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Introduction
o

Today'’s Talk

This talk will introduce recent development in an asymptotic
expansion approach in finance, particularly, the following topics:

@ asymptotic expansion in a general diffusion setting for
approximations of density functions and option prices

@ asymptotic expansion for basket option pricing in a
local-stochastic volatility (LSV) with jumps

@ perturbative expansion method for backward stochastic
differential equations (BSDES)

@ perturbation technique with interacting particle method for
BSDEs

@ (On an application to of the method to mean-variance hedging
problems in partially observable markets with stochastic filtering,
please see “Making Mean-Variance Hedging Implementable in a
Partially Observable Market,” Quantitative Finance, published online: 20
Mar 2014.)
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An Asymptotic Expansion in a General Diffusion Setting

An Asymptotic Expansion in a General Diffusion Setting

T (2009, 2014)
Setting
@ (W, P): a r-dimensional Wiener Space
o X = (x@1 ... X@d): d-dimensional stochastic process with a
perturbation parameter € € (0, 1]:

_ t t
X =y + f VI(X©, e)ds+ e f VI(XE)dwg (1)
0 0

where

Vo= (V& ,V): RYx (0,1] » RY, and

V=, ,V): R RIQRS

are smooth functions with bounded derivatives of all orders.
@ (Remark) An application to non diffusion Wiener functional

models in finance: please see Kunitomo-T(2001,2003) and

Matuoka-T (2004) for the Heath-Jarrow-Morton (HIJM) model.
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An Asymptotic Expansion in a General Diffusion Setting

@ Next, suppose that a function g : RY — R to be smooth and all
derivatives have polynomial growth orders.

@ Then, g(X!) has its asymptotic expansion;

o(X\?) ~ Qor + egur + -+

in LP forevery p>1lase |0,

@ The coefficients in the expansion are obtained by Taylor’s formula and
represented based on multiple Wiener-It 0 integrals.

@ Next, normalize g(X(TE)) to

9(X¢”) — Gor
€

GO =

for € € (0,1]. Then,
G(f) ~ ng + é-gz.l_ 4+ ..

in LP forevery p> 1.
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An Asymptotic Expansion in a General Diffusion Setting

@ g7 follows a normal distribution, whose density function is given by

1 _(x—C)z)
for (X) = Pro exp( =
where
.
C = @I [ VY aNe(x. 0t
0
.
I o= fo Vgr OV, (1) dt,
Vor® = (ag(7)) [yrvev (x7)]. @

Here, Y denotes the solution to a matrix valued differential equation:
dy; = aVo(X9, 0)Y,dt; Yo = lg.
. ] €
(0Vo denotes the d x d matrix whose (], k)-element is akvg = avgi: ),
the j-th element of Vg, and |4 denotes the d x d identity matrix.)

j.
Vg is

@ Letus assume Xt > 0, which means that the distribution of gt does
not degenerate. In applications, it is easy to check this condition.
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An Asymptotic Expansion in a General Diffusion Setting

Let S be the real Schwartz space of rapidly decreasing C>-functions
on R and &’ be its dual space.

Next, take @ € S’. Then, the asymptotic expansion of ®(G®)as e | 0
can be verified by Watanabe theory. (e.g. Watanabe(1987))

In particular, if we take the delta function at X € R, 64 as @, we obtain an
asymptotic expansion of the density for G,

We define the following notations:

(1) | )
Z:ZZ Z (for | > 1), Z (for =0), (3)
5.0 TpeLig Azl o T5.ds =(0) do=(0)
N B
Lig = {|ﬁ=(|1,..-,|ﬁ);2|,- =|,(|,|,-,ﬁeN)}, )
j=1
(n) n

DI ®

ks o=1 Ks€Lng

Then, the expectation of ®(G)) is expanded as follows.
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An Asymptotic Expansion in a General Diffusion Setting

@ The expansion of E[®(G®))]:

N (n) §
E[0GY)] = D¢ Z O(gar) [ | g | + 0(e™)
n=0 ;6 j=1
N (n) 00
= Y Z_f O (x)
n=0 Ks e
XE [x lgur = x] four (X)X + O(eM)
N (n) 00
=YX s [ oy
n=0 Ks -
&
d—)@{E[Xk‘*Ign = X| e (9} dx+ o(e) ®)
where ®©)(gyr) = % , and
X=01r
o
= ]_[ Ok +1)T- (7)
j=1
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An Asymptotic Expansion in a General Diffusion Setting

(Comments on Computation Scheme)

@ To compute the asymptotic expansion ( 6), we need to evaluate the
conditional expectations of the form

E[X‘Zo"gnzx]

where X% is represented by a product of multiple Wiener-It 0 integrals.

@ T(1995,1999) and T-Takehara-Toda(2009) shows a general scheme for
deriving the conditional expectation formulas for the third and the
higher order expansions, respectively.

@ T- Toda(2009) introduces an alternative but equivalent computational
algorithm for an asymptotic expansion.

e We compute the unconditional expectations instead of the
conditional ones by deriving a system of ordinary differential
equations which the expectations satisfy.

o It enables us to derive high order approximation formulas in an
automatic manner.
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Asymptotic Expansion of Density Function

@ The next theorem shows a general result for an asymptotic
expansion of the density function for ~ G,

@ In particular, the coefficients in the expansion are obtained
through the solution of a system of ordinary differential
equations(ODESs).

@ Each ODE does not involve any higher order terms, and only
lower or the same order terms appear in the right hand side of
the ODE. Hence, one can easily solve (analytically or
numerically) the system of ODEs.
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Asymptotic Expansion of Density Function

Theorem 1: The asymptotic expansion of the density function

The asymptotic expansion of the density function of
GO = -9
€

up to eN-order is given by
foo(® = fgu— )

Z [chmHm(x czT)] fgyr (9 + 0(eV),

(®
where Hy(x; Z7) is the Hermite polynomial of degree  n which is defined as
. noejosy 4" x2jox
Hn(x Z1) = (-Z7)"e* 15T e =T, ©)
dx?
and

1 ™ (k+1)  (ks+1) 1
Ty - §l(m—¢)!
T =

ks li/?l ’(%1 %é’ Bs

[
1 won| L o™ J,% d e
{Hﬁj!aﬁijg )].m agm-o |11® ®p”( f)g:o’(l_ﬁ)' (10)
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Asymptotic Expansion of Density Function

Theorem 1(continued)

n?’(T; &) are obtained as a solution to the following system of ODEs:
B

aliteol

)
B

&

I fis
where d, = F3 1

B
Z 1 &/”k(t £V, 0) 1)
k=

kO 1

Z 1 (dﬁ/k)®dy
4 (=N y! T3 p00m,
. dy

b

t f)ay Ve (<, 0)

2

1
B
k=1 =1

B (k=1)(Im-1) 1 ((Tls/k,m)®5y®fis

—p! i
= ’yl (5' (lﬁ/k,m)®my®m§ ( f)
Ms,ds

km=1
k<m m’ v

xd”, Vo (x{)a0, vim(x)
V)0 Vi)

B (k-1)
&> >

=

k=L, d,

Ofor (g, ds) # (0,0), n{g)(t;€) = Lfor (I, ds) = (0,0),

1 (dﬁ/k)ead

T o, G 6105 V) Ugr ()

K@My

(12

i

= Ty
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Asymptotic Expansion of Density Function

@ Here, we use the following notations:

N
e == (1l lkess o+ 5 1p)
|ﬁ/k,n I (FTERTNN PIET DI P PR ,|ﬁ), l1<k<n<p
N
lpem, = (Ig,---,lgmy,---,m) (13)

for [y = (I, -+ ,1) and M, = (My,--- ,m).
@ For an expansion above up to the  €?-order, we need the Hermite
polynomials Hy(x;Z)upto n=6:
Ho(xZ) = 1, Hi(xZ) = X, Ha(xZ) = ¥ - 2,
Ha(X, Z) = X2 = 32X, Ha(X Z) = x* — 62x% + 322,
Hs(x; Z) = x° — 1053 + 1552,
He(x; Z) = x® — 155x* + 4552%% — 1532,

@ Expansions of multidimensional densities are obtained in a similar
way. (e.g. T (1999), T-Toda (2012))
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Asymptotic Expansion of Option Price

@ We consider a plain vanilla call option on g(X%f)).

