in the next lemma.

Lemma 2.1 Define a stochastic process X as

X(t) =

∫ t
0

P (0,u)
P (0,u+τ)

e
σ2

2
(u+τ)uτ+στw̃(u)du− k

eστw̃(t)

Then, X satisfies the following stochastic differential equation,

dXt =

(
P (0, t)

P (0, t+ τ)
e

σ2

2
(t+τ)tτ +

(στ)2

2
Xt

)
dt− στ Xtdw̃(t) (2.10)

where X(0) = −k, and the value at time t of the average-rate call can be expressed

as

C(t) =
1

Tτ
e−
∫ T

t
f(0,u)due−

σ2(T3−t3)
6 eσ(t−T+τ)w̃(t) ×

E∗
t

[
e−σ

∫ T

t
(w̃(u)−w̃(t))du×

max[Xt +
∫ T

t

P (0, u)

P (0, u+ τ)
e

σ2

2
(u+τ)uτ+στ [w̃(u)−w̃(t)]du, 0]

]
(2.11)

The expectation on the right-hand side is a function of Xt.

Proof. Equation (2.10) can be shown by Ito’s lemma while (2.11) can be verified

easily. The last statement follows from the fact that w̃(u)− w̃(t) is independent of

w(t).

Here, we note that w̃(t) can be expressed in terms of rt. Therefore, C(t) can be

separated into the product of a function of (r, t) and a function of (X, t).

C(r,X, t) = g(r, t)h(X, t) (2.12)

where

g(r, t) =
1

Tτ

P (0, T )

P (0, t)
e−

σ2(T3−t3)
6 × e(t−T+τ)[rt−f(0,t)− (σt)2

2
]

h(X, t) = E∗
t

[
e−σ

∫ T

t
(w̃(u)−w̃(t))du ×max[Xt + P u+τ

u

∫ T

t
e

σ2

2
(u+τ)uτ+στ [w̃(u)−w̃(t)]du, 0]

]
.
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where P u+τ
u = P (0,u)

P (0,u+τ)
. Clearly, g(r, t) is calculated using the information available

at time t while h(X, t) turns out to satisfy a partial differential equation as shown

in the following proposition.

Proposition 2.2 h satisfies the partial differential equation

(στ)2

2
X2hXX +

[
P (0, t)

P (0, t+ τ)
e

σ2

2
(t+τ)tτ + {σ2τ(T − t)− (στ)2

2
}Xt

]
hX +

ht +
σ2(t+ τ − T )2

2
h = 0 (2.13)

with the boundary condition

h(X,T ) = max[XT , 0]. (2.14)

Proof. Since C(t) exp(−
∫ t
0 r(s)ds) is a martingale under the equivalent martingale

measure, the drift of C(t) exp(−
∫ t
0 r(s)ds) must be 0. Recall that

dr = {ft(0, t) + σ2t}dt+ σdw̃(t)

dX =
( P (0, t)

P (0, t+ τ)
e

σ2

2
(t+τ)tτ +

(στ)2

2
X
)
dt− στ Xdw̃(t).

It is easily seen by the Itô’s lemma that

σ2

2
Crr +

(στX)2

2
CXX − σ2τXCrX + [ft(0, t) + σ2t]Cr

+

[
P (0, t)

P (0, t+ τ)
e

σ2

2
(t+τ)tτ +

(στ)2

2
Xt

]
CX + Ct − rC = 0 (2.15)

Since C(r,X, t) = g(r, t)h(X, t), simple calculations show

Cr = grh = (t+ τ − T )gh

Crr = grrh = (t+ τ − T )2gh

CrX = grhX = (t+ τ − T )ghX

CX = ghX

CXX = ghXX

Ct = gth+ ght = r gh− (t+ τ − T )[ft(0, t) + σ2t] gh+ ght.

Substituting the above relations into (2.15), we obtain

g ×
[
(στX)2

2
hXX +

( P (0, t)

P (0, t+ τ)
e

σ2

2
(t+τ)tτ + {σ2τ(T − t)− (στ)2

2
}Xt

)
hX

+ht +
σ2(t+ τ − T )2

2
h

]
= 0. (2.16)
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Next, noting that g(r, t) > 0 for all t and r, we obtain the desired partial differential

equation for h. Finally, it is easily seen that the terminal boundary condition is

given by

h(X,T ) = max[XT , 0]

When Xt ≥ 0, i.e., when the option is very deep-in-the money, we can show that

h can be calculated explicitly. We present this result in the following proposition.

Proposition 2.3 When Xt ≥ 0, the price of an average-rate call option on interest

rates is given by

C(r, x, t) = g(r, t)h(X, t)

where g(r, t) is defined as above and h(X, t) is given by

h(X, t) = Xte
σ2(T−t)3

6 + exp

(
σ2

2
(t+ τ)tτ +

σ2(T − t)3

6

)

×
∫ T−t

0

P (0, s+ t)

P (0, s+ t+ τ)
exp

[
σ2τs2 + σ2(τ 2 + 2tτ − Tτ)s

]
ds.(2.17)

Proof. Note that when Xt ≥ 0,

max[Xt +
∫ T

t

P (0, u)

P (0, u+ τ)
e

σ2

2
(u+τ)uτ + στ [w̃(u)−w̃(t)]du, 0 ]

= Xt +
∫ T

t

P (0, u)

P (0, u+ τ)
e

σ2

2
(u+τ)uτ + στ [w̃(u)−w̃(t)]du.

Hence

h(X, t) = XtE
∗
t

[
e−σ

∫ T

t
[w̃(u)−w̃(t)]du

]
+E∗

t

[
e−σ

∫ T

t
[w̃(u)−w̃(t)]du

∫ T

t

P (0, u)

P (0, u+ τ)
e

σ2

2
(u+τ)uτ+στ [w̃(u)−w̃(t)]du

]
.

By the strong Markov property of the Brownian motion,

h(X, t) = XtE
∗
[
e−σ

∫ T−t

0
w̃(s)ds

]
+

E∗
[
e−σ

∫ T−t

0
w̃(s)ds

∫ T−t

0

P (0, s+ t)

P (0, s+ t+ τ)
e

σ2

2
(s+t+τ)(s+t)τ+στw̃(s)ds

]
.

The first term can be calculated using the fact that

σ
∫ T−t

0
w̃(s)ds = σ

∫ T−t

0
(T − t− u)dw̃(u)
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is normally distributed with

E∗
[
σ
∫ T−t

0
w̃(s)ds

]
= 0

Var∗
[
σ
∫ T−t

0
w̃(s)ds

]
=
σ2(T − t)3

3

We obtain

XtE
∗
[
e−σ

∫ T−t

0
w̃(s)ds

]
= Xte

σ2(T−t)3

6

For the second term, we apply the Fubini’s theorem to claim that

E∗
[
e−σ

∫ T−t

0
w̃(s)ds

∫ T−t

0

P (0, s+ t)

P (0, s+ t+ τ)
e

σ2

2
(s+t+τ)(s+t)τ+στw̃(s)ds

]

=
∫ T−t

0

P (0, s+ t)

P (0, s+ t+ τ)
e

σ2

2
(s+t+τ)(s+t)τE∗

[
e−σ

∫ T−t

0
w̃(s)ds+στw̃(s)

]
ds.

Note that

−σ
∫ T−t

0
w̃(s)ds+ στw̃(s) = −σ

∫ T−t

0
(T − t− u)dw̃(u) + στ

∫ s

0
dw̃(u). (2.18)

is normally distributed with

E∗
[
−σ

∫ T−t

0
w̃(s)ds+ στw̃(s)

]
= 0

Var∗
[
−σ

∫ T−t

0
w̃(s)ds+ στw̃(s)

]
= σ2

[
τs2 + {τ 2 − 2τ(T − t)}s+ (T − t)3

3

]

Therefore, the second term is

exp

[
σ2

2
(t+ τ)tτ +

σ2(T − t)3

6

]
×

∫ T−t

0

P (0, s+ t)

P (0, s+ t+ τ)
exp

[
σ2τs2 + σ2(τ 2 + 2tτ − Tτ)s

]
ds

This leads to the desired expression for h.

WhenX(t) < 0, the price of the average rate call must be solved numerically, e.g.,

applying the finite difference method to find h at time t. The boundary condition

at time T for h is

h(X,T ) = max[X, 0]

When X is large, the formula in the above proposition can be used as a boundary

condition. And, when X is small, we note that

limX→−∞h(X, t) = 0
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Numerical examples using the finite difference method are shown in the next section.

As mentioned before, once the prices of European call options are obtained, the

prices of European put options are easily derived through the put-call parity shown

in the following proposition.

Proposition 2.4 The put-call parity for the average rate options is given by

P (t) = C(t) + P (t, T )K − E∗
t

[
e−
∫ T

t
r(u)duZT

]
(2.19)

Proof. The above relation is clearly true at the expiration date T . Discounting

both sides by the money market rates and taking the conditional expectation, we

can easily derive the above relation.

Note that

E∗
t

[
e−
∫ T

t
r(u)duZT

]
=

1

Tτ
E∗

t

[
e−
∫ T

t
r(u)du

∫ T

0

1

P (t, t+ τ)
dt

]

−1

τ
E∗

t

[
e−
∫ T

t
r(u)du

]
= g(r, t)h(X, t)− 1

τ
P (t, T )

where g is defined by (2.12) and h is given by the explicit formula for Xt ≥ 0 in

proposition 2 with k = 0.

