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Introduction

.

New market realties after the Financial Crisis

.

.

.

. ..

.

.

Wide use of collateralization in OTC
Dramatic increase in recent years (ISDA Margin Survey 2011)

30%(2003)→ 70%(2010) in terms of trade volume for all OTC.
Coverage goes up to 79% (for all OTC) and 88% (for fixed income)
among major financial institutions.
More than 80% of collateral is Cash.
(About half of the cash collateral is USD. )

Persistently wide basis spreads :
Much more volatile Cross Currency Swap( CCS) basis

spread.
Non-negligible basis spreads even in the single currency

market. (e.g. Tenor swap spread, Libor-OIS spread )
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Impact of Collateralization

Impact of collateralization :

Reduction of Counter party Exposure

Associated change in CVA has been actively studied.
(e.g. CVA is charged for a contract with imperfect
collateralization.)

Change of Funding Cost

Require new term structure model to distinguish discounting and
reference rates.
Significant impact on derivative pricing.
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Topics of this talk

Valuation framework under collateralization

Perfect collateralization
Asymmetric collateralization
Imperfect collateralization and CVA

New approximation scheme for FBSDEs 1 (it seems useful for
pricing securities under asymmetric/imperfect collateralization.)

Perturbation scheme
Perturbation with interacting particle method

Numerical example for CVA and imperfect collateralization

1forward backward stochastic differential equations
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Setup

Pricing Framework ([ 17])

Filtered probability space (Ω,F , F,Q), where F contains all the market
information including defaults.

Consider two firms, i ∈ {1, 2}, whose default time is τi ∈ [0,∞], and τ = τ1 ∧ τ2.

τi (and hence τ) is assumed to be totally-inaccessible F-stopping time.

(i.e. a default event is modeled as a jump process.)

Default indicator functions: H i
t
= 1{τi≤t}(i = 1, 2), H t = 1{τ≤t}

Assume the existence of absolutely continuous compensator for H i :

Ai
t
=

∫ t

0
hi

s1{τi>s}ds, t ≥ 0

Assume no simultaneous defaults, and hence the hazard rate of H is

ht = h1
t + h2

t .

Money market account: βt = exp
(∫ t

0 rudu
)
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Collateralization

When party i ∈ {1, 2} has negative mark-to-market, it has to post cash collateral
to party j(, i), and it is assumed to be done continuously.

collateral coverage ratio is δi
t
∈ R+, and the amount of collateral at time t is

given by δi
t
(−V i

t
) when party i posts collateral. ( V i

t
denotes the mark-to-market

value of the contract from the view point of party i.)

δi
t

effectively takes into account under- as well as over -collateralization.
Thus, δi

t
< 1 and δi

t
> 1 are possible.

party j has to pay the collateral rate ci
t

on the posted cash continuously.

ci
t

is determined by the currency posted by party i.

market convention is to use overnight (O/N) rate at time t of
corresponding currency.
⇒ Traded through OIS (overnight index swap), which is also collateralized.
In general, ci

t
, r i

t
. (r i

t
is the risk-free interest rate of the same currency.)

This is necessary to explain CCS basis spread consistently .
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Counter party Exposure and Recovery Scheme

Counter party exposure to party j at time t
from the view point of party i is given as:

max(1− δ j
t
, 0) max(V i

t
, 0)+ max(δi

t
− 1, 0) max(−V i

t
, 0).

Assume party- j’s recovery rate at time t as R j
t
∈ [0, 1].

Then, the recovery value at the time of j’s default is given as:

R j
t

(
[1 − δ j

t
]+[V i

t
]+ + [δi

t
− 1]+[−V i

t
]+

)
,

x+ ≡ max(x, 0).
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Pricing Formula

• Pricing from the view point of party 1.

St = βt EQ
[∫

] t,T]
β−1

u 1{τ>u}
{
dDu +

(
y1

uδ
1
u1{Su<0} + y2

uδ
2
u1{Su≥0}

)
Sudu

}
+

∫
] t,T]
β−1

u 1{τ≥u}
(
Z1(u,Su−)dH1

u + Z2(u,Su−)dH2
u

)∣∣∣∣∣∣Ft

]
• D: cumulative dividend to party 1.
• Default payoff: Z i when party i defaults.

Z1(t, v) =
(
1− l1t (1− δ

1
t )
+
)
v1{v<0} +

(
1+ l1t (δ

2
t − 1)+

)
v1{v≥0}

Z2(t, v) =
(
1− l2t (1− δ

2
t )
+
)
v1{v≥0} +

(
1+ l2t (δ

1
t − 1)+

)
v1{v<0},

l i
t
≡ (1− Ri

t
), i = 1, 2

• yi
t
= r i

t
− ci

t
, (i ∈ {1, 2}) denotes the instantaneous return for j or funding cost for i

at time t from the cash collateral posted by party i.
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Pricing Formula

• (Remark) The return from risky investments, or the borrowing cost
from the external market can be quite different from the risk-free
rate, of course.
However, if one wants to treat this fact directly, an explicit modeling
of the associated risks is required.
Here, we use the risk-free rate as net return/cost after hedging these
risks .
As we shall see, under full collateralization the final formula does
not require any knowledge of the risk-free rate , and hence there is
no need of its estimation.
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Pricing Formula

Following the method in Duffie&Huang (1996), the pre-default value of the
contract Vt such that Vt1{τ>t} = St is given by

Vt = EQ
[∫

] t,T]
exp

(
−

∫ s

t

(
ru − µ(u,Vu)

)
du

)
dDs

∣∣∣∣∣∣Ft

]
, t ≤ T,

where

µ(t, v) = ỹ1
t 1{v<0} + ỹ2

t 1{v≥0} (adjusted term of the discount rate)

ỹi
t
= δi

t
yi

t
− (1− δi

t
)+(l i

t
hi

t
) + (δi

t
− 1)+(l j

t
h j

t
),

if some technical condition(so called no jump condition for V at default) 2 is

satisfied, which is assumed hereafter.(for instance, r, D, yi , δi , l i and hi ,

(i = 1, 2) are adapted to background filtration. In particular, we limit our

attention to the intensities conditional on no-default.)