@ An asymptotic expansion of a call option price with maturity T
and strike price K = g(X%O)) — ey for arbitrary y € R is given as
follows:

C(K,T)

P(0, T)E[maxig(X\) - K, 0}]
.. {[g<X$>) - g<X$°>)] . (g(XP) -K ) , OH

eP(0, T)E
€ €

eP(0, T)E |max{G +y,0}|

eP(0,T) f oo(X +¥) fo n(x)dx+ o), (14)
-y

where
e P(0,T): the price at time 0 of a zero coupon bond with maturity T
o fguy : the asymptotic expansion of density of ~ G© up to e-th
order.
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Asymptotic Expansion of Option Price

Asymptotic Expansion of Option Price

An asymptotic expansion up to the  eN*D-order of a call option price with maturity T
and strike price K where K = g(X(O)) — ey for arbitrary y € R is given as follows:

C(K, T) = P(0, T)[\/ﬂ (y\;LS)JrCN(y;)erN(y;) (15)
+Ze"+1P(o,T)cno[\/27n(yJ;C)+CN(VJ;)
€"1P(0, T)Ch [z N( ) VEryn )]
+n21 1| &T y ( o
JrZN:e"*ll:'(o,T)in“cnm[—y\/fT Hm-1 (~(y + C); E1) n(y+C)
n=1 m=2 ‘/ZT"
+22 Hip o ((y + ©)127) n(%) +yZN:e"*1P(O,T) cnoN(y\;;T:)

n=1

N 3n
n+l . y+C (N+1)
+yn§=1é **P(0,T) Elcnm VErHm-1 (=(y + C); Z7) ”(Tg)JrO(E ),
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Asymptotic Expansion of Option Price

Asymptotic Expansion of Option Price

Theorem 2(continued)

Here, Cnmis given by ( 10), Hy(X; 1) is the Hermite polynomial of
degree mdefined in ( 9),

.
C = g(X9)y f Yr Y20 Vo(X©, 0)dt,
0

P(0, T) denotes the price at time 0 of a zero coupon bond with
maturity T. N(X) stands for the standard normal distribution

function, and its density function is given by n(x) = %e"@/z.
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Asymptotic Expansion of Option Price

Numerical Example: SABR model

@ We consider European plain-vanilla call/put prices under the
SABR model ( Hagan-Kumar-Lesniewski-Woodward (2002))
(interest rate= 0%, for simplicity) :

ds(t) e (1)(SO(1)PdWE,
drOt) = e Q) dW + evor()dWE,

where v1 = pvd v, = (4/1 - p2)v0
Payoff: max{St — K, 0} (Call); maxK — Sy, 0} (Put).

16/119



Outline of A.E.

(eleTele] Tol

Asymptotic Expansion of Option Price

Numerical Example: Plain-Vanilla Option (SABR model)
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Figure: Approximation errors of ATM/OTM option prices Sg = 100, 8 =050 = 3,
vy=03,p=-07e=1T =10 K =10~ 200
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Asymptotic Expansion of Option Price

Extensions

@ Improvement Scheme for approximations of the tails of the densities
and deep OTMs of option prices
New Improvement Scheme for Approximation Methods of Probability
Density Functions : T-Tsuzuki (2013)
Weak Approximation with Asymptotic Expansion and Multidimensional
Malliavin Weights: T-Yamada (2013)

@ Different approximation formulas are obtained (e.g. the limiting
distributions are given by log-normal, shifted log-normal and
non-central y?) through change of variables of X1 or/and the
different ways to setting the perturbation parameter € (e.g. Vé(ng),),
eVI(XY), Vi(x¥)
Please see T-Toda (2009, 2013) for the details and numerical examples.
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Weak Approximation with Asymptotic Expansion Method
(Weak Approximation with Asymptotic Expansion Method)

@ (W, H,P): r-dimensional Wiener space
@ We consider a SDE with parameter &.

dX() = Vole, X{()dt+e Y Vi ()dW,
i=1

xe RN,

Xo(X)

e Vo: C([0, 1] x RN; RN), uniformly bounded,
o Vii=1--,r: CX(R;RN), uniformly bounded.
@ Non-degeneracy of the Malliavin covariance matrix
e _ XE(-X0(¥)
of Yf = .
e f: RN = R Lipschitz continuous function or bounded Borel
function
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Weak Approximation with Asymptotic Expansion Method

Approximation of E[ f(Xf(x))] with asymptotic expansion method:

m

E[f(X(X)] = ao(t, X) + Z sjaj (t, X) + o(e™), (16)

=1

ao(t, %) = E[f(X0(9)], X2(¥): a Gaussian variable, a(t,X) = E [ f(X())®{,
C[){ are Malliavin weights obtained by IBP (integration-by-parts) in Malliavin
Calculus.

Let us define P, and Q'(?) as follows:

Pf) = E[FOCOI] an

Q{"t): an approximation of P

m

Q) = X+ datx)
i=1
= E[fOONMM(E X X)), (18)
where
MP(sxY) =1+ )" SE[DIX() =Y. (19)
=1
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Weak Approximation with Asymptotic Expansion Method

Error estimates of the asymptotic expansion:

@ For any se (0,1] and Lipschitz continuous function f : RN — R,
there exists C > 0 such that
IPsf — Q@ fllo < Ce™1s™2)/2, (20)

@ For any se (0,1] and bounded Borel function f : RN — R, there
exists C > 0 such that

IPsF — QY llw < Ce™ 1™ D/2, (21)

(Iflleo = supern [T(X)))




Outline of A.E.
lolelel lelelelelele]

Weak Approximation with Asymptotic Expansion Method

@ Letus divide [0, T]into nequally time grids.

@ We connect Q?T‘/n) by ntimes:

(@109 = QRjpo 0 QFnf (9. 2

o (Lipschitz f) Ly xn
— an approximation method of order nTl/z

o (bounded f) =k xn
— an approximation method of order s
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Weak Approximation with Asymptotic Expansion Method

@ For any Lipschitz continuous function f : RN — R, there exists C > 0
such that

C
IPrf - (Q[’}/n))nflloo < 8m+1w-

@ For any bounded Borel function f : RN — R, there exists C > 0 such
that

C
1
lIPrf - (Q?']I'/n))nf”oo <e™ D2

Remark This is an improvement scheme of the asymptotic
expansion method.
(In fact, we don't need equally divided time grids.)
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Weak Approximation with Asymptotic Expansion Method

@ Local volatility model (LV) - CEV model -
dX = oXPdw.

@ Stocastic volatility model (SV) - SABR model -

Ot )<4g(j\/\4l,
v dWE, dWAIW2 = pdt.

dX

(j()'t

@ Call option price:  Prf(x) = E[(X7 — K)*], f(X) = (x = K)*.
@ Let us compute (Q?}/n))”f(x) in local volatility (LV) and
stochastic volatility models.
o Discretization: n = 1,2, 3, Order of the asymptotic expansion:
m=12
@ Comparison with Monte Carlo simulations
e maturity T =1,2,10discretization: 1,000 (T = 1), 2,000 (T = 2, 10),
number of sample paths 10,000,000
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Weak Approximation with Asymptotic Expansion Method

10.00%
5.00% Error rate AE lorder
0.00% -
Error rate AE lorder
- 0,
>-00% \ WeakApprox n=2
-10.00% \ Error rate AE lorder
-15.00% WeakApprox n=3
-20.00% \\ Error rate AE 2order
-25.00%
coocococococococooocoooo =—O=Error rate AE 2order
NORRAGENNRILNESE3R WeakApprox n=2
K

Figure: Error rate: T = 1, LV model (CEV with 8 = 0.5, X, = 100, o = 4(initial vol.
40%)), the method with 1st & 2nd order AE
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Weak Approximation with Asymptotic Expansion Method
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Error rate AE lorder

Error rate AE 2order

Error rate AE 2order
WeakApprox n=2

Figure: Error rate: T = 10, LV model (CEV with 8 = 0.5, X, = 100, o = 4(initial vol.

40%) ), the method with 1st & 2nd order AE
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Weak Approximation with Asymptotic Expansion Method

80.00%
60.00%

40.00% / Error rate AE Oth
20.00%

/ order

% —
0.00A) | /7—\ T Lo '_ﬂi_‘
-20.00% / Error rate AE 1st
-40.00% order
-60.00%
ejojolojolojojolololoNolololoNo]
NONXIIONIINE[IIL Error rate AE 1st
L order Weak Approx
QOOUOVOOLUULUOO
> n=2
=}
o

Figure: Error rate : T = 1: SV model(SABR with 8 = 10 = 0.3, v = 0.1,0 = -0.5),
the method with 1st & 2nd order AE
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Weak Approximation with Asymptotic Expansion Method

150.0%

100.0% /
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Figure: Errorrate : T = 2: SV model(SABR with =1, 0 =0.3,v=0.1,p = -0.5),
the method with 1st & 2nd order AE
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Basket Option Pricing in LSV with Jumps

Basket Option

@ Basket options are one of popular exotic options in commaodity
and equity markets.
@ The payoff of a basket call option is expressed as (9(St) - K)*.
e gis a basket price function defined by ~ g(St) := 3¢, w;Sh, where
St = (S%, e ,S$) are asset prices, and w; is a constant weight for
each i.
@ However, it is difficult to calculate a basket option price.
@ Numerical methods for PDE
@ Itis difficult to solve high dimensional PDEs.
@ Monte Carlo method

@ It needs a large amount of computational time to obtain an accurate
value.
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Basket Option Pricing in LSV with Jumps

Preceding Studies on Basket Options

@ Black-Scholes model
@ e.g. Brigo, Mercurio, Rapisarda and Scotti (2004).
@ Local volatility (LV) diffusion model
e e.g. Bayer and Laurence (2012).
@ Local volatility (LV) jump diffusion model
@ e.g. Xu and Zheng (2010).
@ Local stochastic volatility (LSV) model
@ e.g. Shiraya -T (2014).
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Basket Option Pricing in LSV with Jumps