4 Numerical Examples

We now present two numerical examples which illustrate how our variable reduction

technique can be efficiently used to value average-rate options. Our first example

involves average-rate options written on foreign exchange rates, while our second

example focuses on average-rate options on one-year CMS rates.

Tables 2.1-2.3 show the prices of average-rate options on dollar-yen exchange

rates with three different expiration dates (i.e., three months, six months and one

year). For each expiration date, the prices of out-of-the money, at-the money, and

in-the-the money options are shown separately. The spot price and the volatility

are assumed to be 100 yen and 10 percent per year, respectively, while the risk-

free interest rates for yen and dollar are assumed to be 3 percent and 5 percent,
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respectively. Option prices are quoted in terms of yen. In the first row of each table,

we obtain the option prices by solving the PDE (2.3) using a Crank-Nicholson finite

difference scheme, while in the second row of each table, we calculate the option

prices by evaluating the expectation of (2.5), i.e., the Feynman-Kac representation

of the solution of the PDE (2.3), using the standard Monte Carlo simulation applying

to a discretized counterpart for X. Specifically, we discretize X using a standard

first order finite difference scheme:

xn+1 = xn + (1− αxn)∆− σxn
√
∆ϵ̃n

A total of 100,000 trials are implemented in each simulation. For purposes of com-

parisons, we report in the last row of the table the option prices calculated using

the more conventional Monte Carlo simulation method, i.e., simulate a sample path

of the exchange rate process (i.e., S) and compute the average exchange rates (i.e.,

A) along each of the sample paths generated. A total of 500,000 paths have been

sampled to arrive at the numbers reported. It is clear from these tables that in terms

of accuracy, our variable reduction method fares well with Monte-Carlo simulations

methods. Moreover, we note that among the three methods, the computational

time involved in simulations is much longer than that of the finite difference method

which generates the numbers in the first row (in order to achieve the same level of

accuracy).6

Tables 2.4-2.6 show similar results for average-rate options written on 1-year

constant maturity yields (CMS) with three different times to maturity, 3 months,

6 months and 1 year. For each maturity, the prices of three different strikes are

shown as in the case for the foreign exchange rate options. For simplicity, the term

structure of interest rates is assumed to be flat at 5 percent in all cases, and the

volatility of instantaneous forward rates is assumed to be 150 basis point per year.

The option prices are expressed in terms of basis point per year. As in the case

for foreign exchange rate options, the PDE for h(X, t) is solved numerically by the

Crank-Nicholson finite difference scheme. Option prices are also evaluated through

Monte-Carlo simulations based on Feynman-Kac representation for h, where 100,000

6 The computing time required for implementing the finite difference scheme is well under one
minute on a SunSparc 20 machine.
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trials are implemented for each case, and the more conventional simulations method,

where 500,000 trials are implemented for each case.

5 Concluding Remarks

We have presented in this paper a variable reduction technique which values average-

rate options by reducing the two-dimensional valuation problem to a one-dimensional

problem. In doing so, it reduces significantly the computing time required for

average-rate options. While we have shown that this technique is useful when the

underlying state variable is lognormally distributed, this technique is potentially

applicable for a larger class of asset price dynamics as long as the returns of the

underlying are independent of their past histories. An example of such case is the 2-

factor stochastic volatility model in which the volatility of the underlying is governed

by another one dimensional Markov process, e.g., Hull and White (1987).
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Table 2.1: Average-Rate Options on FX (T=0.25y)

Strike price 105 100 95
Finite Difference 0.046 1.022 4.766
Monte Carlo (I) 0.046 1.023 4.765
Monte Carlo (II) 0.046 1.022 4.766

Table 2.2: Average-Rate Options on FX (T=0.50y)

Strike price 105 100 95
Finite Difference 0.183 1.366 4.679
Monte Carlo (I) 0.183 1.364 4.680
Monte Carlo (II) 0.184 1.368 4.679

Table 2.3: Average-Rate Options on FX(T=1.00y)

Strike price 105 100 95
Finite Difference 0.464 1.772 4.632
Monte Carlo (I) 0.465 1.765 4.616
Monte Carlo (II) 0.466 1.770 4.638

æ
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Table 2.4: Average-Rate Options on 1-Year CMS(T=0.25y)

Strike rate % 5.50 5.00 4.50
Finite Difference 5.36 24.99 63.81
Monte Carlo (I) 5.34 25.11 63.59
Monte Carlo (II) 5.39 25.12 63.90

Table 2.5: Average-Rate Options on 1-Year CMS(T=0.50y)

Strike rate % 6.00 5.00 4.00
Finite Difference 2.68 31.98 111.34
Monte Carlo (I) 2.67 32.05 111.38
Monte Carlo (II) 2.69 31.98 111.55

Table 2.6: Average-Rate Options on 1-Year CMS(T=1.00y)

Strike rate % 6.00 5.00 4.00
Finite Difference 8.06 41.32 112.25
Monte Carlo (I) 8.08 41.36 112.42
Monte Carlo (II) 8.09 41.34 112.31
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Chapter 3

Pricing of Securities with Default
Risks

1 Introduction

We present a new model for pricing the securities with default risks in a general

equilibrium framework. Our model is general enough in a sense that the state of

the default can be related to any other economic variables such as macro economic

indicators which are determined in equilibrium in the model as well as to the firm’s

specific factor such as its asset value. In other words, the state of default can be

determined endogenously in the model or at least, the determinants of the spreads

between the corporate yields and the treasury yields which are the important factor

in pricing the securities may be consistently related to the main economic variables.

Moreover, any types of the securities with default risks such as defaultable bonds,

swaps, caps, options on bonds may be evaluated in a unified framework of the model.

Our starting point is the general equilibrium model of asset prices in Cox, In-

gersoll, and Ross(1985a) where they derive the fundamental pricing equation, the

partial differential equation for any contingent claims. In this paper, we apply and

extend the framework to evaluate contingent claims with default risks.

We characterize the state of default by a set of stopping times. We propose

two types of the models, one of which utilizes a predictable stopping time, and the

other of which makes use of a totally inaccessible stopping time represented by a

jump process to characterize the state of default. For each model, we explicitly

derive a partial differential equation with a set of boundary conditions to price any
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securities subject to default risks. The reason we present two mutually exclusive

stopping times to describe the state of the default is that the argument on this

matter seems to be unsettled empirically. That is, one of the consequences from

the assumption of modelling a default time as a predictable stopping time is that

the spreads between the treasury yields and the corporate yields should be close to

zero near the maturities while they must be substantially large whenever the related

variables approach the default boundaries, which does not seem to be valid.

As for the first model, the state of default is determined by the stopping time

when some functions of the wealth and the factors which govern the economy in

the model hit the prespecified boundaries. We note the functions may denote some

macro economic variables such as the spot interest rate since in equilibrium, those

variables can be expressed by the functions of the wealth and the factors. The

prespecified boundaries as well as those functions may vary among the firms, which

represents the variations of the default states for each company. In this way, it is

possible to handle various types of the specific pricing model of the securities subject

to default risks in our general framework.

As for the second model, we explicitly introduce a default indicator function for

each company following a jump process in the general equilibrium framework. The

intensity, that is the possibility of the default in the next instant may depend on

the other economic variables such as a set of macro economic indicators determined

inside the model while the default itself occurs suddenly due to the jump martingale

part of the process. The intuition behind this modelling is that while we can infer

the possibility of the default by the other observable indicators, we can not predict

the occurence of the default itself since the information and the indicators inside

the company which drive the default directly are usually unobservable.

There are mainly three approaches so far taken to model the default risks. The

first approach is initiated by Merton(1974) where he applies the contingent claim

analysis to pricing a firm’s debts. He takes a firm’s asset value as a state variable and

the default occurs whenever the firm’s asset value is less than the firm’s liabilities at

the coupon payment dates or the maturities. Many researches along this approach

has been followed. Recently, Cooper and Mello(1991) apply this technique to the

interest rate and currency swap valuations. Although this is a remarkable approach
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in a sense that the state of the default is endogenously determined in the model,

and is closely related to the decision of a firm on its capital structure, it has not

become popular in practice. The reason for this is that first of all, the firm’s asset

is unlikely to be observable or tradable, and moreover, it is extremely complicated

to determine the seniority of the firm’s liabilities which is the key element to pricing

of the corporte debts.

The second approach is taken by Longstaff and Schwartz(1995) where they over-

come the problem of the ”seniority” in pricing by introducing a predictable stopping

time. That is, the default occurs whenever the firm’s asset value hits the prespecified

boundary and the payment in case of default for each security is made according to

its seniority determined by the contract and the related laws. In addition, they take

the spot interest rate as the second state variable and emphasize the correlation

between the firm’s asset and the spot interest rate in determination of the spreads

of defaultable bonds. On the other hand, they assume the firm’s asset is observable

and tradable as the first approach does and the process of the spot interest rate is

exogenously given under the equivalent martingale measure.