2This technical condition (∆Vτ = 0) becomes important when we consider credit
derivatives: the condition is violated in general when the contagious effects induce jumps to
variables contained in pre-default value process. (e.g. Schönbucher(2000),
Collin-Dufresne-Goldstein-Hugonnier(2004), Brigo-Capponi(2009), [19])
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Symmetric Case

Effective discount factor is non-linear :

r t − µ(t, v) = r t − (ỹ1
t 1{v<0} + ỹ2

t 1{v≥0}),

which makes the portfolio value non-additive .
If ỹ1

t
= ỹ2

t
= ỹt , then we have

µ(t, v) = ỹt .

Further, if ỹ is not explicitly dependent on V, we can recover the linearity.

Vt = EQ

[∫
] t,T]

exp
(
−

∫ s

t
(ru − ỹu)du

)
dDs

∣∣∣∣∣∣Ft

]
Portfolio valuation can be decomposed into that of each payment.

⇓
A good characteristic for market benchmark price.
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Symmetric Perfect Collateralization

.

Special Cases

.

.

.

. ..

.

.

Case 1 : Benchmark for single currency product

bilateral perfect collateralization (δ1 = δ2 = 1)

both parties use the same currency (i) as collateral, which is also the
payment (evaluation) currency.

V(i)
t
= EQ(i)

[∫
] t,T]

exp
(
−

∫ s

t
c(i)

u du
)

dDs

∣∣∣∣∣∣Ft

]

The valuation method for single currency swap adopted by LCH
Swapclear (2010) is the same with this equation. 3

3See also Piterbarg (2010) for other derivation of this equation.
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Symmetric Perfect Collateralization

.

Special Cases

.

.

.

. ..

.

.

Case 2 : Collateral in a Foreign Currency

bilateral perfect collateralization (δ1 = δ2 = 1)

both parties use the same currency (k) as collateral , which is different
from the payment (evaluation) currency (i)

V(i)
t
= EQ(i)

[∫
] t,T]

exp
(
−

∫ s

t

(
c(i)

u + y(i,k)
u

)
du

)
dDs

∣∣∣∣∣∣Ft

]

.

Funding Spread between the two currencies

.

.

.

. ..

.

.

y(i,k) = y(i) − y(k) =
(
r(i) − c(i)

)
−

(
r(k) − c(k)

)

This is necessary to explain CCS basis spreads consistently.
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Collateral Rate

Overnight Index Swap (OIS)

exchange fixed rate( F) with compounded overnight rate
periodically.

collateralized by domestic currency

Par rate at t for T0 (> t)-start TN-maturing OIS with currency (i):

OISN(t) = F par(t) =
D(i)(t, T0) − D(i)(t, TN)∑N

n=1
∆nD(i)(t, Tn)

,

(∆n : daycount fraction).

D(i)(t, T) = EQ(i)
[
e−

∫ T

t
c(i)

u du
∣∣∣∣∣Ft

]
is a value of domestically

collateralized zero-coupon bond.
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Funding Spread

(i, j) Mark-to-Market Cross Currency OIS :
The funding spread(the difference of collateral costs) is directly
linked to the corresponding CCOIS, though it seems not liquid in
the current market.

compounded O/N rate of currency i is exchanged by that of
currency j with additional spread periodically.

notional of currency j is kept constant while that of currency i
is refreshed at every reset time with the spot FX rate. (currency
i is usually USD.)

collateralized by currency i .
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Funding Spread

Define

D( j,i)(t, T) = EQ( j)
[
e−

∫ T
t (c( j)

u +y( j,i)
u )du

∣∣∣∣∣Ft

]
= D( j)(t, T)e−

∫ T
t y( j,i)(t,s)ds.

y( j,i)(t, T) = − ∂
∂T

ln ET( j)
[
e−

∫ T
t y( j,i)

u du
∣∣∣∣∣Ft

]
. (instantaneous fwd rate of the funding spread)

D( j,i)(t, T): the zero coupon bond of currency j collateralized by currency i.

ET( j)
[·|Ft ]: conditional expectation under the fwd measure associated with

D( j)(t, T).

Then, under a simplifying assumption such as independence between c( j) and
y( j,i)4,

.

.

. ..

.

.

MtMCCOIS basis spread is obtained by:

BN =

∑N
n=1

D( j,i)(t, Tn−1)
(
1− e

−
∫ Tn
Tn−1

y( j,i)(t,u)du
)

∑N
n=1
δn D( j,i)(t, Tn)

∼ 1
TN − T0

∫ TN

T0

y( j,i)(t, u)du.

4The assumption seems reasonable for the recent data studied in [15].
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Modeling framework of Interest rates

Symmetric perfectly collateralized price is becoming the market
benchmark, at least for standardized products.
”Term structure construction procedures”: 5

.

.

. ..

.

.

(1), OIS⇒ c(i)(0, T)(T-maturity instantaneous fwd rate at time 0)

(2), results of (1) + IRS + TS ⇒ B(i)(0, T; τ) (i-currency forward Libor-OIS
spread with tenor τ)

(3), results of (1),(2) +CCS ⇒ y(i, j)(0, T)(funding spread)

Given the initial term structures, no-arbitrage dynamics of
c(i)(t, T),B(i)(t, T; τ) and y(i, j)(t, T) in HJM-framework can be constructed.

(For the detail, please see our paper [ 13], [22]. For other approaches, see

Bianchetti(2010), Mercurio(2009), Morini(2009), for instance.)