Basket Option in LSV Model

Shiraya-T (2014) applied an asymptotic expansion method in
general diffusions to basket option pricing.
(Example)

@ We consider the valuation of basket options with the following
payoff (Cg(K, T)):

Ce(K,T) = max{§(T)-K.0},

where S(t) = 210S(1).
@ Model of each S;: SABR (1-SABR(e.g. Labordere(2008)))

ds() eI OESOMY AW,

doOt) = A6 - QM)dt+ evic @M AWE + evo0 O (H)dWE,
where vy = pv v, = (4/1-p?)v0
(8 = 0.5. For the other parameters, please see Shiraya-T (2014) for the

details.)
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Basket Option Pricing in LSV with Jumps

Numerical Example: Basket Option (LSV model)

Numerical Example: Basket Option with 100 Underlying Assets
(Shiraya-T(2014))

Table: Basket Call Option (T = 1)

Strike(K) ‘ 8,000 9,000 10,000 11,000 12,000
Monte Carlo 2,037.1 1,167.5 517.6 160.8 31.7
AE3rd 2,037.4 1,167.6 517.6 160.5 315
Difference 0.3 0.2 -0.0 -0.2 -0.2
Relative Difference (%) 0.0% 0.0% 0.0% -0.2% -0.7%
MC Std Error 0.7 0.6 0.4 0.2 0.2

Monte Carlo: the number of trials is 3 million with the antithetic variable
method.
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Basket Option in LSV with Jumps

(Model) We introduce a local stochastic volatility with jumps model.
(The model admits a local volatility function and jumps for not only
the underlying asset price, but also its volatility process.)

T T ‘
si = [ aisiar [ s (rhsl)awe
0 0
n (Nt ' T .
+Z(Zhsi’|’islﬁ,l_.fo AlS{E[hSi,I,l]dt}, (23)
=1 \j=1

. T . T _ i
O'IT = fo‘/v(el_a"t_)dt+jo‘ Py (O—II—)d\NtU

n (Nt _ T _
+ |le (Z; hgi,|,j0"rj'|_ - f(; A|O'It_E[ho-i!|’1]dt], (24)
= j=

where S =8, 0l =0 (i=1,---,d).
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Basket Option Pricing in LSV with Jumps
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Notations
@ a (i=1---,d)are constants.
Aand 6 (i =1,---,d) are nonnegative constants.

@ ¢si(X,y) and ¢,i(X) are some functions with appropriate
regularity conditions.

e WS and W”, (i=1,---,d) are correlated Brownian motions.
@ Each N, (I =1,---,n)is a Poisson process with constant
intensity A;. Nj, 1 =1,---,nare independent, and also

independent of all WS and W°".

@ 7 stands for the j-th jump time of N;.

@ Foreach I=1,--- ,nandi=1,---,d, both (Z;\i‘l hsi’Lj)lZO and
(ZN“ hyi ) J) are compound Poisson processes.

Nig _

(ZI = Owhen Ni: = 0)
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Basket Option Pricing in LSV with Jumps
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Notations (Continued)

@ For each | and X, hy1; (j € N) are i.i.d. random variables, where
X stands foroneof S'and o' (i=1,---,d).

o for the log-normal jump case, h,; = e — 1, where
Yl ~ N(mxi,,,yi’l) (for all j).

@ Forthe same land j, hsi;and h,; (i,i" = 1,---,d) are allowed
to be dependent, thatis  Ysijjand Y, ; (i,i"=1,---,d) are
generally correlated.

(hy,j and hy . (I # 1) are independent. hy;jand he . (j # |')
are independent. N, and h, | ; are independent.)
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Basket Option Pricing in LSV with Jumps
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REINET

By specifying the functions  ¢s and ¢, we can express various
types of local-stochastic volatility models.

@ Quadratic Heston model
#s(o, S) = (@S? + bS + ¢) Vo,
¢o(0) = Vo
@ SABR(A-SABR) model
¢s(o, S) = §o,
¢ (o) = 0.
@ CEV-type volatility on volatility model

¢S(O—’ S) = Sﬁso-’
¢0‘(o-) =g

(25)
(26)

27)
(28)

(29)
(30)
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Asymptotic Expansion

Perturbation

For a known parameter € € (0, 1], we consider the following
stochastic differential equation:  using a 2d-dimensional Brownian
motion Z = (Z%,--- ,Z%) (in stead of the correlated ones, WS, W),

fo S 9dt+ e Z f Pg.; (419, 51 dz!
N7

n
(€ cile) i,(€) (€)
+|Z[Zhs'usm— f ASIIE [N, ]dt], (31)
o9 = j; A - oyydt+ EZ f o (0t9) dZ}

Si}(s)

n (N7
(€ _ie) i(€) (€)
+|Z[Zh""‘ ,J_-f Aoy’ E[h,ll]dt], (32)
h(xf)lJ = e — 1 (log-normal jump case) , (33)
he = eH,i, (forall j, constant jump case) . (34)

XLl
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Asymptotic Expansion

Expansion around € =0

We assume the asymptotic expansions around € = O as follows:

SH9 ~ SMO eV 4 2 S' D (35)
oif(e) ~ O if(o) + 60’| (1) 2 I (2) T (36)
() ©) 1) 2
hx'l] ~ hx'|1+€hx'|1 2|hx'|1+"" 37)
; i h©)
i) ._ #si9 i) ._ oo © ._
where Sy e |’ o= s o Ml = e d o
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Asymptotic Expansion

Notations

For ease of exposition, we introduce the following notations.
Let us define: ®gi = (Psi g, -, Psi2q), Poi = (Pyi g, -+ , Pyri o) € R
D = (Dgt, - -+, D), Dy i= (D1, -+, Da)’ (d x 2d matrices).

We also define an operator ” =",
@ For d x 2d matrices A and B,

(A)11(B)11 -+ (A)r21(B)12d
AxB:= : - : (38)
(A)a1(B)ar - (A)d2d(B)azd

@ For a d x 2d matrix A and a d-dimensional vector B,

(A)1a(B)r -+ (A)r2d(B)
AxB=BxA:= (39)
(A)g1(B)g -+ (A)d2d(B)g
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Asymptotic Expansion

Notations

@ For d-dimensional vectors A and B,

(A)1(B)1
AxB:= : (40)
(A)a(B)g
@ We define dx(x =S or o) for a d x 2d matrix @5 (X= S or o) as
follows:
&((Dﬁ)n &(q)i)l,zd
OxDg = : : . (41)
(a1 5 (Px)aza

@ Let us also introduce the following notations:
So=(% %) Se=(St-- .S, o = (o, o),
et = (ealt eardt) et = (e—/llt e—ddt).

40/119



Basket Option Pricing in LSV with Jumps
0000@0000000

Asymptotic Expansion

Expression of S®

(Hereafter, we consider log-normal jump case.)
The expression of S®) is given as follows:

S(Tl) _ ]‘T T 4 g (U§o>’ St(O)) dz,
. (i
* Z[Z hS)j - ATE[h), || « S, (42)
=1 U=t
where l
SO - elis, @3
o-ﬁo) = 0+ (o-0) e, (44)
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Asymptotic Expansion

Expression of S®

The expression of S@ is given as follows:

T T
s@ - fo e 4 9505 (0?, 8) « SPdz, + fo &4 9,05 (2, 5°) « e Pz,
Yo [h2 ©)
2 2 0
+Z([Z h), - ATE[hE), || +S§
Nt T
+ 3 ) e T sB - AE[N), [« e f e’“‘*St@dt), (46)
2,1l . A
where
T n (NT
oM = j; e 5 @, (o) dz + Z [Z h(l_l)_j e T o-(T?I
~NE[RR | T f e/"*o-(o)dt) (47)
WY = Youii= apee s Yoay ) (@8)
hg?,j = Ysij*Ysy. (49)

The higher order expansions are obtained in the similar way.
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Expansion of Basket Call Payoff

Since g(x) = 2?21 w;X is a linear function, we can obtain following
expressions.

o(s¢) = 0(SP) +eo(sP) + Go(sP) v, 0

Then, for a strike price K = g(S?) — ey for an arbitrary y € R, the
payoff of the call option with maturity T is expanded as follows:

(e)y _ (0) +
als)- 1) = o2y

€

= e(as)+ 505?) +y+0(@)

= e(osP) +y)
2
€
+5 Loy (SP) + o(ed). (51)
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Expression of S® on {N, = k}

When the number of jumpsis k (I =1,---,n), thatis on
{NI = ki} ;= {Ny7 =K, -+ ,No1 = Kq},

S_(I_l) = f{lq) + éT, (52)
n
£k = Z(k. — AT)mg, * €7 + 5 (constant ), (53)
=1
R T
S = [ eTias(o.50)dz
0
n (K
+Z(Z)’s,| * Lsji+ €T xS (54)
=1 =

Here, mg) = (Mg, - -, Msq)) denotes the mean vector, and

vsi1 = (ysiy, - -+ ,vse) denotes the volatility vector of the jump sizes.
Isiji = (ds1jys -+ »{saj)) is @ random vector.