The third approach is recently initiated by Jarrow and Turnbull (1995), Duffie

and Huang(1994), Madan and Unal(1994) and others where they model the time of

default as a pure jump process, and evaluate directly the tradable and observable

securities with default risks under the arbitrage-free condition. In other words, they

start with the securities with default risks traded in a financial market and construct

an equivalent martingale measure based on the securities or just assume the existence

of an equivalent martingale measure based on the general theory. Hence they assume

explicitly or implicitly the liquidity of the securities in the market. For instance,

Jarrow and Turnbull(1995) is based on the existence of corporate bonds for each

credit class enough to construct their term structures. This assumption, however,

is questionable in practice and the level of those corporate bonds itself should be

determined by some economic reasoning. In fact, one of the main feature in this

approach is that the state of the default is exogenously given, which is contrast to

the previous approaches while the model basically depends only on the observable

factors given the liquidity of the corporate bonds and hence it may be appropriate

for pricing the derivatives of the corporate bonds and the vulnerable options. We
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should note, however, that the numerical computation is tough task without so

called the independent assumption which is usually violated in the practical world.

There are several advantages of our models. In the predictable stopping time

model, we take the observable economic variables such as the spot interest rate to

endogenize the state of the default and they are internally consistent in the sense

that those economic variables themselves are determined in equilibrium inside the

model. Clearly, by construction, we can relate the spreads of the corporate bonds

to those variables. Moreover, we can diviate from the assumptions that the firm’s

asset is tradable and that the process of the spot interest rate under an equivalent

martingale measure is exogenously given since the risk premium of the firm’s asset

as well as that of the spot interest rate can be explicitly obtained. In the model

where we utilize the jump process to express the time of default, we can freely relate

the economic indicators determined in equilibrium to the possibility of the default

and the risk premium of the default of a company can be explicitly and consistently

obtained inside the model. Finally, the resulting PDE for the pre-default value of

the securities does not include any jump part, which reduces the computational

burden required in the models including the jump components.

The remainder in the paper is organized as follows. The next section presents

the first model where we model the default risks by a predictable stopping time,

and also show one-factor and two-factor models as simple examples. The section 3

proposes the second model where we utilize a jump process to model the state of the

default and show a numerical example. The section 4 makes concluding remarks.

2 Model I: The Securities with the default risks

in the CIR Economy

In this section, we present a framework and simple examples of how to evaluate the

securities subject to the default risks. Our model is based on the general equilibrium

asset pricing model presented in the Cox, Ingersoll, and Ross(1985a). We forcus on

how to characterize the event of default in the model by utilizing a predictable stop-

ping time. In fact, we shall derive the PDE with appropriate boundary conditions

at the stopping time which the prices of the securities with default risks must satisfy
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by making use of the fundamental pricing equation of CIR(1985a) .

2.1 A General Model

We start with the fundamental pricing equation for contingent claims which is a

partial differential equation of parabolic type. The fundamental partial differential

equation(PDE) is given by Theorem 3 in CIR(1985a) as

1

2
V ar.(dW )FWW + Cov.(dW, dY⃗ )⊤FW,Y⃗ +

1

2
tr(FY⃗ Y⃗ SS

⊤) +

(rW − c)FW + F⊤
Y⃗
(µ⃗− ϕ⃗Y⃗ ) + Ft − rF + δ = 0

with F (W, Y⃗ , T ) = Ψ(W, Y⃗ , T ) where c = c(W, Y⃗ , t) and r = r(W, Y⃗ , t) are the

consumption process and the riskless interest rate process in equilibrium. δ(W, Y⃗ , t)

and Ψ(W, Y⃗ , T ) are specified by payoffs of a contract without default. The default

of a company is characterized by a stopping time and the price of a security ass-

coiated with the defaultable company is given by the fundamental PDE with a set

of boundary conditions at the stopping time as well as the boundary information

obtained from the payoffs without default. We formally state this below. Suppose

the security with the maturity T is to be evaulated. Let f⃗j(t,W, Y⃗ ) be a vector of

smooth functions such that [0, T ]× (0,∞)× Rk 7→ Rnj Then, the default stopping

time for company j is defined by

τj = inf{t;
(
t, f⃗j(t,W (t), Y⃗ (t))

)
̸∈ Ωj}

where Ωj is an open set on (0, T ) × Rnj , ∂Ωj is its boundary, and ∂̂Ωj is the

closed subset such that
(
τj, f⃗j(τj,W, Y⃗ )

)
∈ ∂̂Ωj for every choice of an initial point(

t, f⃗j(t,W, Y⃗ )
)
∈ Ωj. That is, a default time for j is defined as the exit time for

f⃗j(t,W, Y⃗ ) from Ωj. Then, the fundamental PDE holds on

{(t,W, Y⃗ );
(
t, f⃗j(t,W, Y⃗ )

)
∈ Ωj},

and the boundary conditions are given by

F (W (τj), Y⃗ (τj), τj) = Θj(W (τj), Y⃗ (τj), τj),

and F (W, Y⃗ , T ) = Ψ(W, Y⃗ , T ). We note that the functon Θj depends on j since the

payment in case of default may vary among firms. Hence we obtain the following

theorem.
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Theorem 3.1 The fundamental pricing equation for any securities subject to the

default risk of the company j is given by the PDE with a set of boundary conditions.

1

2
V ar.(dW )FWW + Cov.(dW, dY⃗ )⊤FW,Y⃗ +

1

2
tr(FY⃗ Y⃗ SS

⊤) +

(rW − c)FW + F⊤
Y⃗
(µ⃗− ϕ⃗Y⃗ ) + Ft − rF + δ = 0 (3.1)

with

F (W (τj), Y⃗ (τj), τj) = Θj(W (τj), Y⃗ (τj), τj) (3.2)

and

F (W, Y⃗ , T ) = Ψ(W, Y⃗ , T ) (3.3)

where

τj = inf{t;
(
t, f⃗j(t,W, Y⃗ )

)
̸∈ Ωj}. (3.4)

Note f⃗j(t,W, Y⃗ ) be a vector of smooth functions such that [0, T ]×(0,∞)×Rk 7→ Rnj

and Ωj is an open set on (0, T )×Rnj .

There exist defaultable securities such as swaps which are subjected to two or

more companies’ default risks. This approach is still vaild to price those securities

if we define properly the default stopping times. That is, if the security is subjected

to the default risks of the companies 1, · · · , n, the default stopping time is defined

by

τn1 = τ1 ∧ · · · ∧ τn.

Then, the fundamental PDE holds on

{(t,W, Y⃗ )} = ∩n
j=1{(t,W, Y⃗ );

(
t, f⃗j(t,W, Y⃗ )

)
∈ Ωj}.

The boundary conditions are given by

F (W (τn1 ), Y⃗ (τn1 ), τ
n
1 ) = Θ(W (τn1 ), Y⃗ (τn1 ), τ

n
1 ),

and F (W, Y⃗ , T ) = Ψ(W, Y⃗ , T ).

Corollary 3.1 The fundamental pricing equation for any securities subject to the

default risk of the companies 1, · · · , n is given by the PDE with a set of boundary

conditions stated in the Theorem 3.1 except that the default stopping time is redefined

by

τn1 = τ1 ∧ · · · ∧ τn. (3.5)
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We shall present two specifications in the model.

• [i] f⃗j(W, Y⃗ , t) is taken to be a vector of macro economic variables, which

implies f⃗j(W, Y⃗ , t) are common among j, that is, f⃗(W, Y⃗ , t) while Ωj is

the region of the macro economic variables specific to each company j. In

other words, the default occurs if a set of macro economic indicators hit some

levels specific to the company. For instance, let f i(W, Y⃗ , t),i = 1, 2 be some

macro economic indicators defined on [0,∞) and let f i
jL and f i

jH denote the

level of the lower boundary and that of the higher boundary respectively of

f i(W, Y⃗ , t),i = 1, 2 for the company j. Then, we may define Ωj by

Ωj = (0, T )× Π2
i=1{f i

jL < f i(W, Y⃗ , t) < f i
jH} (3.6)

or

Ωj = (0, T )×
(
{f 1

jL < f 1(W, Y⃗ , t) < f 1
jH} × [0,∞) (3.7)

∪ [0,∞)× {f 2
jL < f 2(W, Y⃗ , t) < f 2

jH}
)
.

To define the default stopping time, we first introduce the a set of stopping

times.

τ ijL = inf{t; f i(W, Y⃗ , t) ≤ f i
jL} i=1,2 (3.8)

τ ijH = inf{t; f i(W, Y⃗ , t) ≥ f i
jH} i=1,2 (3.9)

Then, the default stopping time may be defined by

τj = τ 1jL ∧ τ 1jH ∧ τ 2jL ∧ τ 2jH (3.10)

or

τj = inf{τ 1j : τ 1j = τ 2j } (3.11)

where τ 1j = τ 1jL ∧ τ 1jH and τ 2j = τ 2jL ∧ τ 2jH .

More specifically, f i(W, Y⃗ , t),i = 1, 2 can be taken to be the aggregate wealth

W and the spot interest rate r(W, Y⃗ , t). That is, the PDE holds on

{(t,W, Y⃗ );WL < Wand rL < r(W, Y⃗ , t) < rH},
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or

{(t,W, Y⃗ );WL < Wor rL < r(W, Y⃗ , t) < rH},

and the boundary conditions are given by F (W, Y⃗ (τj), τj) = Θj(W, Y⃗ (τj), τj),

and F (W, Y⃗ , T ) = Ψ(W, Y⃗ , T ).