5Assume collateralization in domestic currency for OIS, IRS and TS. Assume
collateralization in USD for CCS (USD crosses).
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Curve Construction

Collateralized OIS

OISN(0)
N∑

n=1

∆n D(0, Tn) = D(0, T0) − D(0, TN)

Collateralized IRS

IRSM (0)
M∑

m=1

∆mD(0, Tm) =
M∑

m=1

δmD(0, Tm)ETm[L(Tm−1, Tm; τ)]

Collateralized TS 6

N∑
n=1

δn D(0, Tn)
(
ETn [L(Tn−1, Tn; τS)] + TSN(0)

)
=

M∑
m=1

δmD(0, Tm)ETm [L(Tm−1, Tm; τL )]

(∆m, ∆n, δm, δn: daycount fractions)

.

.

. ..

.

.

Market quotes of collateralized OIS, IRS, TS, (and a proper spline method) allow us to
determine all the relevant {D(0, T)}, and forward Libors {ETm [L(Tm−1, Tm, τ)]}.

6The short-tenor leg may be compounded and then, additional small corrections exist.
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Curve Construction

Collateralized FX Forward: USD/JPY

Suppose USD= i, JPY= j and collateral currency is USD.

Current time: t. Maturity: T

At T , one unit of i is exchanged for K (fixed at t) units of j.

FX forward is the break-even value of K.

KEQ( j)

t

[
e−

∫ T
t (c( j)

s +y(i,i)
s )ds

]
= f ( j,i)

x (t)EQ(i)

t

[
e−

∫ T
t c(i)

s ds1
]
.7

f ( j,i)
x (t, T; ( i)) = f ( j,i)

x (t)
D(i)(t, T)

D( j)(t, T)
exp

(∫ T

t
y( j,i)(t, u)du

)
,

y( j,i)(t, T) = − ∂
∂T

ln ET( j)

t

[
e−

∫ T
t y( j,i)

s ds
]
.

FX Forward → Forward curve of funding spread ( {y( j,i)(t, T)})
CCS for longer maturities.

7 f ( j,i)
x (t) denotes spot FX rate at t that is, the price of the unit amount of currency i in

terms of currency j.
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Curve Construction

Remark: Constant Notional CCS vs MtM-CCS
(USD-LIBOR) is exchanged for (X-currency LIBOR + basis spread).

Constant Notional CCS (CNCCS)

Notional of both legs are kept constant.

Mark-to-Market CCS (MtMCCS)

Notional of currency X is kept constant at NX.
Notional of USD is readjusted to f (USD;X)

x × NX at every start of
LIBOR accrual period.
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Curve Construction

Remark: the difference between MtM and Constant notional basis spreads:

BMtM
N

− BCN
N
=

∑N
n=1
δ(i)n D(i)(0, Tn)ET(i)

n

[(
f (i, j)
x (Tn−1)

f (i, j)
x (0)

− 1
)

B(i)(Tn−1, Tn)
]

∑N
n=1
δ

( j)
n D( j,i)(0, Tn)

,

where B(i)(Tn−1, Tn) stands for the Libor-OIS spread of the currency i at Tn−1. This
spread is not zero in general.

For the two USDJPY CCSs, the two swaps should have the same basis spreads if

USD LIBOR-OIS spreads are all zero. This held approximately well before the Lehman

crisis but the spread has been far from zero since then. If USD interest rate level is

higher than JPY, as is usually the case, the equation tells us that the spread for

MtMCCS is quite likely to be higher than that of CNCCS, BMtM
N

> BCN
N

. The size of

spread may not be negligible dependent on situations, and hence it is worthwhile

paying enough attention to the difference in this post crisis era.
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Curve Construction

Ry( j, i) =
(∫ T

0 y j,i (0, u)du
)
/T(funding spread curve): posting USD as collateral tends

to be expensive for collateral payers.
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Curve Construction

.

Close relationship - CCS Basis and Funding Spread -

.

.

.

. ..

.

.

A significant portion of CCS spreads movement stems from the change in
the funding spreads. Libor-OIS spread seems to have minor effect. 23 / 101
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HJM-framework under full collateralization

.

.

. ..

.

.

dc(i)(t, s) = σ(i)
c (t, s) ·

(∫ s

t
σ(i)

c (t, u)du
)

dt + σ(i)
c (t, s) · dWQ(i)

t

dy(i,k)(t, s) = σ(i,k)
y (t, s) ·

(∫ s

t
(σ(i,k)

y (t, u) + σi
c(t, u))du

)
dt + σ(i,k)

y (t, s) · dWQ(i)

t

dB(i)(t, T; τ)

B(i)(t, T; τ)
= σ(i)

B
(t, T; τ) ·

(∫ T

t
σ(i)

c (t, s)ds
)

dt + σ(i)
B

(t, T; τ) · dWQ(i)

t

d f (i, j)
x (t)

f (i, j)
x (t)

=
(
c(i)(t) − c( j)(t) + y(i, j)(t)

)
dt + σ(i, j)

X
(t) · dWQ(i)

t
,

B(i)(t, Tk; τ) = E
T(i)

k

t

[
L(i)(Tk−1, Tk; τ)

]
− 1

δ(i)
k

(
D(i)(t, Tk−1)

D(i)(t, Tk)
− 1

)

is forward LIBOR-OIS spread.
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Choice of Collateral Currency

.

Special Cases

.

.

.

. ..

.

.

Case 3 : Multiple Eligible Collaterals

bilateral perfect collateralization (δ1 = δ2 = 1)

both parties choose the optimal currency from the eligible collateral
set C. Currency (i) is used as the evaluation currency.

V(i)
t
= EQ(i)

[∫
] t,T]

exp
(
−

∫ s

t

(
c(i)

u + max
k∈C

[y(i,k)
u ]

)
du

)
dDs

∣∣∣∣∣∣Ft

]
The party who needs to post collateral has optionality.