Each s ji ~ N(0,1) with (s j)’s correlation matrix .
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Density function of éT

The distribution of  g(Sr) is N (0,=f), and its density function is
expressed as

sk .o L X 55
”(X' » 27 )" o exp oy ikl [ (55)
JZJrZT T
where
.
S fo (W €T 4 g (52, SO)) (woe €T w g (10, SO)
n
+ MUERE T SO)’ﬂ{sJ (W yg) * el x g), (56)
1=1

where ¥, is the correlation matrix of  Zsji = ({s1,ji, "+ s j), and
W= (W, -, Wy).
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Expansion of Basket Call Price

In this setting, a basket option price  E[(g(St) — K)*] (with zero
discount rate for simplicity) is approximated as follows:

e|(o(st) - )]
= €€ |E| (051 +)" |oSn) = x (N = |

2
B[t 0(87) oS0 = x 18y =
+0(€2). (57)
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Coefficients of € and €2 for the Call Price

The coefficient of € is derived as:

E[E|(a(s%) +¥) JaGn) = x i = k|

=3 > [ (x+ (@w) +Y) 0. =¥)dx  (s8)
—(9(EN+Y)

k=0 3, ki=k

and the coefficient of 5—22 is expressed as:

[ st y5(5P) S0 518 -]

=i > p«klf

k=0 31 . Kk =k (9(Eug)+Y) [g(s'(l'Z))'g(ST) =X {N =k}
=021 K=

xn(x; 0, K )dx, (59)

where
noAT
Py = H VAL ki ) (60)

which is a probability of  {N; =k} := {Ny1 = kg, -+, Nn1 = k).
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Approximate Basket Call Price

By applying conditional expectation formulas (Lemma 3.2 in
Shiraya-T(2014)), we obtain an approximation formula for basket call option
price as follows:

E|(a(S1) - K)*]

N Yiq (k)
~ p {y N(i) z
;)Z%:k k1§ Vi o +(T

Hl(Yk,;E'Tk”) Hz(qu;E(Tk")
s T
T (ZT )

+C1

c3)n (vi; 0,2 ’)}. (61)

N(x) is the standard normal distribution function.

n ikl . 2
n(x,O,Z‘T’) = \/ﬁexp{ﬁ}

@ Coefficients C,, C, and Cj; are constants.

Hy (X; Z‘Tk”) is a k-th order Hermite polynomial,

Vi) 1= 9(Ep) +Y-
The detailed and the higher order expressions are given in Shiraya-T (2014).
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Numerical Examples: Model

@ We use the following model for numerical examples.

sto= f o'Si_dt+ f o (Sh s dwe
0 0
n (N1 » T )
+ 20D i Sk - - fo A|S{_E[hsi’|’l]dtJ, (62)
=1\{j=1
T

A0 - ol )dt+ fo V(o Yo dwg

R

3

I
S, -

n (Nt _ T )
+Z ZhgiJ,j(r'T“,—f(; A|O'I[,E[ho.i’|,l] dt], (63)
=1 \j=1
@ hy;=Hy, (forall j, constantjump case),
o hy ;= el —1 (log-normal jump case),

YXIi,l,j ~ N(n’_lxi,,,)/ii’l). for all ]
(X: S'"or o), (¢, v': positive constants)

49/119



Basket Option Pricing in LSV with Jumps
0O® 00000

Numerical Examples

Numerical Examples: Model

@ We set the jumps to be systematic jumps.

(that is, all asset prices and volatilities jump at the same time.

i.e. n=1, all the elements of 9 are 1, where ¥ is defined to be

the 2d x 2d correlation matrix among  {sijj and £ jy, i =1,---,d.)
@ We use the previous formula up to the  e?-order for the LSV

jump model with €3-order corrections, which are obtained by

the corresponding LSV model with no jumps.

o Examples of the expansion for no jump models are obtained in
Shiraya -T (2014).
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Numerical Examples

Numerical Examples: Parameters

We examine 5 assets basket call option prices.

@ Parameters of all assets are the same.

S, oy @ Bs B A 6 v W A T n
100 2 0 05 05 1 2 05 02 1 1 1
(initial vol. of S': 20% vol. on vol.: around 35%)
@ Jump Parameters
No Jumps Constant Jumps Log-normal Jumps Mixed Jumps
case | casell caselll case IV case V case VI case VI
Hgi - -5% -10% - - - -
H,i - 5% 10% - - 10% 20%
mg; - - - -5% -10% -5% -10%
Vs - - - 10% 20% 10% 20%
(Mixed jumps means log-normal jumps for asset prices and constant jumps for the

volatilities.)
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Numerical Examples: Parameters

@ Correlations

WS WSz WS: WSs WSS | W Wo2 o Wes o \Wos o WS
WSt 1 05 05 05 05|-05 -05 -05 -05 -05
WS2 | 05 1 05 05 05| -05 -05 -05 -05 -05
WS | 05 05 1 05 05| -05 -05 -05 -05 -05
WS | 05 05 05 1 05|-05 -05 -05 -05 -05
WSs | 05 05 05 05 1|-05 -05 -05 -05 -05
Wet | .05 -05 -05 -05 -05 1 05 05 05 05
Wez2 | .05 -05 -05 -05 -05]| 05 1 05 05 05
Wes | .05 -05 -05 -05 -05| 05 05 1 05 05
Wes | .05 -05 -05 -05 -05| 05 05 05 1 05
Wes | .05 -05 05 -05 -05| 05 05 05 05 1
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Numerical Examples: Results (LSV with No Jumps)

We show the numerical results compared with those of the Monte
Carlo method where the number of time steps is 512, and the
number of trials is 5 millions with antithetic variables.

@ Case | (No jump)

Stike | 80 90 100 110 120
MC 2085 1255 6.17 227 0.56
(StdErr) | (0.07) (0.06) (0.04) (0.03) (0.01)
AE 20.86 1256 6.17 227 0.55
Diff 001 001 000 -001 -0.01
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Numerical Examples: Results (LSV with Constant Jumps)

@ Case ll (Hs = -5% H, = 5%)

Stike | 80 90 100 110 120
MC 2099 12.80 649 255 0.70
(StdErr) | (0.07) (0.06) (0.05) (0.03) (0.01)
AE 2098 1279 649 255 071
Diff 001 001 001 -000 -0.01

@ Case lll (Hs = -10% H, = 10%)

Stike | 80 90 100 110 120
MC 2142 1353 739 332 116
(StdErr) | (0.08) (0.07) (0.05) (0.03) (0.02)
AE 2143 1354 739 331 114
Diff 001 001 000 -0.01 -0.02
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Numerical Examples: Results (LSV with Log-Normal Jumps)

@ Case IV (ms = -5%, ys = 10%

Stike | 80 90 100 110 120
MC 2145 1359 7.48 344  1.29
(StdErr) | (0.08) (0.07) (0.05) (0.04) (0.02)
AE 21.44 1359 748 343  1.26
Diff 001 -000 -0.00 -0.02 -0.03

@ Case V (ms = -10%ys = 20%)

Sstike [ 80 90 100 110 120
MC 2317 1591 10.02 572  3.00
(StdErr) | (0.11) (0.09) (0.08) (0.06) (0.05)
AE 2310 1585 998 570 298
Diff 008 -006 -0.04 -002 -0.02
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Numerical Examples: Results (LSV with Mixed Jumps)

@ Case VI (ms = 5%, ys = 10% H, = 10%)

Stike | 80 90 100 110 120
MC 2147 1359 745 340 1.26
(StdErr) | (0.08) (0.07) (0.05) (0.04) (0.02)
AE 21.48 1360 7.45 338  1.22
Diff 001 001 000 -002 -0.03

@ Case VIl (ms = —10% ys = 20% H,, = 20%)

Sstike [ 80 90 100 110 120
MC 2323 1592 997 564 294
(StdErr) | (0.10) (0.09) (0.08) (0.06) (0.05)
AE 2314 1585 991 559  2.89
Diff 009 -007 -0.05 -0.04 -0.05
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FBSDE Approximation Scheme

(Fujii-T(2012a))

@ The forward backward stochastic differential equations (FBSDESs) have
been found particularly relevant for various valuation problems (e.g.
pricing securities under asymmetric/imperfect collateralization ,
optimal portfolio and indifference pricing issues in incomplete and/or
constrained markets).

@ Their financial applications are discussed in details for example,
El Karoui, Peng and Quenez (1997), Ma and Yong (2000), a recent book
edited by Carmona (2009), Cr épey (2012(a,b)), T-Yamada (2012) and
references therein.

@ We will present a simple analytical approximation with perturbation
scheme for the non-linear FBSDEs. (mathematical validity:
T-Yamada(2013))
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FBSDE Approximation Scheme - Setup-

@ We consider the following FBSDE:

dv
Vr

—f(Xt,Vt,Zt)dt+ Zt . dw (64)
O(Xr), (65)

where V takes the value in R, W is a r-dimensional Brownian
motion, and % € RY is assumed to follow a diffusion which is
the solution to the (forward) SDE:

dX = yo(X)dt+ y(X) - dW; Xo = X. (66)

@ We assume that the appropriate regularity conditions are
satisfied for the necessary treatments.
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FBSDE Approximation Scheme

Perturbative Expansion for Non-linear Generator

@ In order to solve the pair of  (V;, Z) in terms of X;, we extract the
linear term from the generator  f and treat the residual
non-linear term as the perturbation to the linear FBSDE

@ We introduce the perturbation parameter ¢, and then write the

equation as
(6 _ s _ (6) ~(e) (9 .
V9 = PVt eg(, VI, Z)dt+ 29 - dw  (67)
Vi = o),

where e = 1 corresponds to the original model by !