• [ii] Another way to capture default is to introduce a state variable Yj specific

to the company j. That is, some components of Y⃗ represent the firm j’s specific

state variables Yj1 , Yj2 , · · ·Yjk . Yjs for some s ∈ {1, 2, · · · , k} may be taken as

the firm’s asset value Vj. Then, the default of the company j is characterized

by the stopping time when Yjs, s ∈ {1, 2, · · · , k} hit some boundaries. Hence

the PDE still holds with the appropriate boundaries conditions. For example,

the default for the company j occurs whenever Yj hits the lower boundary

YjL(t). That is, the PDE holds on

{(t,W (t), Y⃗ (t));YjL(t) < Yj(t)}, (3.12)

and the boundary conditions are given by

F (W,Y1, · · · , YjL, · · · , Yk, τj) = Θj(W,Y1, · · · , YjL, · · · , Yk, τj),

and F (W, Y⃗ , T ) = Ψ(W, Y⃗ , T ).

More specifically, suppose a defaultable security is considered as a function of

r(W, Y⃗ ∗, t) and V , that is F (r(W, Y⃗ ∗, t), V, t) where the last(k th) component

of Y⃗ is V , the firm’s asset value and Y⃗ ∗ consists of the other factors. Then,

if the default boundary is taken as VL, the PDE may be expressed as

1

2
σ⃗⊤
r σ⃗rFrr +

1

2
σ⃗⊤
V σ⃗V FV V + σ⃗⊤

r σ⃗V FrV + (3.13)

µrFr + (µV − ϕV )FV + Ft − rF = 0

where

µr = (rW − c)rW + (µ⃗Y⃗ ∗ − ϕ⃗Y⃗ ∗)
⊤r⃗Y⃗ ∗ (3.14)

+
1

2
V ar.(dW )rWW + Cov.(dW, dY⃗ ∗)⊤r⃗WY⃗ ∗ +

1

2
tr.(rY⃗ ∗Y⃗ ∗S

∗S∗⊤) +
∂r

∂t

and

σ⃗r = rW a⃗
⊤G+ r⃗Y⃗ ∗S

∗ (3.15)
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for {(W, Y⃗ ∗, V, t); t < T, VL < V }. ϕV and ϕ⃗Y⃗ ∗ denote the risk premia of V and

Y⃗ ∗ respectively, and rW , rY⃗ ∗ , rWW , r⃗WY⃗ ∗ and rY⃗ ∗Y⃗ ∗ denote the partial deriva-

tives of r with respect to W or/and Y⃗ ∗. V ar.(dW ) and Cov.(dW, dY⃗ ∗)⊤ are

determined by V ar(dW ) = a⃗⊤GG⊤a⃗ and Cov.(dw, dY⃗ ∗)⊤ = a⃗⊤GS∗⊤ where

a⃗ denotes the vector of the propotion of wealth invested in real assets with

a⃗⊤1⃗ = 1.

The boundary condition may be given by F (T ) = X(r(W, Y⃗ , T ), V, T ) where

X denotes a terminal payoff of a contract and F (τ) = Θ(r(W, Y⃗ , τ), V, τ)

where τ = inf.{t;Vt ≤ VL}.

We next show that the model of Longstaff and Schwartz(1995) can be consid-

ered an example in this case. In fact, we first assume the utility function of

the representative agent to be a logarithmic one, u(ct, t) = e−δt log ct, δ > 0.

Next, we suppose that there is only one real asset, η and that there exist two

factors, Yi, i = 1, 2. The stochastic processes of η and Yi, i = 1, 2 are assumed

to be

dη = (α1 + α2Y1)ηdt+ σηη(ρηdw1t +
√
1− ρ2ηdw2t)

dY1 = (µ11 − µ12Y1)dt+ σ1dw1t

dY2 = µ2Y2dt+ σ2Y2(ρdw1t +
√
1− ρ2dw3t)

where αi, i = 1, 2, ση, µ1i, i = 1, 2, µ2 and σi, i = 1, 2 are some constants, ρη

and ρ are constants with |ρη| ≤ 1 and |ρ| ≤ 1, and wi, i = 1, 2, 3 are mutually

independent Brownian motions. That is, we assume that the two factors follow

an Ornstein-Uhlenbeck process and a lognormal process respectively, and that

the process of the return of the real asset depends only on the first factor.

Then, we can easily obtain the process of r and the risk premia of Y , i = 1, 2

since as in CIR(1985b), the indirect utility function is given by J(W,Y1, t) =

f(t) logW + g(Y1, t), where f(t) = e−δt−e−δT

δ
. That is, the equilibrium spot

interest rate is obtained by

r = α1 − σ2
η + α2Y1,

and the factor risk premia are obtained by ϕY1 = ρησησ1 and ϕY2 = ρηρσησ2Y2

respectively. Consequently, if we interpret the factor Y2 as the firm’s asset V
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and further assume that V is tradable, which implies (µV − ϕV ) is replaced

by rV , then the PDE (3.13) becomes the exactly same one as they derive.

Next we briefly examine the boundary conditions for several defaultable securi-

ties. We suppose the price of a default-free security such as a zero coupon bond,

an optioin or a swap is obtained by the fundamental PDE with the appropriate

boundary conditions specified by the contract’s payoff.

• Zero coupon bonds

ψ(W, Y⃗ , T ) = 1 and Θj(W, Y⃗ , τj) = φjP (τj, T ) where P (τj, T ) denotes the

price of the default-free zero coupon bond at the time τj with the maturity

T, and φj denotes the recovery rate for the company j which may be a well-

behaved function of (W, Y⃗ , t).

• Vulnerable call options on a zero coupon bond

ψ(W, Y⃗ , T ) = (P (T, T ∗) − K)+ and Θj(W, Y⃗ , τj) = φjC(P (τj, T
∗), K, τj)

where P (T, T ∗) denotes the price of the default-free zero coupon bond at the

time T with the maturity T ∗, and C(P (τj, T
∗), K, τj) is the price of default-

free call option at τj. φj denotes also the recovery rate of the company j

which sells the option.

• Call options on a defaultable zero coupon bond

ψ(W, Y⃗ , T ) = (Pj(T, T
∗) − K)+ and Θj(W, Y⃗ , τj) = P (τj, T )(φjP (τj, T

∗) −
K)+ where Pj(T, T

∗) is the price of the defaultable zero coupon bond of the

company j at T with the maturity T ∗.

• (One Period) Swaps

ψ(W, Y⃗ , T ) = F̄ − L̃ where F̄ denotes a fixed rate which is received by the

company 1 and L̃ denotes the LIBOR which is received by the company 2.

Θ(W, Y⃗ , τ 21 ) = 1{Vf (τ
2
1 )>0}Vf (τ

2
1 ) + 1{Vf (τ

2
1 )≤0}φ1Vf (τ

2
1 )

if τ 21 = τ1 and

Θ(W, Y⃗ , τ 21 ) = 1{Vf (τ
2
1 )>0}φ2Vf (τ

2
1 ) + 1{Vf (τ

2
1 )≤0}Vf (τ

2
1 )

if τ 21 = τ2 where Vf (τ
2
1 ) denotes the price of the default-free swap at the time

τ 21 with the same terminal payoff.
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2.2 An Example: A One Factor Model

We present the model with one factor of the square-root process as an example of

the specification [i] in the previous subsection. The state of the default is described

by the stopping time when the spot interest rate or/and the level of the wealth which

is equivalent to the price of the market portfolio in this model hit some prespecified

boundaries. Those levels may be specific to each company. We start with the set of

assumptions in the model.

First, we fix the period of the economy in this model as [0, T ∗], where T ∗ is a

positive finite number. Then, the representative agent is described by a logarithmic

utility function which is explicitly given by

E

[∫ T ∗

0
e−ρt log ct dt

]
.

where ρ ∈ (0,∞) denotes the time preference of the agent.

The State variable Y which governs the economy follows a square-root process

as in CIR(1985b).

dY = (ξ1Y + ξ2)dt+ σ
√
Y dwt

where ξ1 and ξ2 are some constants with ξ2 ≥ 0 and wt is a one-dimensional

Brownian motion. There is a single capital stock or real asset denoted by η in the

economy. The process of the logarithm of η is completely determined by the state

variable Y and also follows a square-root process.

dη = αY ηdt+G
√
Y ηdwt

where α and G are some constants with α−G2 > 0.

Finally, there are four financial assets in the economy as follows.

• The riskless money market account Bt with riskless rate r

• The equity (market portfolio) St which claim the capital stock at T ∗, that is

ηT ∗ .

• The default-free zero-coupon bond with the maturity T (< T ∗), P (t, T ) with

the payoff P (T, T ) = 1.
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• The defaultable zero-coupon bond for the company j with the maturity T ,

Pj(t, T ) with the payoff Pj(T, T ) = 1 without default. The payoffs in case of

the default are discussed later.

Next, we characterize the states of the default. In particular, we consider the

two cases for the states which drive the j’s default.

(i)The default of j occurs if the price of the market portfolio hits the lower

boundary SjL for the company j, or the spot interest rate hits the lower boundary

rjL or the higher boundary rjH for the company j. That is, the default occurs

whenever the market portfolio or the spot interest rate hits its boundary.