The cheapest collateral currency is chosen based on CCS information.
To choose ”strong” currency, such as USD,
is expensive for the collateral payer.
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Choice of Collateral Currency

.

Role of y( j,i)

.

.

.

. ..

.

.

Optimal behavior of collateral payer can significantly change the
derivative value.

Payment currency and USD as eligible collateral is relatively
common. Then, the effective discounting factor becomes

D( j)(t, T) ⇒ ET( j)

t

[
e−

∫ T

t
max{y( j,USD)(s),0}ds

]
D( j)(t, T)

except correlation effects.

Volatility of y( j,USD) is an important determinant. (Embedded
option change effective discounting factor, which crucially
depends on the volatility of funding spread.)
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Choice of Collateral Currency

vols tend to be 50 bps in a calm market, but they were more than a

percentage point just after the market crisis, which reflects a significant

widening of the CCS basis to seek USD cash in the low liquidity market.
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Choice of Collateral Currency

Figure: Modification of JPY discounting factors based on HW model for y(J PY,USD) as of 2010/3/16.

the effective discounting rate is increased by around 50 bps annually even when the annualized vol. of y(J PY,USD) is 50 bps.
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More generic situations: marginal impact of asymmetry

Vt = EQ

[∫
] t,T]

exp
(
−

∫ s

t

(
ru − µ(u,Vu)

)
du

)
dDs

∣∣∣∣∣∣Ft

]
µ(t, v) = ỹ1

t 1{v<0} + ỹ2
t 1{v≥0}

ỹi
t
= δi

t
yi

t
− (1− δi

t
)+(l i

t
hi

t
) + (δi

t
− 1)+(l j

t
h j

t
)

Make use of Gateaux derivative(GD) as the first-order Approximation 8:

lim
ϵ↓0

sup
t

∣∣∣∣∣∣∇Vt(η̄; η) −
Vt(η̄ + ϵη) − Vt(η̄)

ϵ

∣∣∣∣∣∣ = 0, (η,η̄: bounded and predictable)

We want to expand the price around a symmetric benchmark price .

µ(t, v) = yt + ∆ỹ1
t 1{v<0} + ∆ỹ2

t 1{v≥0}, (∆ỹi
t = ỹi

t − yt)

Calculate GD at symmetric µ = y point.

Vt(µ) ≃ Vt(y) + ∇Vt(y, µ − y)
8Duffie&Skiadas (1994), Duffie&Huang (1996)
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Asymmetric Collateralization(marginal impact of asymmetry)

Then, Vt is decomposed as Vt = V t + ∇Vt , where

V t = EQ

[∫
] t,T]

exp
(
−

∫ s

t
(ru − yu)du

)
dDs

∣∣∣∣∣∣Ft

]
∇Vt = EQ

[∫ T

t
e−

∫ s
t (ru−yu)duVs

(
∆ỹ1

s1{Vs<0} + ∆ỹ2
s1{Vs≥0}

)
ds

∣∣∣∣∣∣Ft

]

.

.

. ..

.

.

If y is chosen in such a way that it reflects the funding cost of the standard
collateral agreements, V turns out to be the market benchmark price , and
∇V represents the correction for it.
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Asymmetric Collateralization(marginal impact of asymmetry)

An example of asymmetric perfect collateralization

party 1 choose optimal currency from the eligible collateral set C, but
the party 2 can only use currency (i) as collateral, either due to the
asymmetric CSA or lack of easy access to foreign currency pool. The
evaluation (payment) currency is (i).

V t = EQ(i)
[∫

] t,T]
exp

(
−

∫ s

t
c(i)

u du
)

dDs

∣∣∣∣∣∣Ft

]
∇Vt = EQ(i)

[∫ T

t
exp

(
−

∫ s

t
c(i)

u du
) [−Vs

]+ max
k∈C

[y(i,k)
s ]

∣∣∣∣∣∣Ft

]
Vt ≃ V t + ∇Vt

⇒ Expansion around the symmetric collateralization with currency (i).
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Asymmetric Collateralization(marginal impact of asymmetry)

Numerical Example of ∇V for JPY-OIS 9.
Eligible collateral are USD and JPY for party- 1 but only JPY for party- 2.

OIS rate is set to make V = 0.
Difference between Receiver and Payer comes from up-ward sloping term
structure. (the receiver’s mark-to-market value tends to be negative in the long
end of the contract, which makes the optionality larger.)

9based on the data in early 2010, see [17] for the detail.
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Imperfect Collateralization

.

CVA as the Deviation from the Perfect Collateralization

.

.

.

. ..

.

.

Assume the both parties use the same currency for simplicity, and
hence y1 = y2 = y.

µ(t, v) = yt −{(
(1− δ1t )yt + (1− δ1t )

+(l1t h1
t ) − (δ1t − 1)+(l2t h2

t )
)

1{v<0}

+
(
(1− δ2t )yt + (1− δ2t )

+(l2t h2
t ) − (δ2t − 1)+(l1t h1

t )
)

1{v≥0}
}

GD(Gateaux derivative) around µ = y decomposes the price into three
parts:

Symmetric perfectly collateralized benchmark price
(1− δi )y1{v≶0} ⇒ Collateral Cost Adjustment (CCA)
Remaining h dependent terms ⇒ Credit Value Adjustment (CVA)

Vt ≃ V t + ∇Vt

= V t + CCA + CVA
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Imperfect Collateralization

V t = EQ
[∫

] t,T]
exp

(
−

∫ s

t
(ru − yu)du

)
dDs

∣∣∣∣∣∣Ft

]
CCA = EQ

[∫ T

t
e−

∫ s
t (ru−yu)duys

(
(1− δ1s)[−Vs]+ − (1− δ2s)[Vs]+

)
ds

∣∣∣∣∣∣Ft

]
CVA =

EQ
[∫ T

t
e−

∫ s
t (ru−yu)du(l1sh1

s)
[
(1− δ1s)+[−Vs]+ + (δ2s − 1)+[Vs]+

]
ds

−
∫ T

t
e−

∫ s
t (ru−yu)du(l2sh2

s)
[
(1− δ2s)+[Vs]+ + (δ1s − 1)+[−Vs]+

]
ds

∣∣∣∣∣∣Ft

]

The discounting rate is different from the risk-free rate and reflects the funding
cost of collateral, while the terms in CVA are pretty similar to the usual result of
bilateral CVA.