(X, Vi, Zt) = —c(X)Vi + 9(Xe, Vi, Z4) - (68)

10r, one can consider € = 1 as simply a parameter convenient to count the approximation

order. The actual quantity that should be small for the approximation is the residual part g.
59/119



FBSDE Approximation Scheme
0O00®00000000000
FBSDE Approximation Scheme

Perturbative Expansion for Non-linear Generator

@ Choosing the linear term C(Xt)Vt(f) in such a way that the
residual non-linear term g becomes as small as possible is
expected to achieve good approximations.

@ Now, we are going to expand the solution of BSDE ( 67) in terms
of e: that is, suppose Vt(f) and Zt(f) are expanded as

VO = VO revP+ V@ 4. (69)
z0 = 20+ eZP+ 7P+ (70)
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FBSDE Approximation Scheme

Perturbative Expansion for Non-linear Generator

@ Once we obtain the solution up to the certain order, say k for
example, then by putting € =1,
~ k . ~ k .
W=y V0 z=37) (71)
i=0 i=0

is expected to provide a reasonable approximation for the
original model as long as the residual term g is small enough to
allow the perturbative treatment.

° Vt(i) and Zt(i), the corrections to each order can be calculated
recursively using the results of the lower order approximations.
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FBSDE Approximation Scheme

Recursive Approximation
Zero-th Order

@ For the zero-th order of ¢, one can easily see the following
equation should be satisfied:

dv@ = cx)vVQdt+Zz© . dw (72)
@ It can be integrated as
VO _gle c<><s>dS<1>(xT)|5Ut] (74)

which is equivalent to the pricing of a standard European
contingent claim, and Vt(o) is a function of  X;.

@ Applying It &'s formula (or Malliavin derivative), we obtain Zt(o) as
a function of X, too.
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Recursive Approximation
First Order

@ Now, let us consider the process  V© —V(©,_ One can see that its
dynamics is governed by

d(Vt(f) — V'((O)) = C(Xt)(vt(f) B Vt(o))dt
- g0, Zdt+ (2 - Z0) - dw
Vi -vP = 0. -

@ Now, by extracting the e-first order term, we can once again recover
the linear FBSDE

dv® = c(X)VPdt- g%, VI, ZO)dt+ Z - dwy
v = o, (76)

which leads to

.
v = E[ f e K exadsy(x, VO, zO)dy
t

‘Ft] . (77)
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Recursive Approximation

@ Because VL(,O) and ZL(,O) are some functions of  X,, we obtain Vt(l)
as a function of X;, and also Z((l) through It &'s formula (or
Malliavin derivative).

@ In exactly the same way, one can derive an arbitrarily higher
order correction. Due to the e in front of the non-linear term g,
the system remains to be linear in the every order of
approximation. e.g.

dv® = c(xt)vt(z)dt—(aﬁvg(xt,vt(m,zt(o))vt(“

71004V, 20) - 2%) dt 22w
v@ - 0

+
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FBSDE Approximation Scheme

Evaluation of (V®,Z®) in terms of X

@ Suppose we have succeeded to express backward components
(Vt, Z;) in terms of X; up to the (i — 1)-th order. Now, in order to
proceed to a higher order approximation, we have to give the
following form of expressions with some deterministic function
G(-) in terms of the forward components X, in general:

. T U
v = E[ f ek cdsG(x,)du
t

Tt} (78)
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Evaluation of (V®,Z®) in terms of X

@ Even ifitis impossible to obtain the exact result, we can still
obtain an analytic approximation for (Vt(i), Zt(i)).

@ For instance, an asymptotic expansion method allows us to
obtain the expression.

In fact, applying the method, Fujii-T (2012a) has provided some
explicit approximations for Vt(i) and Zt(i).

@ Also, Fujii-T (2012b) has explicitly derived an approximation
formula for the dynamic optimal portfolio in an incomplete
market and confirmed its accuracy comparing with the exact
result by Cole-Hopf transformation. (Zariphopoulou (2001))
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Forward Agreement with Bilateral Default Risk

@ As the first example, we consider a toy model for a forward agreement
on a stock with bilateral default risk of the contracting parties, the
investor (party- 1) and its counter party (party- 2). The terminal payoff of
the contract from the view point of the party-  1is
O(St) =St -K (79)
where T is the maturity of the contract, and K is a constant.
@ We assume the underlying stock follows a simple geometric Brownian
motion:
dS; = rSidt + oS, dW (80)
where the risk-free interest rate  r and the volatility ¢ are assumed to
be positive constants.

@ The default intensity of party- i, hj is specified as
hlz/l, h2:/1+h (81)

where A and h are also positive constants.
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Forward Agreement with Bilateral Default Risk

@ In this setup, the pre-default value of the contract at time t, V; follows

dV; = rVydt-hy maxEV,, 0)dt + hy max(V;, 0)dt + Z,dW
= (r + )Vidt+ hmax(V;, 0)dt + Z.dW (82)
Vi = ®(Sy). (83)

@ Now, following the previous arguments, let us introduce the expansion
parameter ¢, and consider the following FBSDE:

dv? = pv9dt- eg(V9)dt+ ZOdw (84)
dS, = S(rdt+cdwW), (86)

where we have defined u=r+ 2and g(v) = —hvl.q.
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FBSDE Approximation Scheme

Forward Agreement with Bilateral Default Risk

@ The next figure shows the numerical results of the forward contract
with bilateral default risk with various maturities with the direct
solution from the PDE (as in Duffie-Huang [1996]).

@ We have used
r=002 1=00L h=003 (87)
=02 Sp=100, (88)

where the strike K is chosen to make V((,O) = 0O for each maturity.

@ We have plot V@ for the first order, and V) + V@ for the second order.
(Note that we have put € = 1to compare the original model.)
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Forward Agreement with Bilateral Default Risk

PDE and Recursive Approximation
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Figure: Numerical Comparison to PDE
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Forward Agreement with Bilateral Default Risk

@ One can observe how the higher order correction improves the
accuracy of approximation.

@ In this example, the counter party is significantly riskier than the
investor, and the underlying contract is volatile.
@ Even in this situation, the simple approximation to the second order

works quite well up to the very long maturity.

@ In another example, 2, our second order approximation has obtained a
fairly close value( 2.953) to the one( 2.95with std 0.01) by a
regression-based Monte Carlo simulation of Gobet-Lemor-Warin[2005].

2a self-financing portfolio under the situation where there exists a difference between the

lending and borrowing interest rates
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Example: Density of Approximate CVA

Fujii-Shiraya-T(2012,2014)

@ When this technique is applied to evaluation of a pre-default contract
value with bilateral counter party risk, Its first order approximation
term can be regarded as CVA(credit value adjustment) s

@ We present a simple example of an analytic approximation for this
term by our 3rd order asymptotic expansion method.

@ In particular, we consider a forex forward contract with bilateral
counter party risk, where both parties  post their collateral perfectly
with the constant time-lag ( A) by the same currency as the payment
currency. We also assume the risk-free interest rate is equal to the
collateral rate.

30ur convention of CVA is different from other literatures by sign where it is defined as
the “charge” to the clients. Thus, our CVA = -CVA.
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FBSDE

We consider a forward contract on forex  S° with strike K and
maturity 7; the relevant FBSDE for the pre-default contract value is
given as follows: ( h (j = 1, 2) is the each counter party’s hazard
rate process; e, ¢ are expansion parameters.)
dVe = rVedt— ef (00, b2, VE, VE ) dt+ ZedW; V, = S0 - K,
PR PE7 VE VD) = I (VE, = VO = 0V = V)

di’ = olhidt+ soh{’ (> ¢, dWE); by = b, (j =1,2)
n=1

3
uSYdt + 6v? (Sff (Z Ca,, dW); S§ =0, =T -y,
n=1

dsy

4
dy = k(- )dt+ 57D CaydW); v = vo.
n=1
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First order of €

The first order equation is expressed as follows:
4
dVE = rvidt - £(5, V2,V )dt+ > ZE dW; VE=0
n=1
Then, our CVA is represented by the following:

T
Ve = f VB[ f(u, Ve VO] du
t
FQU Vi Via) = e (Vs = VO = hE - (V0 = VW)
where Vo =0when u<t+A.