(ii)The default of j occurs if the price of the market portfolio hits the lower

boundary SjL, and the short term interest rate hits the lower boundary rjL or

the higher boundary rjH . That is, the default occurs whenever both the market

portfolio and the spot interest rate hit their boundaries.

We next define three stopping times associated with the default of the company

j.

τ11 = inf{t; rt ≤ rjL}

τ12 = inf{t; rt ≥ rjH}

τ2 = inf{t;St ≤ SjL}

In equilibrium, simple calculation shows as in CIR(1985b) that the stochastic

processes of the consumption, the spot interest rate, the stock price, and the price

of the default-free zero coupon bond are given respectively by

ct =
ρ

1− e−ρ(T ∗−t)
W

rt = (α−G2)Yt

St = Wt

and

P (t, T ) = A(T − t)eB(T−t)rt .

Now we turn to our main objective, pricing the defaultable bond. In order

to evaluate the price of the defaultable zero coupon bond, we first note that the
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fundamental PDE may be rewritten in terms of S and r. First, we note that the

process of the wealth is expressed by using ct =
ρ

1−e−ρ(T∗−t)W and Y = 1
(α−G2)

r as

dW = (αYW − c)dt+G
√
YWdwt

=
[
αY −

(
ρ

1− e−ρ(T ∗−t)

)]
W +G

√
YWdwt

=
[(

α

α−G2

)
r −

(
ρ

1− e−ρ(T ∗−t)

)]
W +G

√(
r

α−G2

)
Wdwt.

Next, we note

PjY = Pjr(α−G2)

PjY Y = Pjrr(α−G2)2

PjWY = PjWr(α−G2).

Finally, replacing W and Y by S and 1
α−G2 r respectively, we can re-express the

fundamental PDE in terms of W and r.

1

2

(
G2

α−G2

)
rS2PjSS +

1

2
σ2(α−G2)rPjrr +GσrSPjSr +(

r − ρ

[1− e−ρ(T ∗−t)]

)
SPjS +

[
(ξ1 −Gσ)r + (α−G2)ξ2

]
Pjr + Pjt − rPj = 0

for the case (i) SL < S and rL < r < rH and for the case (ii) SL < S or

rL < r < rH .

The boundary conditions are given by

Pj(T, T ) = 1

and for t < T ,

(i) Pj(SL, r, τ2, T ) = φjP (τ2, T )

Pj(S, rL, τ11, T ) = φjP (τ11, T )

Pj(S, rH , τ12, T ) = φjP (τ12, T )

in the case (i), and

(ii) Pj(SL, rL, τ, T ) = φjP (τ, T ) if τ1 = τ11

Pj(SL, rH , τ, T ) = φjP (τ, T ) if τ1 = τ12
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in the case (ii) where τ1 = τ11 ∧ τ12 and τ = inf{τ2; τ2 = τ1}, and φj ∈ [0, 1) is the

recovery rate.

Finally, we note that the solution of the PDE with a set of the boundary condi-

tions may be represented by the conditional expectation. That is,

Pj(t, T ) = E∗
t

[
e−
∫ τ

t
rudu1{t≤τ<T}φjPj(τ, T )

]
+ E∗

t

[
e−
∫ T

t
rudu1{τ≥T}

]
where τ = τ11 ∧ τ12 ∧ τ2 in (i) and τ = inf{τ2; τ2 = τ1} in (ii). The conditional

expectation is taken under, for t ∈ [0, T ∗)

dS =

(
r − ρ

[1− e−ρ(T ∗−t)]

)
Sdt+

G√
α−G2

√
rSdw∗

t

and

dr =
[
(ξ1 −Gσ)r + (α−G2)ξ2

]
dt+ σ

√
α−G2

√
rdw∗

t .

A Numerical Example

We compute a defaultable zero coupon bond as a numerical example. We suppose

that the default occurs if both the spot rate r and the market portfolio S hit their

lower boundaries for the company j, rjL and SjL respectively. We next define a set

of the stopping times.

τ1 = inf{t; rt ≤ rL}

τ2 = inf{t;St ≤ SL}

τ = inf{τ1; τ1 = τ2}

Then, the payoffs of the defaultable zero coupon bond is given by

Pj(T, T ) = 1 if τ ≥ T

Pj(τ, T ) = φjP (τ, T ) if τ < T

where φj is a constant ∈ [0, 1).

Finally the parameters are specified numerically as follows.
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The maturity of the bond(T ) = 5year

The correlation(ρ) = 0.07

The recovery rate(φ) = 0.7

The current spot rate(r0) = 7%

The expectation of r in 5 y = 7.0%

The standard deviation of r in 5y = 5.38%

The current market portfolio(S0) = 100.00

The expectation of S in 5 y = 103.31

The standard deviation of S in 5y = 36.13

We compute Pj(t, T ) by the Monte Carlo simulation and the result is given in

Table 3.1. We list the spot yields of the five-year zero coupon bonds for different

default boundaries of the spot rate and the market portfolio. We also show the

spread between the yield of each defaultable bond and that of the default-free bond

with the same maturity. We note that the yield of the default-free bond is 6.73 %

for all the cases. In the first three rows, we fix the default boundary of the spot

rate as 0.5 % and compute the spot yileds for three different default boundaries of

the market portfolio,60, 50 and 40. As we expect, the lower is the boudary of the

market portfolio, the larger is the spread. In fact, the spread for the boundary of

60 is 114 basis point where the spread for the boundary of 40 is 27 basis point. In

the last three rows, we compute the spot yields for two different default boundaries

of the spot rate, 0.25 % and 1.00 % while we fix the default boundary of the market

portfolio as 50. Again, the spread is larger when the boundary is higher; the spread

for the boundary of 1.00 % is 111 basis point and that for the boundary of 0.25 % is

63 basis point. All in all, the spread is largest when the boundary of the spot rate

is 0.5 % and that of the market portfolio is 60 and is smallest when the boundary

of the spot rate is 0.5 % and that of the market portfolio is 40.
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2.3 An Example: A Two Factor Model

We introduce another state variable Yj which is specific to the company j in the

previous one-factor model. Yj may be regarded as the asset value of the company

j while Y represent the factor dominating macro economy. Yj also follows square-

root process where the Brownian motion may be correlated with the one in the first

factor. The correlation is denoted by ρj ∈ [0, 1]. Then, the state variables in the

model are given by

dYj = (ξ1jYj + ξ2j)dt+ σj
√
Yj(ρjdwt +

√
1− ρ2jdwjt)

dY = (ξ1Y + ξ2)dt+ σ
√
Y dwt.

The other specification is same as in the previous example. That is, the representa-

tive agent’s preference is a logarithmic utility function and the real asset process is

given by

dη = αY ηdt+G
√
Y ηdwt.

Note that the capital stock’s movement is dominated by the factor Y only. Hence

as in the previous one-factor model, the interest rate r is given by r = (α−G2)Y

in equilibrium and the factor premiums are obtained by a simple calculation.

ϕY = σGY

ϕYj
= ρjσjG

√
Y
√
Yj.

Hence the fundamental PDE for any defaultable securities of the company j

becomes

1

2
σ2rPjrr +

1

2
σ2
jYjPjYjYj

+ ρjσσj
√
α−G2

√
r
√
YjPjrYj

+
[
(ξ1 − σG)r + (α−G2)ξ2

]
Pjr +

(
ξ1jYj + ξ2j − ρjσjG

1√
α−G2

√
r
√
Yj

)
PjYj

+Pjt − rPj = 0.

In particular, when the Yj itself is a traded asset, the coeficient of PjrYj
is replaced

by rYj. (
ξ1jYj + ξ2j − ρjσjG

1√
α−G2

√
r
√
Yj

)
= rYj.
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In this model, the default of the company j is characterized by the stopping time

τj.

τj = inf{t;Yjt ≤ YjL}

Hence the default of the company j occurs whenever the factor Yj hits the lower

boundary YjL. Consequently, the price of each defaultable security of the company

j is obtained by solving the PDE with a set of appropriate boundary conditions of

the payoffs at the maturity as well as at the default stopping time τj . For instance,

the boundary conditions of the defaultable zero coupon bond with the maturity T

is given by

Pj(T, T ) = 1 if τj ≥ T

Pj(τj, T ) = φjP (τj, T ) if τj < T

where φj denotes the recovery rate and P (τj, T ) denotes the price of the default-

free zero coupon bond with the maturity T at τj. Although this example is obtained

in the framework of CIR equilibrium model, it is similar to the model of Longstaff

and schwartz(1995) except the assumption of the stochastic processes which Y and

Yj follow if the Yj is interpreted as the firm’s asset value and the asset is assumed

to be tradable.
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æ

3 Model II: The Securities with the default risks

in the CIR Economy(II)

A default risk is modelled by utilizing a predictable stopping time in the previous

section since the time of a default is an exit time of some diffusion processes from a

certain region. One may argue that as the default occurs surprisingly, the stopping

time of the default is not predictable, but totally inaccessible. For instance, Unal

and Madan(1995) reports the some empirical evidence shows that the spreads of

corporate bonds may be substantially large even just prior to their maturities while

those are limited for the companies which operate for long periods in state of so called

technical default. If this is the case, a predictable stopping time is not suitable

for modelling the time of default. Rather, a totally inaccessible stopping time is

appropriate, which implies a jump process may represent the event of a default.