Dependence among y, δ and other variables such as V, hi is particularly
important. ⇒ New type of Wrong (Right)-way Risk. (e.g. y is closely related to
the CCS basis spread. Hence, y is expected to be highly sensitive to the market
liquidity, and is also strongly affected by the overall market credit conditions.)
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Collateral Thresholds

Thresholds: Γi > 0 for party- i: A threshold is a level of exposure below
which collateral will not be called, and hence it represents an amount
of uncollateralized exposure. Only the incremental exposure will be
collateralized if the exposure is above the threshold.

.

Case of perfect collateralization above the thresholds

.

.

.

. ..

. .

St = βt EQ
[∫

] t,T]
β−1

u 1{τ>u}
{
dDu + q(u,Su)Sudu

}
+

∫
] t,T]
β−1

u 1{τ≥u}
{
Z1(u,Su−)dH1

u + Z2(u,Su−)dH2
u

}∣∣∣∣∣∣Ft

]

q(t,St ) = y1
t

1+ Γ
1
t

St

 1{St<−Γ1
t
} + y2

t

1− Γ
2
t

St

 1{St>Γ
2
t
}

Z1(t,St ) = St


1+ l1t

Γ1
t

St

 1{St<−Γ1
t
} + R1

t 1{−Γ1
t
≤St<0} + 1{St≥0}


Z2(t,St ) = St


1− l2t

Γ2
t

St

 1{St≥Γ2
t
} + R2

t 1{0≤St<Γ
2
t
} + 1{St<0}


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Collateral Thresholds

Assume the domestic currency as collateral y1 = y2 = y.

V t = EQ
[∫

] t,T]
exp

(
−

∫ s

t
cudu

)
dDs

∣∣∣∣∣∣Ft

]
CCA = −EQ

[∫ T

t
e−

∫ s
t cu duysVs1{−Γ1

s≤Vs<Γ
2
s}

ds

∣∣∣∣∣∣Ft

]
+EQ

[∫ T

t
e−

∫ s
t cu duys

{
Γ1

s1{Vs<−Γ1
s}
− Γ2

s1{Vs≥Γ2
s}

}
ds

∣∣∣∣∣∣Ft

]
CVA =

EQ
[∫ T

t
e−

∫ s
t cu du

{
(l1sh1

s)
[−Vs1{−Γ1

s≤Vs<0} + Γ
1
s1{Vs<−Γ1

s}
]}

ds

∣∣∣∣∣∣Ft

]
−EQ

[∫ T

t
e−

∫ s
t cu du

{
(l2sh2

s)
[
Vs1{0<Vs≤Γ2

s}
+ Γ2

s1{Vs>Γ
2
s}
]}

ds

∣∣∣∣∣∣Ft

]
The terms in CCA reflect the fact that no collateral is posted in the range
{−Γ1

t
≤ Vt ≤ Γ2

t
}, and that the posted amount of collateral is smaller than |V|

by the size of threshold.

The terms in CVA represent bilateral uncollateralized credit exposure,

which is capped by each threshold.

36 / 101



Introduction Framework Symmetric Asymmetric Imperfect FBSDE Approximation Scheme Perturbation Technique for Non-linear FBSDEs with Interacting Particle Method

. . . . . . . . . . . . . . . . . . . . .

Numerical Example References

FBSDE Approximation Scheme

([19])

The forward backward stochastic differential equations (FBSDEs) have
been found particularly relevant for various valuation problems (e.g.
pricing securities under asymmetric/imperfect collateralization ,
optimal portfolio and indifference pricing issues in incomplete and/or
constrained markets).

Their financial applications are discussed in details for example,
El Karoui, Peng and Quenez [1997], Ma and Yong [2000], a recent book
edited by Carmona [2009], Cr épey [2012(a,b)], [ 44], and references
therein.

We will present a simple analytical approximation with perturbation
scheme for the non-linear FBSDEs.
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FBSDE Approximation Scheme - Setup-

We consider the following FBSDE:

dVt = − f (Xt ,Vt , Z t)dt + Z t · dWt (6.1)

VT = Φ(XT), (6.2)

where V takes the value in R, W is a r-dimensional Brownian
motion, and Xt ∈ Rd is assumed to follow a diffusion which is
the solution to the (forward) SDE:

dXt = γ0(Xt)dt + γ(Xt) · dWt ; X0 = x . (6.3)

We assume that the appropriate regularity conditions are
satisfied for the necessary treatments.
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Perturbative Expansion for Non-linear Generator

In order to solve the pair of (Vt , Z t) in terms of Xt , we extract
the linear term from the generator f and treat the residual
non-linear term as the perturbation to the linear FBSDE .

We introduce the perturbation parameter ϵ, and then write the
equation as

dV(ϵ)
t
= c(Xt)V

(ϵ)
t

dt − ϵg(Xt ,V
(ϵ)
t
, Z(ϵ)

t
)dt + Z(ϵ)

t
· dWt (6.4)

V(ϵ)
T
= Φ(XT) ,

where ϵ = 1 corresponds to the original model by 10

f (Xt ,Vt , Z t) = −c(Xt)Vt + g(Xt ,Vt , Z t) . (6.5)

10Or, one can consider ϵ = 1 as simply a parameter convenient to count the
approximation order. The actual quantity that should be small for the approximation is the
residual part g.
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Perturbative Expansion for Non-linear Generator

One should choose the linear term c(Xt)V
(ϵ)
t

in such a way that
the residual non-linear term g becomes as small as possible to
achieve better convergence.