VS — e—rf(T—U)Sﬁ _ e—r(r—u) K,
VO-VO = glimugh e WAGE (U A,T),

k(u;A,r) = "9 - ™K.
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Numerical Example

@ We apply the asymptotic expansion method to evaluation of
cvat, u) = e "UDE, [f(u, VS,VS,A)] up to the third order. Then, the
value of CVA is approximated by

CVAt 1) = f ' cVane(t, u)du+ o(6%). (89)
t

@ Due to the analytical approximation of each  cVaag(t, u), we have
no problem in computation, which is very fast.
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Example: Density of Approximate CVA

Approximate density of CVA

We show the density function of approximate CVA by the
asymptotic expansion method with Monte Carlo simulation. The
maturity of forward contractis 7, T denotes the future time when
CVA is evaluated, and A denotes the lag of collateral.
@ maturity ( 7): 5 years, evaluation date ( T): 2.5 years.
@ strike: 10,000
o time step size: isyear.
@ the number of trials: 325,000 with antithetic variates.
Procedure:
@ implement Monte carlo simulation of the state variables ( ht, h?,'S, v)
until T.
@ given each realization of the state variables, compute cVane(T, u).

@ integrate cVa\g(T, U) numerically with respect to the time parameter u
from T to 7, and plot the values and their frequencies after
normalization.
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Example: Density of Approximate CVA

Numerical Example

The parameters are set as follows:
@ parameters of h';
hl 0.02, ' = -0.02, oy = 20%
@ parameters of h%
h2 0.01, @? = 0.02, o = 30%
@ parameters of S;
So=10000r=pu=1%8=1.
@ parameters of v;
vo =10% k =1, 6 = 20% ¢ = 30%
@ correlation matrix
ht  h? S v
ht 1 05 -03 02
h2| 05 1 01 01
S |-03 01 1 -08
v 0.2 0.1 -0.8 1

77/119



FBSDE Approximation Scheme
000VVOBO!

Example: Density of Approximate CVA

Density of CVA

Figure: Density Functions of CVA with Different Time-Lags
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Example: Density of Approximate CVA

Density of CVA

@ The longer the time lag is, the wider the density is.

@ The mode (average) moves to the right when the time-lag
becomes longer.

f(u, Vo, VO ) =hte (V2 =V —h2e (V0 - V2 ).

@ When the first term increases, the CVA also increases.
e The hazard rate h'in the first term tends to be largerthan ~ h? in the
second term in our parameterization.
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Example: Density of Approximate CVA

Density of CVA

Figure: Density Functions of CVA with Different Evaluation Dates
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The shorter the time to maturity (7 — T) becomes, CVA becomes smaller.
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Perturbation Technique for Non-linear FBSDEs with Interactin

Perturbation Technique with Interacting Particle Method

(Fuijii-T(2012))

@ We will provide a straightforward simulation scheme to solve nonlinear
FBSDEs at each order of perturbative approximation.

@ Due to the convoluted nature of the perturbative expansion, it contains
multi-dimensional time integrations of expectation values, which make
standard Monte Carlo too time consuming.

@ To avoid nested simulations, we applied the particle representation
inspired by the ideas of branching diffusion models(e.g. McKean (1975),
Fujita (1966), Ikeda-Nagasawa-Watanabe (1965,1966,1968),
Nagasawa-Sirao (1969)).

@ Comparing with the direct application of the branching diffusion method,
our method is expected to be less numerically intensive since the
interested system is already decomposed into a set of linear problems.
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Perturbation Technique with Interacting Particle Method

@ Again, let us introduce the perturbation parameter €

dV&9 = —ef(Xe, VO, Z)ds+ 29 - dws (50)
VA9 = (),
where X; € RY is assumed to follow a generic Markovian forward SDE
dXs = yo(Xs)ds+ y(Xs) - dWs; X = X (91)

@ Let us fix the initial time as  t. We denote the Malliavin derivative of
Xy (Uu>t) attime tas

DX, € R (92)
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Perturbation Technique with Interacting Particle Method

@ lIts dynamics in terms of the future time  u is specified by (Yl,u)ij = axt, Xi:

d(Yi)j = Gre(Xa)(Yew)sdu+ aiya(Xu)(Yew)kdWE
(Vo) S (93)

where 9y denotes the differential with respect to the k-th component of

X, and 6ij denotes Kronecker delta. Here, iand jrunthrough {1,---,d}
and {1,---,r} for a. Here, we adopt Einstein notation which assumes

the summation of all the paired indexes.

@ Then, it is well-known that
(Z)th)a = (Yt,UV(Xt))iap

where a€{1,---,r}is the index of r-dimensional Brownian motion.
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Perturbation Technique with Interacting Particle Method

@ ¢-0th order: For the zeroth order, it is easy to see
VO = E[eoa)|7A] (94)

E[()i‘IJ(XT)(YtTY(Xt));

il (95)

D
C
|

@ lItis clear that they can be evaluated by standard Monte Carlo
simulation. However, for their use in higher order approximation, it is
crucial to obtain explicit approximate expressions for these two
guantities. (e.g. Hagan et al.(2002), an asymptotic expansion method)

@ In the following, let us suppose we have obtained the solutions up to a
given order of asymptotic expansion, and write each of them as a
function of x:

0) _ \/0)
{ VO = O(x,) )

7 = 29(x,).
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Perturbation Technique with Interacting Particle Method

@ e-1st order:

Vo - f TE[f(xu,vﬁf’),zﬁO’)‘ﬂ]du
t

T
= [ B[O 2000 o7)
t
@ Next, define the new process for (s> t):
VO = eﬁsduduvél)’ (98)

where deterministic positive process  4; (It can be a positive constant
for the simplest case.).
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Perturbation Technique with Interacting Particle Method

@ Then, its dynamics is given by
dV® = A VPds— A fig(Xs VO(XS), Z9(Xs))d s+ ek Wiz . gwy, |
where

fio(x, VO(X), ZO(x)) = %eﬁ wdug e O(x), Z9(x)).

@ Since we have V" = V!, one can easily see the following relation
holds:

§
VP =E M & K 45957, iy (X VO(X), Z0(X,))du

ﬂ] (99)

@ As in credit risk modeling (e.g. Bielecki-Rutkowski (2002)), it is the
present value of default payment where the default intensity is As with
the default payoffat  s(> t) as fis(Xs, VO(Xs), Z9(Xs)). Thus, we obtain the
following proposition.

86/119



Perturbation Technique for Non-linear FBSDEs with Interactin

Perturbation Technique with Interacting Particle Method

Proposition
The Vt(l) in (97) can be equivalently expressed as
Vi = LB [ Liery for (X VOX), 20060 Tt] : (100)

Here 7 is the interaction time where the interaction is drawn independently from
Poisson distribution with an arbitrary deterministic positive intensity process A;. f
is defined as

fis(x, VO(X), Z0(X)) = %efts”“d“f(x, VO(x), Z9(x)) . (101)
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Perturbation Technique with Interacting Particle Method

@ Now, let us consider the component  ZW. It can be expressed as

.
70 = f E [z)tf(xu,v“’)(xu), 29(X,)) 7—}] du (102)
t
Firstly, let us observe the dynamics of Malliavin derivative of v
follows
dDVE) = —(DXYVi(Xs, VO, 2O f (X, VO, 29) + (D Z() - dW;
oVv® = Z0, (103)
where
Vi(x, V@, 29 = §; + 9vO(x)dy + 872V (%), (104)

£(x, VO, 29) = f(x, VO(x), Z20(x)). (105)
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Perturbation Technique with Interacting Particle Method

@ Define, for (s> t),
DVY = el WDV D), (106)
Then, its dynamics can be written as

ADVE) = 1(DVE)ds— A(DXYVi(Xe, VO, 29) (X, VO, Z%)d s
+ek wdv (g 7)) . gy, (107)

We again have
DVO = 70, (108)

@ Hence,

.
z® :E[ f & K 1950 (DX V3 (X, VO, 2 foy (X, V@, 29)du
t

ﬁ] . (109)
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Perturbation Technique with Interacting Particle Method

@ Thus, following the same argument for the previous proposition, we
have the result below:

Proposition

Z™ in (102) is equivalently expressed as
ZEO = Lo B[ Lirer (Yery(Xe)aVi (X, VO, 29) i (X, VO, 29)| 7] (110)

where the definitions of random time 7 and the positive deterministic process A
are the same as those in the previous proposition.
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Perturbation Technique with Interacting Particle Method
Monte Carlo Method

Now, we have a new particle interpretation of  (V®,Z(®) as follows:

Vt(l) = 1{T>t)E [ 1(T<T) f;‘r()(‘rv V(O)s Z(O))‘ ﬁ:l (111)
Z0 = LB Leery (e (X)) Vit VO, 20 fir (X V0, 20) | 7| (112)

which allows efficient time integration with the following Monte Carlo

scheme:

e Run the diffusion processes of Xand Y

e Carry out Poisson draw with probability AsAsat each time sand if "one” is
drawn, set that time as 7.

e Then stores the relevant quantities at 7, or in the case of (7 > T) stores 0.
e Repeat the above procedures and take their expectation.
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Numerical Example

Numerical Example

(Fujii-Shiraya-T (2012,2014)) An example for pre-default values with
imperfect collateralization  * :

@ The counter party sells OTC European options on WTI futures. 5

@ For simplicity, we consider a unilateral case, where counter party is
defaultable, while the investor is default-free, and the collateral is
posted as the same currency as the payment currency (that is, the
currency is USD).