We in this section present a new model for the case by introducing a set of new

state variables which follows a certain jump process and extend the original CIR

general equilibrium model. By using the state variable, we model the empirical ob-

servation that the default itself is driven suddenly by the specific factors in the firm

which are usually unobservable or hidden just prior to the default while the possi-

bility of the default in the next instant given the company’s current solvency may

be infered by the other economic variables such as macro economic indicators. For

example, the observation is made by Longstaff and Schwatz(1995) and Duffee(1995)

where they report the change in the level of interest rate represented by the treasury

yields are very important to the variation in credit spreads of the corporate bonds

and they are negatively correlated.

3.1 A General Model

We start with the definition of the default indicator function. First, let τj denote

the time of default of the company j which is a totally inaccessible stopping time

and

Hj(t) = 1{t≥τj} (3.16)
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is called the default indicator function. Next, a counting process is defined by

Nj(t) =
∑
k=1

1{t≥τjk}

where τj = τj1 < τj2 < · · · is an increasing sequence of stopping times. By using

Doob-Meyer decomposition, Nj(t) is decomposed into the finite variation part and

the martingale part. We know that the finite variation part is continuous if τj is a

totally inaccessible stopping time. Furthermore, we assume absolutely continuous.

Then,

Nj(t) =
∫ t

0
λj(s)ds+Mj(t)

where λj(t) is an intensity function which may be random that is, in general, λj(t)

may depend on times and the realization of the other variables as well as on the

value of the contract itself, and Mj(t) ia a martingale. In particular, we will make

λj(t) related to the wealth W and the factors Y⃗ . Under this setting, Hj(t) is

expressed by the stopped process of Nj(t) at t = τj.

Hj(t) = Nj(t ∧ τj) =
∫ t

0
λj(s)1{s≤τj}ds+mj(t) (3.17)

where mj(t) =Mj(t∧ τj) is a martingale and 1{t≤τj} = 1−Hj(t−). We will extend

the CIR(1985a) model by utilizing the new factors.

For ease of exposition, we introduce two types of the default indicator functions

in the model and assume that the simultaneous defaults do not occur. We first fix

the period of the economy as [0, T ∗], T ∗ < ∞. We define the factors governing the

economy of the model.

dY⃗ = µ⃗(Y⃗ , t)dt+ S(Y⃗ , t)dw⃗t (3.18)

dHj = λj(Y⃗ ,W, t)(1−Hjt−)dt+ dmj j=1,2 (3.19)

where Y⃗ and S denote the k× 1 vector and k× (n+ k) matrix respectively, and

w⃗t is the (n+ k)× 1 Brownian motion.

We assume that there exist n types of real assets or capital stocks following the

stochastic processes which are exogenously specified. The uncertainity of the real

assets in the next instant is generated by the Brownian motions while the coefficients

of the processes may depend on the factors Hj, j = 1, 2 as well as Y⃗ .

dη⃗ = Iηα⃗(Y⃗ , H1, H2, t)dt+ IηG(Y⃗ , H1, H2, t)dw⃗t (3.20)
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where η⃗ and G denotes the n× 1 vector and n× (n+ k) respectively.

We also suppose that there exist the financial assets of the riskless bond and (k+

2) types of defaultable securities. We note that the processes of the securities with

default risks include not only the continuous components generated by Brownian

motions, but also the jump components due to their default risks.

dBt = rBtdt (3.21)

dPi = βiPidt+ σ⃗⊤
i Pidw⃗t (3.22)

+ (Θi1Pi − φi1Pi)dH1t + (Θi2Pi − φi2Pi)dH2t; i = 1, 2, · · · , (k + 2)

where σ⃗i, k = 1, 2, · · · , (k+2) denote (n+k)×1 vectors. r, βi, i = 1, 2, · · · , (k+2),

σ⃗i, i = 1, 2, · · · , (k+2), Θij, i = 1, 2, · · · , (k+2), j = 1, 2 are endogenously determined

in equilibrium while α⃗ and G are exogenously given.

We assume that the contracts of the defaultable securities are terminated once

a default occurs. The term −φijPidHjt, j = 1, 2 for each i = 1, 2, · · · , (k + 2)

means that once the default of the company j, j=1,2 occurs, the dividend φijPi, j =

1, 2 respectively is paid at that default time where φij, j = 1, 2 for each i =

1, 2, · · · , (k + 2) are exogenously given recovery rates. In other words, we assume

that the contracts are terminated once a default occurs and the payoffs in case of

the default are paid.

Then, the wealth process for the representative agent is expressed as

dWt = [(rW − c) + a⃗⊤(α⃗− r1⃗)W +
(k+2)∑
i=1

bi(βi − r)W ]dt (3.23)

+ Wa⃗⊤Gdw⃗t ++W
(k+2)∑
i=1

biσ⃗
⊤
i dw⃗t +W

(k+2)∑
i=1

bi
2∑

j=1

ΘijdHjt.

Hence the ”dynamic programming problem” in this economy for the representa-

tive agent is defined by

maxc≥0,⃗a≥0,b1,b2,···,bk+2
E0

[∫ T ∗

0
u(c, Y⃗ , H1, H2, t)dt

]
(3.24)

subject to the wealth process (3.23).

Then, an equilibrium in the economy is defined as in the original CIR(1985a).

That is, an equilibrium is defined by a set of the equilibrium stochastic processes
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(r, P1, P2, · · · , Pk+2) with a⃗ ≥ 0⃗ and a⃗⊤1⃗ = 1 so that given (r, P1, P2, · · · , Pk+2),

(c, a⃗, b1, b2, · · · , bk+2) where c ≥ 0, a⃗ ≥ 0⃗, a⃗⊤1⃗ = 1, and bi = 0, i = 1, 2, · · · , (k + 2)

solves the ”dynamic programming problem” for the representative agent. We solve

this problem in the following three steps, [A], [B] and [C]. We denote the indirect

utility function in equilibrium by J(W, Y⃗ ,H1, H2, t).

[A] We first solve the optimization problem in the economy where there are only

real assets.

maxc≥0,⃗a≥0,⃗a=1E0

[∫ T ∗

0
u(c, Y⃗ , H1, H2, t)dt

]
subject to

dWt = (⃗a⊤α⃗W − c)dt+Wa⃗⊤Gdw⃗t.

The Bellman equation is obtained by

0 = Jt +maxc≥0,⃗a≥0

[
u(ct) + (⃗a⊤α⃗W − c)JW

+
1

2
a⃗⊤GG⊤a⃗W 2JWW + a⃗⊤GS⊤WJ⃗WY⃗ + µ⃗⊤J⃗Y⃗ +

1

2
tr(SS⊤J⃗Y⃗ Y⃗ )

+ λ1(1−H1t−){J(W, Y⃗ , 1, H2)− J(W, Y⃗ ,H1, H2)}

+ λ2(1−H2t−){J(W, Y⃗ ,H1, 1)− J(W, Y⃗ ,H1, H2)}+ γ(1− a⃗⊤1⃗)
]
.

where γ denotes the Lagrangian multiplier associated with a⃗⊤1⃗ = 1. The first order

condition of the Bellman equation with respect to a⃗ is given by

(WJW )α⃗+GG⊤a⃗W 2JWW +GS⊤WJ⃗WY⃗ − γ1⃗ ≤ 0 (3.25)

where the equality holds for a⃗ > 0.

[B] Next, we consider the optimization problem in the economy where the riskless

asset exists in addition to real assets.

maxc≥0,⃗a≥0E0

[∫ T ∗

0
u(c, Y⃗ , H1, H2, t)dt

]

subject to

dWt = [⃗a⊤(α⃗− r1⃗)W + (rW − c)]dt+Wa⃗⊤Gdw⃗t.

The Bellman equation is obtained by

0 = Jt +maxc≥0,⃗a≥0

[
u(ct) + {(rW − c) + a⃗⊤(α⃗− r1⃗)W}JW
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+
1

2
a⃗⊤GG⊤a⃗W 2JWW + a⃗⊤GS⊤WJ⃗WY⃗ + µ⃗⊤J⃗Y⃗ +

1

2
tr(SS⊤J⃗Y⃗ Y⃗ )

+ λ1(1−H1t−){J(W, Y⃗ , 1, H2)− J(W, Y⃗ ,H1, H2)}

+ λ2(1−H2t−){J(W, Y⃗ ,H1, 1)− J(W, Y⃗ ,H1, H2)}
]
.

The first order condition with respect to a⃗ in this Bellman equaition is given by

(WJW )(α⃗− r1⃗) +GG⊤a⃗W 2JWW +GS⊤WJ⃗WY⃗ ≤ 0 (3.26)

where the equality holds for a⃗ > 0. Comparing the first order condition (3.25) and

(3.26), we obtain

r =
γ

WJW
.

We also note that

a⃗⊤α⃗WJW + a⃗⊤GG⊤a⃗W 2JWW + a⃗⊤GS⊤WJ⃗WY⃗ = γ.