Now, we are going to expand the solution of BSDE ( 6.4) in
terms of ϵ: that is, suppose V(ϵ)

t
and Z(ϵ)

t
are expanded as

V(ϵ)
t
= V(0)

t
+ ϵV(1)

t
+ ϵ2V(2)

t
+ · · · (6.6)

Z(ϵ)
t
= Z(0)

t
+ ϵZ(1)

t
+ ϵ2Z(2)

t
+ · · · . (6.7)
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Perturbative Expansion for Non-linear Generator

Once we obtain the solution up to the certain order, say k for
example, then by putting ϵ = 1,

Ṽt =

k∑
i=0

V(i)
t
, Z̃ t =

k∑
i=0

Z(i)
t

(6.8)

is expected to provide a reasonable approximation for the
original model as long as the residual term g is small enough to
allow the perturbative treatment.

V(i)
t

and Z(i)
t

, the corrections to each order can be calculated
recursively using the results of the lower order approximations.
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Recursive Approximation
Zero-th Order

For the zero-th order of ϵ, one can easily see the following
equation should be satisfied:

dV(0)
t
= c(Xt)V

(0)
t

dt + Z(0)
t
· dWt (6.9)

V(0)
T
= Φ(XT) . (6.10)

It can be integrated as

V(0)
t
= E

[
e−

∫ T

t
c(Xs)dsΦ(XT)

∣∣∣∣∣Ft

]
(6.11)

which is equivalent to the pricing of a standard European
contingent claim, and V(0)

t
is a function of Xt .

Applying It ô’s formula (or Malliavin derivative), we obtain Z(0)
t

as
a function of Xt , too.
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Recursive Approximation
First Order

Now, let us consider the process V(ϵ) − V(0). One can see that its
dynamics is governed by

d
(
V(ϵ)

t
− V(0)

t

)
= c(Xt)

(
V(ϵ)

t
− V(0)

t

)
dt

− ϵg(Xt ,V
(ϵ)
t
, Z(ϵ)

t
)dt +

(
Z(ϵ)

t
− Z(0)

t

) · dWt

V(ϵ)
T
− V(0)

T
= 0 . (6.12)

Now, by extracting the ϵ-first order term, we can once again recover
the linear FBSDE

dV(1)
t
= c(Xt)V

(1)
t

dt − g(Xt ,V
(0)
t
, Z(0)

t
)dt + Z(1)

t
· dWt

V(1)
T
= 0 , (6.13)

which leads to

V(1)
t
= E

[∫ T

t
e−

∫ u
t c(Xs)dsg(Xu,V

(0)
u , Z

(0)
u )du

∣∣∣∣∣∣Ft

]
. (6.14)
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Recursive Approximation

Because V(0)
u and Z(0)

u are some functions of Xu, we obtain V(1)
t

as a function of Xt , and also Z(1)
t

through It ô’s formula (or
Malliavin derivative).

In exactly the same way, one can derive an arbitrarily higher
order correction. Due to the ϵ in front of the non-linear term g,
the system remains to be linear in the every order of
approximation. e.g.

dV(2)
t
= c(Xt)V

(2)
t

dt −
(
∂

∂v
g(Xt ,V

(0)
t
, Z(0)

t
)V(1)

t

+ ∇zg(Xt ,V
(0)
t
, Z(0)

t
) · Z(1)

t

)
dt + Z(2)

t
· dWt

V(2)
T
= 0
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Evaluation of (V(i), Z(i)) in terms of X

Suppose we have succeeded to express backward components
(Vt , Z t) in terms of Xt up to the (i − 1)-th order. Now, in order to
proceed to a higher order approximation, we have to give the
following form of expressions with some deterministic function
G(·) in terms of the forward components Xt , in general:

V(i)
t
= E

[∫ T

t
e−

∫ u

t
c(Xs)dsG

(
Xu

)
du

∣∣∣∣∣∣Ft

]
(6.15)
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Evaluation of (V(i), Z(i)) in terms of X

Even if it is impossible to obtain the exact result, we can still
obtain an analytic approximation for (V(i)

t
, Z(i)

t
).

For instance, an asymptotic expansion method allows us to
obtain the expression. (See [ 29]-[30], [41]-[45] for the detail of
the asymptotic expansion method.)
In fact, applying the method, [ 19] has provided some explicit
approximations for V(i)

t
and Z(i)

t
.

Also, [ 20] has explicitly derived an approximation formula for
the dynamic optimal portfolio in an incomplete market and
confirmed its accuracy comparing with the exact result by
Cole-Hopf transformation. (Zariphopoulou [2001])
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Remark on Approximation of Coupled FBSDEs

Let us consider the following generic coupled non-linear FBSDE:

dVt = − f (t, Xt ,Vt , Z t)dt + Z t · dWt

VT = Φ(XT)

dXt = γ0(t, Xt ,Vt , Z t)dt + γ(t, Xt ,Vt , Z t) · dWt ; X0 = x .

We can treat this case in the similar way as before(decoupled case) by
introducing the following perturbation to the forward process:

dṼt = c(t, X̃t)Ṽt dt − ϵg(t, X̃t , Ṽt , Z̃ t)dt + Z̃ t · dWt

ṼT = Φ(X̃T)

dX̃t =
(
r(t, X̃t) + ϵµ(t, X̃t , Ṽt , Z̃ t)

)
dt

+
(
σ(t, X̃t) + ϵη(t, X̃t , Ṽt , Z̃ t)

)
· dWt

We can also apply the same method under PDE(partial differential
equation) formulation based on four step scheme (e.g. Ma-Yong [2000]).