@ We consider the following imperfect collateral cases:

@ No collateral
@ Cash collateral with time-lag
@ Asset collateral with time-lag

4As for an application to American option pricing, please see Fuijii-Sato-T (2012)

SLater, we will see a basket option on WTI and Brent futures.
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Numerical Example

@ CIR model for the hazard rate process ( h).
@ SABR model for WTI futures price process (S and v).

@ Log-Normal model for a collateral asset price process ( A).

dhy = k(0-h)dt+yvhcdW; ho=hyo (113)
2
dS. = w(SF (D) c,dW); So = %o, (114)
n=1
3
v = th(Z C3,dW); vo = Yo, (115)
n=1
4
dA = uaAdt+ oaA() | caydW); Ao = 2. (116)

n=1
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Numerical Example

@ The dynamics of pre-default value V can be described by a non-linear
FBSDE:
d\/[ = I’Vldt - f(h{, Vl, Fl)dt + Z[ . d\M

(117)
Vi =(Sr-K)" or (K-Sr7)",

where

@ I : collateral process
(e.g. cash collateral with a constant time lag ATy =Viea)

@ r(risk free rate), c(collateral rate), I(loss rate) : nonnegative constants
for simplicity.  ©

We put € in front of the driver, f to apply our perturbation technique with
interacting particle method.

6L ater, we will see a more general case, where a stochastic collateral cost is taken into

account.
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Numerical Example

@ Counter party does not post collateral or posts collateral with the
constant time-lag ( A) by cash or an asset A.

@ no collateral case:

f(h, Ve T) = —Ih(W)*". (118)
@ time-lag collateral case
e cash collateral:
f(ht, Vt, l"t) = (r - C)Vt_A
=Ihe (Ve = Vi)™, (119)

e asset collateral:

f(he, Vi, Tv)

(r = oViea (%)

—Ih, (vt —vt_A(A(i)) . (120)

—A
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Numerical Example

Parameters

@ We use the data of CME WTI option and futures prices.
The maturity of the underlying futures is DEC 15, and the maturity of WTI option
is Nov 17, 2015.

@ Parameters of WTI futures are obtained by calibration to the market values of
futures option prices on July 10, 2012.

@ We assume that the risk free rate  r is equal to collateral rate c.

@ The discountrate is ¢ = 0.295%which is calculated by OIS with the same
maturity as the option maturity.

@ The recovery rateis R=0(.e. | =1).

@ We use the results of Denault et al., (2009) for the parameters of hazard rate
processes and the results of Hull et al.(2005) for the initial values of hazard
rates.
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Numerical Example

Parameters/Monte Carlo

@ Calibrated parameters are as follows 7 (WTI price’s initial vol.: about
23%):

Table: Parameters of WTI DEC15 in SABR model

‘ S ﬁ 1I>0 Ty P
WTI DEC15 ‘ 84.48 05 2117 0410 -0.112

We calculate the pre-default value of European option whose maturity
is the same as that of futures option. (about 3.3 years to the maturity)
The details of Monte Carlo method simulation are as follows:
o time step size is 1/200 years.
o the number of trial is 10 million.
e Hagan et al. formula (2002) is used for evaluation of default-free
European options, thatis  V©.
7As futures options traded in CME(WTI) are American type, we calibrate to European
option prices with the implied BS(log-normal) volatilities that are obtained by a binomial
method.
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Numerical Example

Analysis

@ We check the following points.
e correlation effect: (S, h), (S, V), (h, v), (S, A), (v, A) and (h, A).
e collateral effect: no collateral, cash collateral with constant
time-lag or asset collateral with constant time-lag.
e rating effect: from Aaa to B.
e the second order value’s effect.
e maturity effect: from 2 years to 10 years.
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Numerical Example

Correlation Effect

Firstly, we test the correlation effects among the hazard rates, the
underlying asset price, its volatility and the collateral asset price.
In this example, we set the following assumptions.

the correlations which are not explicitly specified are set to be 0.
@ parameters of the hazard rate processes are those of Baa rating.

@ parameters of the collateral asset are  ua = 0and oa = 50%

@ the time-lag ( A) of collateral is 0.1.
o

strike price is ATM.
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Numerical Example

Correlation Effect - No Collateral

Table: Pre-default values of call option contracts without collateral

Correlation [ 07 -0.35 0 0.35 07

Sand h [ Oth [ 14.648 14.648 14.648 14.648 14.648
1st -0.784  -0.987  -1220  -1.465  -1.742
2nd 0027 0043 0065 0091 0123
Total | 13890 13.704 13492 13.273 _ 13.029

Sandy | Oth | 13789 14.338 14.648 14719 14553
1st -1.147  -1192  -1220  -1231  -1.222
2nd 0061 0063 0065 0066  0.065

Total 12.703 13.210  13.492 13.554 13.397
hand v Oth 14.648 14.648 14.648 14.648 14.648
1st -1.055 -1.134 -1.220 -1.312 -1.410
2nd 0.050 0.057 0.065 0.074 0.085
Total 13.642 13.570  13.492 13.410 13.322

@ When the correlation between S and hincreases ( —0.7 — +0.7), the absolute
values of the first and the second order become larger. (High correlation
between S and h means that the default risk becomes high when the option
value is high.)
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Numerical Example

Correlation Effect - Cash Collateral

Table: Pre-default values of call option contracts with cash collateral

Correlation [ 07 -0.35 0 0.35 07

Sand h [ oth 14648  14.648 14648 14648  14.648
1st -0.116 0137  -0160  -0185  -0.211
2nd | 0.00004 0.00004  0.00004  0.00004  0.00004
Total | 14.532 14511 14488 14.463 _ 14.436

Sandv | Oth 13789 14338 14648 14719 14553
1st -0.127 0144  -0160  -0174  -0.187

2nd 0.00004  0.00004  0.00004 0.00004  0.00004
Total 13.663 14.194 14.488 14.545 14.366
hand v Oth 14.648 14.648 14.648 14.648 14.648
1st -0.130 -0.144 -0.160 -0.177 -0.195
2nd 0.00004  0.00004  0.00004 0.00004  0.00004
Total 14.518 14.503 14.488 14.471 14.452

@ The effect of the second order value seems negligible under collateralization
with this level of time-lag.
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Numerical Example

Correlation Effect - Asset Collatral

Table: Pre-default values of call option contracts with asset collateral

Correlation [ 07 0.35 0 0.35 0.7
Sand h | Oth 14.648 14.648 14648 14.648 14.648
1st -0.128  -0.154  -0.183  -0.214  -0.249

2nd 0.0001  0.0002 0.0003 0.0004  0.0006
Total 14520 14.494 14465 14433  14.399
Sand v | Oth 13.789  14.338 14.648 14.719  14.553
1st -0.154 -0.169 -0.183 -0.194 -0.204
2nd 0.0003 0.0003 0.0003 0.0003 0.0003
Total 13.635 14.169 14465 14525 14.350
hand v Oth 14.648 14.648 14.648 14.648 14.648
1st -0.152 -0.166 -0.183 -0.201 -0.220
2nd 0.0002  0.0003 0.0003 0.0003 0.0004
Total 14496 14481 14465 14447  14.428

@ The first order value with asset collateral is about 1.2 times as large as that with
cash collateral.

@ The effect of the second order value also seems negligible.
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Numerical Example

Correlation Effect - Asset Collateral

Table: Pre-default values of call option contracts with asset collateral

Correlation [ 07 0.35 0 0.35 0.7
Sand A | Oth 14.648 14.648 14648 14.648 14.648
1st -0.220 -0.202  -0.183  -0.160  -0.132

2nd 0.0007  0.0005 0.0003 0.0001  0.0000
Total 14.428 14.446 14.465 14.487 14,515
vand A Oth 14.648 14.648 14.648 14.648 14.648
1st -0.192 -0.188 -0.183 -0.178 -0.172
2nd 0.0004 0.0004 0.0003 0.0002 0.0002
Total 14.455 14.460  14.465 14.470 14.475
hand A Oth 14.648 14.648 14.648 14.648 14.648
1st -0.192 -0.188 -0.183 -0.178 -0.174
2nd 0.0004  0.0004 0.0003 0.0002  0.0002
Total 14.456 14.460  14.465 14.470 14.474

@ Correlation effect between the underlying asset price and the collateral asset price seems
similar order as the one between the underlying asset price and the hazard rate.

@ When the correlation between S and A is negative, the increase in the option premium and
the decrease in the collateral value occur simultaneously. (That is, it requires more
collateral.)
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Rating Effect - No Collateral

Table: Pre-default values of call option contracts without collateral

Strike [ 70 80 85 90 100

Aaa | Oth 22.658 16.798 14.333 12.179  8.744
1st 0474 0351 -0.300 -0.254  -0.182
2nd 0.005 0004 0003  0.03  0.002

Total 22.189 16.450 14.036 11.928 8.564
Baa Oth 22.658 16.798 14.333 12.179 8.744

1st -1.879 -1.392 -1.186 -1.007  -0.720
2nd 0.100 0.074 0.063 0.054 0.038
Total 20.879 15.480 13.210 11.226 8.062
B Oth 22.658 16.798 14.333 12.179 8.744
1st -7.877 -5.833 -4.972 -4.219  -3.017
2nd 2.155 1.595 1.359 1.153 0.823

Total 16.936 12,560  10.720 9.113 6.551

@ the worse is the rating, the more important the second order becomes.