Hence we obtain

r = a⃗⊤α⃗+ (⃗a⊤GG⊤a⃗)
(
WJWW

JW

)
+ (⃗a⊤GS⊤)

 J⃗WY⃗

JW

 . (3.27)

Note if we define the factor premium for the wealth W , ϕW by

ϕW = (⃗a⊤GG⊤a⃗)

(
−W 2JWW

JW

)
+ (⃗a⊤GS⊤)

−W J⃗WY⃗

JW

 , (3.28)

the equilibrium r may be written by

r = a⃗⊤α⃗− 1

W
ϕW .

[C] Finally, we turn to the main objective of deriving the pricing equation for the

pre-default values of the defaultable securities. First, we show the Bellman equation

for the dynamic programming problem where all the contingent claims are included

in addition to real assets and the riskless asset.

Lemma 3.1 The Bellman equation of the dynamic programming problem for the

representative agent is given by

0 = Jt +maxc≥0,⃗a≥0,b1,b2,···,bk+2

[
u(ct) + {(rw − c) + a⃗⊤(α⃗− r1⃗)W (3.29)
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+
(k+2)∑
i=1

bi(βi − r)W}JW

+
1

2
a⃗⊤GG⊤a⃗W 2JWW +

1

2
b⃗⊤ΣΣ⊤b⃗W 2JWW + a⃗⊤GΣ⊤b⃗W 2JWW

+ µ⃗⊤J⃗Y⃗ +
1

2
tr(SS⊤J⃗Y⃗ Y⃗ ) + a⃗⊤GS⊤WJ⃗WY⃗ + b⃗⊤ΣS⊤WJ⃗WY⃗

+ λ1(1−H1t−){J(W [1 +
(k+2)∑
i=1

biΘi1], Y⃗ , 1, H2, t)− J(W, Y⃗ ,H1, H2, t)}

+ λ2(1−H2t−){J(W [1 +
(k+2)∑
i=1

biΘi2], Y⃗ , H1, 1, t)− J(W, Y⃗ ,H1, H2, t)}


where b⃗ = [b1, b2, · · · , bk+2]

⊤ and Σ = [σ⃗1, σ⃗2, · · · , ⃗σk+2]
⊤.

The first order conditions with respect to bi are given by

0 = (βi − r)WJW +

biσ⃗i⊤σ⃗i +∑
i′ ̸=i

bi′ σ⃗i
⊤σ⃗i′ + a⃗⊤Gσ⃗i

W 2JWW

+ σ⃗i
⊤S⊤WJ⃗WY⃗ + λ1(1−H1t−)Θi1WJW (W [1 +

(k+2)∑
i=1

biΘi1], Y⃗ , 1, H2, t)

+ λ2(1−H2t−)Θi2WJW (W [1 +
(k+2)∑
i=1

biΘi2], Y⃗ , H1, 1, t).

We set bi = 0, i = 1, 2, · · · , (k + 2) in equilibrium and obtain the relation which

the drift term, the diffusion term and the coefficients of the jump terms must satisfy

in equilibrium.

βi − r = a⃗⊤Gσ⃗i

(−WJWW

JW

)
+ σ⃗⊤

i S
⊤

−J⃗WY⃗

JW


− Θi1λ1(1−H1)

 JW (W, Y⃗ , 1, H2, t)

JW (W, Y⃗ ,H1, H2, t)


− Θi2λ2(1−H2)

 JW (W, Y⃗ ,H1, 1, t)

JW (W, Y⃗ ,H1, H2, t)


We define λ̃1 and λ̃2 by

λ̃1 = λ1

 JW (W, Y⃗ , 1, H2, t)

JW (W, Y⃗ ,H1, H2, t)

 (3.30)
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and

λ̃2 = λ2

 JW (W, Y⃗ ,H1, 1, t)

JW (W, Y⃗ ,H1, H2, t)

 . (3.31)

Note λ̃j ≥ 0, j = 1, 2 as long as JW > 0. Suppose Pi = Pi(W, Y⃗ ,H1, H2, t), i =

1, 2, · · · , (k + 2). Then, we first replace σ⃗i, i = 1, 2, · · · , (k + 2) by the coeffi-

cients of the diffusion terms which are obtained by applying Ito’s lemma to Pi =

Pi(W, Y⃗ ,H1, H2, t), i = 1, 2, · · · , (k + 2).

σ⃗iPi = G⊤a⃗WPiW + S⊤P⃗iY⃗

Thus th excess returns of Pi, i = 1, 2, · · · , (k + 2) are expressed as

(βi − r)Pi = (⃗a⊤GG⊤a⃗WPiW + a⃗⊤GS⊤P⃗iY⃗ )
(−WJWW

JW

)

+ (PiWWa⃗⊤GS⊤ + P⃗⊤
iY⃗
SS⊤)

−J⃗WY⃗

JW


− Θi1λ̃1(1−H1)Pi −Θi2λ̃2(1−H2)Pi

=

a⃗⊤GG⊤a⃗

(
−W 2JWW

JW

)
+ a⃗⊤GS⊤

−WJ⃗WY⃗

JW

PiW

+ P⃗⊤
iY⃗

SG⊤a⃗
(−WJWW

JW

)
+ SS⊤

−J⃗WY⃗

JW


− Θi1λ̃1(1−H1)Pi −Θi2λ̃2(1−H2)Pi

≡ ϕWPiW + ϕ⃗⊤
Y⃗
P⃗iY⃗ −Θi1λ̃1(1−H1)−Θi2λ̃2(1−H2),

where

ϕW = (⃗a⊤GG⊤a⃗)

(
−W 2JWW

JW

)
+ (⃗a⊤GS⊤)

−W J⃗WY⃗

JW


and

ϕ⃗Y⃗ = SG⊤a⃗
(−WJWW

JW

)
+ SS⊤

−J⃗WY⃗

JW

 . (3.32)

Next, we substitute βiPi by using Ito’s formula. Then,

βiPi =
1

2
V ar.(dW )PiWW +

1

2
tr(SS⊤PiY⃗ Y⃗ ) + Cov.(dW, dY⃗ )⊤PiWY⃗

+ (⃗a⊤α⃗W − c)PiW + µ⃗⊤PiY⃗ + Pit.
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Next comparing the jump terms which are also obtained by applying Ito’s for-

mula to Pi = Pi(W, Y⃗ ,H1, H2, t) with those of the original process of Pi, we have

(Θi1 − φi1)Pi(t−)dH1t− + (Θi2 − φi2)Pi(t−)dH2t−

= Pi(W, Y⃗ ,H1, H2, t)− Pi(W, Y⃗ ,H1, H2, t−).

Our objective is to derive the pricing equation of the pre-default value and hence

set H1t− = H2t− = 0. Then,

(Θi1 − φi1)Pi(t−)H1t + (Θi2 − φi2)Pi(t−)H2t

= Pi(W, Y⃗ ,H1, H2, t)− Pi(W, Y⃗ , 0, 0, t−).

If H1t = 0 and H2t = 0, then the above equation identically holds since W and

Y⃗ are continuous processes, and Pi(W, Y⃗ , 0, 0, t) is continuous in W, Y⃗ and t, that

is Pi(t) = Pi(t−). Moreover, we note that H1t = 1 and H2t = 1 do not occur

simultaneously by assumption. Therefore, we have the relations.

(Θi1 − φi1)Pi(t−) = Pi(W, Y⃗ , 1, 0, t)− Pi(W, Y⃗ , 0, 0, t−)

and

(Θi2 − φi2)Pi(t−) = Pi(W, Y⃗ , 0, 1, t)− Pi(W, Y⃗ , 0, 0, t−).

Then, we also set Pi(W, Y⃗ , 1, 0, t) = 0 and Pi(W, Y⃗ , 0, 1, t) = 0 as the boundary

conditions since the contracts are terminated once a default occurs. Hence, we

obtain

Θi1Pi(t−) = −(1− φi1)Pi(t−)

and

Θi2Pi(t−) = −(1− φi2)Pi(t−).

Finally, using rW = a⃗⊤α⃗W −ϕW , we have the PDE for pre-default values of the

defaultable securities.

Theorem 3.2 The pre-default value of the defaultable securitie, Pi must satisfy the

partial differential equation.
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1

2
V ar.(dW )PiWW +

1

2
tr(SS⊤PiY⃗ Y⃗ ) + Cov.(dW, dY⃗ )⊤PiWY⃗

+(r∗W − c)PiW + (µ⃗⊤ − ϕ⃗⊤
Y⃗
)PiY⃗ + Pit

−{r + (1− φi1)λ̃1 + (1− φi2)λ̃2}Pi = 0. (3.33)

Hence, once a terminal boundary condition is specified by the payoff of a contract

without default, we can evaluate the pre-default value of the defaultable financial

asset. In particular, given the terminal condition, the solution of these PDE is

represented by the conditional expectation under some probability measure.

Proposition 3.1 The pre-default value of Pi at the time t is represented by

Pi(t) = E∗
t

[
e−
∫ T

t
Ri(u)duXi(T )

]
(3.34)

where Xi(T ) is the terminal boundary condition determined by the payoff of the

security i without default and

Ri(t) = r(t) + {1− φi1(t)}λ̃1(t) + {1− φi2(t)}λ̃2(t). (3.35)

The conditional expectation is taken under the measure Q where W ,Y⃗ and

Hj, j = 1, 2 follow the stochastic processes

dW = (rW − c)dt+Wa⃗∗⊤Gdw⃗∗
t

dY⃗ = (µ⃗− ϕ⃗Y⃗ )dt+ Sdw⃗∗
t

and

dHj = λ̃j(1−Hj)dt+ dm∗
jt j = 1, 2,

where w⃗∗ and m∗
j , j = 1, 2 denote the (n+k) dimensional Brownian motion and the

jump martingales under Q respectively.