Please consult [ 19] for the details.
47 / 101



Introduction Framework Symmetric Asymmetric Imperfect FBSDE Approximation Scheme Perturbation Technique for Non-linear FBSDEs with Interacting Particle Method

. . . . . . . . . . . . . . . . . . . . .

Numerical Example References

Forward Agreement with Bilateral Default Risk

As the first example, we consider a toy model for a forward agreement
on a stock with bilateral default risk of the contracting parties, the
investor (party- 1) and its counter party (party- 2). The terminal payoff of
the contract from the view point of the party- 1 is

Φ(ST) = ST − K (6.16)

where T is the maturity of the contract, and K is a constant.

We assume the underlying stock follows a simple geometric Brownian
motion:

dSt = rSt dt + σSt dWt (6.17)

where the risk-free interest rate r and the volatility σ are assumed to
be positive constants.

The default intensity of party- i, hi is specified as

h1 = λ, h2 = λ + h (6.18)

where λ and h are also positive constants.
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Forward Agreement with Bilateral Default Risk

In this setup, the pre-default value of the contract at time t, Vt follows

dVt = rV t dt − h1 max(−Vt , 0)dt + h2 max(Vt , 0)dt + Z t dWt

= (r + λ)Vt dt + h max(Vt , 0)dt + Z t dWt (6.19)

VT = Φ(ST) . (6.20)

Now, following the previous arguments, let us introduce the expansion
parameter ϵ, and consider the following FBSDE:

dV(ϵ)
t
= µV(ϵ)

t
dt − ϵg(V(ϵ)

t
)dt + Z(ϵ)

t
dWt (6.21)

V(ϵ)
T
= Φ(ST) (6.22)

dSt = St(rdt + σdWt) , (6.23)

where we have defined µ = r + λ and g(v) = −hv1{v≥0}.
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Forward Agreement with Bilateral Default Risk

The next figure shows the numerical results of the forward contract
with bilateral default risk with various maturities with the direct
solution from the PDE (as in Duffie-Huang [1996]).

We have used

r = 0.02, λ = 0.01, h = 0.03, (6.24)

σ = 0.2, S0 = 100 , (6.25)

where the strike K is chosen to make V(0)
0
= 0 for each maturity.

We have plot V(1) for the first order, and V(1) + V(2) for the second order.
(Note that we have put ϵ = 1 to compare the original model.)
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Forward Agreement with Bilateral Default Risk

Figure: Numerical Comparison to PDE
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Forward Agreement with Bilateral Default Risk

One can observe how the higher order correction improves the
accuracy of approximation.

In this example, the counter party is significantly riskier than the
investor, and the underlying contract is volatile.

Even in this situation, the simple approximation to the second order
works quite well up to the very long maturity.

In another example of [ 19] 11, our second order approximation has
obtained a fairly close value( 2.953) to the one( 2.95 with std 0.01) by a
regression-based Monte Carlo simulation of Gobet-Lemor-Warin[2005].

11a self-financing portfolio under the situation where there exists a difference between the
lending and borrowing interest rates
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Perturbation Technique with Interacting Particle Method

([21], [14])

We will provide a straightforward simulation scheme to solve nonlinear
FBSDEs at each order of perturbative approximation.

Due to the convoluted nature of the perturbative expansion, it contains
multi-dimensional time integrations of expectation values, which make
standard Monte Carlo too time consuming.
To avoid nested simulations, we applied the particle representation
inspired by the ideas of branching diffusion models(e.g. McKean (1975),
Fujita (1966), Ikeda-Nagasawa-Watanabe (1965,1966,1968),
Nagasawa-Sirao (1969)).
Comparing with the direct application of the branching diffusion method,
our method is expected to be less numerically intensive since the
interested system is already decomposed into a set of linear problems.
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Perturbation Technique with Interacting Particle Method

Again, let us introduce the perturbation parameter ϵ: dV(ϵ)
s = −ϵ f (Xs,V

(ϵ)
s , Z

(ϵ)
s )ds+ Z(ϵ)

s · dWs

V(ϵ)
T
= Ψ(XT),

(7.1)

where Xt ∈ Rd is assumed to follow a generic Markovian forward SDE

dXs = γ0(Xs)ds+ γ(Xs) · dWs; Xt = xt . (7.2)

Let us fix the initial time as t. We denote the Malliavin derivative of
Xu (u ≥ t) at time t as

Dt Xu ∈ Rr×d. (7.3)

54 / 101



Introduction Framework Symmetric Asymmetric Imperfect FBSDE Approximation Scheme Perturbation Technique for Non-linear FBSDEs with Interacting Particle Method

. . . . . . . . . . . . . . . . . . . . .

Numerical Example References

Perturbation Technique with Interacting Particle Method

Its dynamics in terms of the future time u is specified by stochastic flow,
(Yt,u)i

j
= ∂x j

t
Xi

u

d(Yt,u)i
j
= ∂kγ

i
0
(Xu)(Yt,u)k

j
du+ ∂kγ

i
a(Xu)(Yt,u)k

j
dWa

u

(Yt,t)i
j
= δi

j
(7.4)

where ∂k denotes the differential with respect to the k-th component of
X, and δi

j
denotes Kronecker delta. Here, i and j run through {1, · · · , d}

and {1, · · · , r} for a. Here, we adopt Einstein notation which assumes
the summation of all the paired indexes.