@ For the case of single B, if the second order value is not taken into account, the
pre-default value is more than 10% different from the first order pre-default
value.
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Numerical Example

Rating Effect - Asset Collateral

Table: Pre-default values of call option contracts with asset collateral

Strike [ 70 80 85 % 100
Aaa | Oth 22658 16798 14333  12.179 8.744
1st -0.064 0051  -0.045  -0.040  -0.031
2nd | 0.00003  0.00002  0.00002  0.00001  0.00001
Total | 22594  16.747 14288 12.139 8.714
Baa | Oth 22658 16798 14333  12.179 8.744
1st 0250 0199  -0.177 0156  -0.120
2nd | 0.00047 0.00035  0.00030  0.00025  0.00018
Total | 22409 16599  14.157  12.024 8.624
B oth 22658 16798 14333  12.179 8.744
1st -1.029  -0.822 0729  -0.644  -0.497
2nd | 0.00996 0.00737  0.00628  0.00533  0.00380
Total | 21.639 15983 13610 11541 8.251

@ The effect of the second order value seems negligible under collateralization
with this level of time lag, even if the rating is single B.
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Implied Volatility

Rating Effect - Implied Volatility (No Collateral)

Figure: Implied volatilities of call options without collateral
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@ The shape of the skew of rating B is different from that of rating Aaa. The
difference of IV from the default-free case is larger for ITM, and the size of
difference varies in rating.
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Implied Volatility

Rating Effect - Implied Volatility (Asset Collateral)

Figure: Implied volatilities of European call options with risky asset collateral
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@ |In this case, the shape of all ratings is similar.

@ The level of implied volatility is different in rating.
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Implied Volatility

Correlation Effect (S, h) - Implied Volatility (Rating : B)

Figure: Implied volatilities of European call and put options without collateral
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@ When the correlation between the underlying asset price and the hazard rate becomes
high, a call option’s implied volatility becomes low.
@ This is because a default probability will increase if the price rises (that is, the option value
rises).

@ For the case of put options, the shape is reversed.
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Implied Volatility

The Second Order Effect - Implied Volatility (Baa)

Figure: Implied volatilities of European call and put options without collateral
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@ The difference between the first and the second is not so large in this case.
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Implied Volatility

The Second Order Effect - Implied Volatility (B)

Figure: Implied volatilities of European call and put options without collateral
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@ It seems better to take the second order value into account.
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Maturity Effect - No Collateral (Baa)

Next graph shows the values of Oth (default free), 1st and 2nd order price of the ATM
option without collateral in Baa rating.

Figure: Pre-default values of call option contracts without collateral
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@ For the long maturity case, the second order value has larger impact on the pre-default
value.

@ For the case of 10 years maturity, the 2nd order affects by more than 5%. 111110
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Maturity Effect - Asset Collateral (Baa)

Figure: Pre-default values of call option contracts with asset collateral
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@ When we post the collateral, the second order effect does not increase.

@ The second order effect can be ignored even if the maturity is more than 10
years.
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Stochastic Collateral Cost

@ Next, we consider a more general case:

d\/t = C\/tdt— f(Yu yt, ht,Vt,l"t)dt+ Z- dW, (121)
where
O % Vi) = S —-wVi—Ih (Vi - TY)" (122)
y: = ry—c(collateral cost of USD ) (123)
. = P — C(collateral cost of T%) (124)

@ For numerical examples, we set ¥ = 0 and suppose Y; = I — Cwhere r
follows a CIR process with a nonnegative constant c. Then, we put €in
front of f to apply our perturbation technique with interacting particle
method.

113/119



Perturbation Technique for Non-linear FBSDEs with Interactin
0000000080 0000

Implied Volatility

Stochastic Collateral Cost

@ CIR model for risk free rate process ().

5
dre = & (6 — 1) dt+y V() 65, dW); 1o = r(0). (125)

=1

Table: Parameters of USD risk free rate process

‘ I’(O) Ky O Yr
USD Risk Free Rate ‘ 1% 0.2 1% 0.05

@ The other parameters are the same as before.
@ The rating of counter party is Baa.
@ We check the following points.

e correlation effect: (S, h), (S, y), and (h, y).
e collateral effect: no collateral, asset collateral with constant
time-lag 0.1.
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Correlation Effect - No Collateral

Table: Correlation Effects - No Collateral

Correlation [ 07 0.35 0 0.35 0.7

Sand h | Oth 14.648 14.648 14648 14.648 14.648
1st -1.129  -1.335  -1.565 -1.821  -2.100
2nd 0.051 0.072 0.099 0131  0.170

Total 13.570 13.385  13.181 12.958 12.717
Sandy | Oth 14.648 14.648 14.648 14.648 14.648
1st -1.418 -1.488 -1.565 -1.650 -1.742
2nd 0.083 0.090 0.099 0.109 0.119
Total 13.313 13.250 13.181 13.106 13.025
hand y Oth 14.648 14.648 14.648 14.648 14.648
1st -1.565 -1.565 -1.565 -1.565 -1.565
2nd 0.093 0.096 0.099 0.102 0.105
Total 13.176 13.179 13.181 13.184 13.187

Change in the correlation between S and y affects on the value by at most 2 %, while
change in the correlation between S and h does by around 6%.
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Correlation Effect - Asset Collateral

Table: Correlation Effects - Asset Collateral

Correlation [ 07 0.35 0 0.35 0.7

Sand h | Oth 14.648 14.648 14648 14.648 14.648
1st -0.505 -0.532 -0.561  -0.593  -0.627
2nd 0.007 0.008 0.008 0009  0.010

Total 14.150 14.124  14.095 14.064 14.030
Sandy | Oth 14.648 14.648 14.648 14.648 14.648
1st -0.397 -0.475 -0.561 -0.655 -0.757
2nd 0.004 0.006 0.008 0.011 0.015
Total 14254  14.178 14.095 14.004 13.905
hand y Oth 14.648 14.648 14.648 14.648 14.648
1st -0.560 -0.561 -0.561 -0.561 -0.561
2nd 0.008 0.008 0.008 0.009 0.009
Total 14.095 14.095  14.095 14.095 14.095
Aandy | Oth 14.648 14.648 14.648 14.648 14.648
1st -0.561 -0.561 -0.561 -0.561 -0.561
2nd 0.008 0.008 0.008 0.008 0.008
Total 14.095 14.095  14.095 14.095 14.095

Change in the correlation between S and y has a larger effect than change in the correlation

between S and h, (y; is multiplied by Vi, whereas h; is multiplied by V; —T'-a.)
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Basket Option

Next, we consider about a basket option of WTI and Brent: (S(T‘Mi) + S(Tbrem) - K)+
@ To calculate V(@ analytically, we use the asymptotic expansion method
@ The maturity of the underlying futures is DEC 15.
@ The maturity of basket option is Nov 10, 2015.
o

The discount rate is ¢ = 0.295%which is calculated by OIS with the same
maturity as the option maturity.

@ The parameters of the underlying asset prices are obtained by calibration to the
market values of futures options on July 10, 2012. (around 3.3 years to the
maturity)

Calibrated parameters are follows. 8 :

Table: Parameters of Brent DEC15 in SABR model

[ SO B8 1O o P
Brent DEC15 [90.14 05 2184 0.446 -0.044

8As futures options traded in ICE(Brent) are American type, we calibrate to European
option prices with the implied BS(log-normal) volatilities that are obtained by a binomial

method.
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Basket Option

@ The correlation between WTI futures price (or Brent futures price) and
Brent volatility (or WTI volatility) is set as the same value as the
correlation between WTI futures price (or Brent futures Price) and WTI
volatility (or Brent volatility).

@ The correlations between WTI futures price (or volatility) and Brent
futures price (or volatility) are calculated by using logarithmic
historical price changes for the 30 days before July 10, 2012.

@ The correlation between WTI future price and Brent future price is
0.980, and the correlation between WTI volatility and Brent volatility is
0.907.
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Basket Option

Table: Pre-default values of call option contracts without collateral

Strike [ 140 160 170 180 200
Aaa | Oth 49.798 37.475 32.224 27590  20.083
1st -1.036 -0.780 -0.671 -0.575 -0.418
2nd 0.011 0.009 0.007 0.006 0.005
Total 48.774 36.704 31561  27.021 19.669
Baa | Oth 49.798 37.475 32,224 27590  20.083
1st -4.101 -3.089 -2.657 -2.276 -1.658
2nd 0.217 0.164 0.141 0.121 0.088
Total 45,915 34.550 29.708  25.435 18.513
B Oth 49.798 37.475 32.224 27590  20.083
1st -17.176  -12.937  -11.130 -9.534 -6.946
2nd 4.680 3.531 3.041 2.607 1.904
Total 37.303 28.069 24135  20.662 15.041

@ Moreover, applying the asymptotic expansion method, we are able to
calculate pre-default values of various type of basket options. (Please
see Shiraya-T (2014) for the detail.)
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