Finally, we make a comment on the recovery rate φij, j = 1, 2 of the security i

when the payoff to both the parties in the contract can be positive or negative such

as a swap. In this case, φi1 and φi2 are given respectively by

φi1 = φ∗
21{Pi≥0} + φ11{Pi<0}

and

φi2 = φ21{Pi≥0} + φ∗
11{Pi<0}.
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As the full payment rule becomes common in practice, φ∗
1 = φ∗

2 = 1. Then, Ri(t)

in the case is given by

Ri(t) = r(t) + {1− φ1(t)}λ̃1(t)1{Pi<0} + {1− φ2(t)}λ̃2(t)1{Pi≥0}.

æ

3.2 An Example: A Two Factor Model

We next show a simple example which illustrates a two-factor model as a special case

of the general model presented in the previous subsection. First, we fix the period

of the economy as [0, T ∗] where T ∗ is a prespecified constant. Next, we specify the

state variables, one of which governs the macro economy and the other of which is

the default indicator function specific to the company j.

dY = (ξ1Y + ξ2)dt+ σ
√
Y dwt

dHj = λ(W,Y, t)(1−Hj)dt+ dmj

where wt is a one-dimensional Brownian motion andmj is a jump martingale. Y (t)

follows the square-root process and Hj(t) follws a jump process whose intensity

depends on the wealth and the interest rate in equilibrium.

There is a single agent in the economy where the representative agent’s utility

function is represented by a logarithmic utility.

E

[∫ T ∗

0
e−ρt log ct dt

]

where ρ denotes the rate of the time preference which is a positive constant.

The capital stock process is completely determined by the factor Y .

dη = αY ηdt+G
√
Y ηdwt

Finally, we suppose that four financial assets in the economy are traded in the

market as follows.

• The riskless money market account Bt with the riskless rate r which is

endogenously determined.

dB = rBdt
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• The equity St which may be interpreted as the market portfolio in and claims

ηT ∗ at T ∗

dS = µSSdt+ σSSdwt

• The default-free zero-coupon bond P (t, T ) whose payoff at T (< T ∗) is P (T, T ) =

1.

dP (t, T ) = µPP (t, T )dt+ σPP (t, T )dwt

• The defaultable zero-coupon bond Pj(t, T ) which is characterized by the pay-

off that the dividends φjPj is paid once a default occurs where φj is an

exogenously given recovery rate, and Pj(T, T ) = 1 at the maturity T without

default.

dPj = βjPjdt+ σPjdwt + (ΘjPj − φjPj)dHjt

A simple calculation shows that in equilibrium, the spot rate rt is a linear

function of the factor Yt and the market portfolio St is equivalent to the wealth

Wt.

rt = (α−G2)Yt

St = ηt = Wt

The zero coupon bond is easily given by an exponential function of r as in

CIR(1985b).

P (t, T ) = A(T − t)eB(T−t)rt

where A(T − t) and B(T − t) are the functions of (T − t).

Now we turn to the main objective of pricing the defaultable bond. First we

note that λj(W,Y, t) may be rewritten by a functin of S, r and t since S = W

and r corresponds to Y by one-to-one. That is, we make the intensity depend

on the market potfolio and the interest rate. The intuition behind this is that the

possibility of default is closely related to the macro economy whose indicators may

be the level of the market portfolio and that of the interest rate. For instance,

when the interest rate as well as the price of the market portfolio is very low, the

economy is usually in the recession and hence the possibility of default is relatively
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high. Alternatively, a company’s profit may be positively or negatively related to

the level of the interest rate or/and that of the market portfolio. For example, the

banking sector is usually profitable when the short term interest rate is low and the

yiled curve has a positive slope while the security company is profitable when the

level of the market portfolio represented by a stock index rather high. Hence let

λj(W,Y, t) = λj(S, r, t). Then, by using the fundamental pricing PDE in the general

model previously derived, we can easily show Pj(t, T ) satisfies the PDE

1

2

(
G2

α−G2

)
rS2PjSS +

1

2
σ2(α−G2)rPjrr +GσrSPjSr +(

r − ρ

[1− e−ρ(T ∗−t)]

)
SPjS +

[
(ξ1 −Gσ)r + (α−G2)ξ2

]
Pjr + Pjt −

{r + (1− φj)λj}Pj = 0.

The terminal boundary condition is obviously given by

Pj(T, T ) = 1.

Equivalently, the solution of the PDE with the termianl boundary condtion is

represented by a conditional expectation. That is,

Pj(t, T ) = E∗
t

[
e−
∫ T

t
{ru+(1−φj)λju}du

]
where the conditional expectation is taken under for t ∈ [0, T ∗),

dS =

(
r − ρ

[1− e−ρ(T ∗−t)]

)
Sdt+ σS

√
rSdw∗

t

dr = κ(θ − r)dt+ σr
√
rdw∗

t

where

σS =
G√

α−G2

κ = −ξ1 +Gσ

θ =
(α−G2)ξ2
(−ξ1 +Gσ)

and

σr = σ
√
α−G2.
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For example, λj(S, r, t) is specified by

λj(S, r, t) =
1

(aS + b)
+

1

(gr + h)

or

λj(S, r, t) =
1

(aSr + b)

where a, b, g and h are positive constants, which indicates that the default occurs

more likely when the level of the market portfolio and the interest rate are low and

vice versa.

A Numerical Example

We will give a numerical example of Pj(t, T ) in the two-factor model. First,

λj(S, r, t) is specified by

λj(S, r, t) =
1

(aS + b)
+

1

(gr + h)

where the parameters are given by a = 1381.0, b = 3.3 and g = 2.0, h = 0.1.

The other parameters are specified as follows.

T ∗ = 30.00

T = 5.00

φ = 0.50

S0 = 100.00

ρ = 0.07

σS = 0.80

r0 = 0.03

κ = 0.25

θ = 0.07

σr = 0.15

We compute Pj(t, T ) by the Monte Carlo simulation and the results are shown

in Table 3.2. We list the spot yields of the five-year defaultable bonds, those of

the default-free bonds with the same maturity and the spreads between them for

different initial values of the spot rate and the market portfolio. In the first three
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rows, we fix the initial value of the market portfolio as 100 and compute the spreads

for three different initial values of the spot rate, 3.00 %, 7.00 % and 10.00 %. As we

expect, the lower is the initial value of the spot rate, the larger is the spread because

in general, the intensity is larger when the initial value is smaller by the functional

form of the intensity and consequently the default risk is higher. In fact, the spread

is 162 basis point for the inital value of 3.00 % while the spread is 100 basis point for

the inital value of 10.00 %. In the next two rows, we fix the initial value of the spot

rate as 7.00 % and compute the spreads for two different initial values, 50 and 150

of the market portfolio. Then, the similar observation holds. That is, the spread

for the inital value of 50 is 142 basis point and the spread for the inital value of

150 is 110 basis point. In the last two rows, we show the two extreme cases. In the

first case, both the inital values are rather low; the inital value of the spot rate is

3.00 % and that of the market portfolio is 50. In another case, both are very high;

the inital value of the spot rate is 10.00 % and that of the market portfolio is 150.

Then, the spread is 186 basis point for the first case, which is the largest among all

the spreads reported in this table, and the spread is 92 basis point for the second

case, which is the smallest among all the spreads in this table.

4 Concluding Remarks

We present new models for pricing of the securities subject to default risks in a

dynamic general equilibrium framework. We propose two types of the models, one

of which is to utilize a predictable stopping time to chracterize the state of default,

and the other of which is to introduce a totally inaccessible stopping time, a jump

process to model the event of the default for each company. Both models are general

enough to evaluate any defaultable securities. The state of default in the model

may be related to macro economic varialbles such as the spot interest rate and the

market portfolio which are determined in equilibrium inside the model as well as

to the factors specific to each company such as a firm’s asset. For instance, in

the predictable stopping time model, the default occurs when the spot interest rate

or/and the market stock index hit some low level which may vary among companies,

and in the jump process model, the possibility of the default in the next instant of
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a company depends on the level of the spot interest rate and that of the wealth in

the economy while the default itself occurs due to the firm’s own reasons which are

usually unobservable. To illustrate those features, we also present a set of simple

examples such as one-facor or two-factor models.

æ
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Table 3.1: The default boundaries and spreads(default-free 5y rate 6.73%)

SjL rjL(%) yield(%) spread(bp)
60 0.5 7.87 114
50 0.5 7.57 85
40 0.5 7.00 27
50 0.25 7.36 63
50 0.75 7.76 102
50 1.00 7.85 111

Table 3.2: The defaultable spot yield(5Y)

r0(%) S0 (1)defalutable yield(%) (2)default-free yield(%) (1)-(2)(bp)
3.00 100 6.18 4.56 162
7.00 100 7.91 6.73 118
10.00 100 9.36 8.36 100
7.00 50 8.15 6.73 142
7.00 150 8.83 6.73 110
3.00 50 6.42 4.56 186
10.00 150 9.28 8.36 92
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