Then, it is well-known that

(Dt Xi
u)a = (Yt,uγ(xt))i

a,

where a ∈ {1, · · · , r} is the index of r-dimensional Brownian motion.
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Perturbation Technique with Interacting Particle Method

ϵ-0th order: For the zeroth order, it is easy to see

V(0)
t
= E

[
Ψ(XT)

∣∣∣∣Ft

]
(7.5)

Za(0)
t

= E
[
∂iΨ(XT)(YtTγ(Xt))i

a

∣∣∣∣Ft

]
. (7.6)

It is clear that they can be evaluated by standard Monte Carlo
simulation. However, for their use in higher order approximation, it is
crucial to obtain explicit approximate expressions for these two
quantities. (e.g. Hagan et al.[2002], asymptotic expansion technique)

In the following, let us suppose we have obtained the solutions up to a
given order of asymptotic expansion, and write each of them as a
function of xt :  V(0)

t
= v(0)(xt)

Z(0)
t
= z(0)(xt).

(7.7)
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Perturbation Technique with Interacting Particle Method

ϵ-1st order:

V(1)
t
=

∫ T

t
E
[
f (Xu,V

(0)
u , Z

(0)
u )

∣∣∣∣Ft

]
du

=

∫ T

t
E
[
f
(
Xu, v(0)(Xu), z(0)(Xu)

)∣∣∣∣Ft

]
du (7.8)

Next, define the new process for (s > t):

V̂(1)
ts
= e

∫ s
t λu duV(1)

s , (7.9)

where deterministic positive process λt (It can be a positive constant
for the simplest case.).
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Perturbation Technique with Interacting Particle Method

Then, its dynamics is given by

dV̂(1)
ts
= λsV̂

(1)
ts

ds− λs f̂ ts(Xs, v(0)(Xs), z(0)(Xs))ds+ e
∫ s

t λu duZ(1)
s · dWs ,

where

f̂ ts(x, v(0)(x), z(0)(x)) =
1

λs
e
∫ s

t λu du f (x, v(0)(x), z(0)(x)).

Since we have V̂(1)
t t
= V(1)

t
, one can easily see the following relation

holds:

V(1)
t
= E

[∫ T

t
e−

∫ u
t λsdsλu f̂ tu(Xu, v(0)(Xu), z(0)(Xu))du

∣∣∣∣∣∣Ft

]
(7.10)

As in credit risk modeling (e.g. Bielecki-Rutkowski [2002]), it is the
present value of default payment where the default intensity is λs with
the default payoff at s(> t) as f̂ ts(Xs, v(0)(Xs), z(0)(Xs)). Thus, we obtain
the following proposition.
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Perturbation Technique with Interacting Particle Method

.

Proposition

.

.

.

. ..

.

.

The V(1)
t

in (7.8) can be equivalently expressed as

V(1)
t
= 1{τ>t}E

[
1{τ<T} f̂ tτ

(
Xτ, v(0)(Xτ), z(0)(Xτ)

)∣∣∣∣Ft

]
. (7.11)

Here τ is the interaction time where the interaction is drawn independently from

Poisson distribution with an arbitrary deterministic positive intensity process λt . f̂
is defined as

f̂ ts(x, v(0)(x), z(0)(x)) =
1

λs
e
∫ s

t λu du f (x, v(0)(x), z(0)(x)) . (7.12)
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Perturbation Technique with Interacting Particle Method

Now, let us consider the component Z(1). It can be expressed as

Z(1)
t
=

∫ T

t
E

[
Dt f

(
Xu, v(0)(Xu), z(0)(Xu)

)∣∣∣∣Ft

]
du (7.13)

Firstly, let us observe the dynamics of Malliavin derivative of V(1)

follows

d(DtV
(1)
s ) = −(Dt Xi

s)∇i(x, v(0), z(0)) f (x, v(0), z(0)) + (Dt Z
(1)
s ) · dWs;

DtV
(1)
t
= Z(1)

t
, (7.14)

where

∇i(x, v(0), z(0)) ≡ ∂i + ∂iv(0)(x)∂v + ∂i za(0)(x)∂za , (7.15)

f (x, v(0), z(0)) ≡ f (x, v(0)(x), z(0)(x)). (7.16)
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Perturbation Technique with Interacting Particle Method

Define, for (s > t),

D̂tV
(1)
s = e

∫ s
t λu du(DtV

(1)
s ). (7.17)

Then, its dynamics can be written as

d(D̂tV
(1)
s ) = λs(D̂tV

(1)
s )ds− λs(Dt X i

s)∇i(Xs, v(0), z(0)) f̂ ts(Xs, v(0), z(0))ds

+e
∫ s

t λu du(Dt Z
(0)
s ) · dWs. (7.18)

We again have

D̂tV
(1)
t
= Z(1)

t
. (7.19)

Hence,

Z(1)
t
= E

[∫ T

t
e−

∫ u
t λsdsλu(Dt Xi

u)∇i(Xu, v(0), z(0)) f̂ tu(Xu, v(0), z(0))du

∣∣∣∣∣∣Ft

]
.(7.20)
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Perturbation Technique with Interacting Particle Method

Thus, following the same argument for the previous proposition, we
have the result below:

.

Proposition

.

.

.

. ..

.

.

Z(1)
t

in (7.13) is equivalently expressed as

Za(1)
t
= 1{τ>t}E

[
1{τ<T}(Ytτγ(Xτ))i

a∇i(Xτ, v(0), z(0)) f̂ tτ(Xτ, v(0), z(0))
∣∣∣∣Ft

]
(7.21)

where the definitions of random time τ and the positive deterministic process λ

are the same as those in the previous proposition.

62 / 101



Introduction Framework Symmetric Asymmetric Imperfect FBSDE Approximation Scheme Perturbation Technique for Non-linear FBSDEs with Interacting Particle Method

. . . . . . . . . . . . . . . . . . . . .

Numerical Example References

Perturbation Technique with Interacting Particle Method
Monte Carlo Method

Now, we have a new particle interpretation of (V(1), Z(1)) as follows:

V(1)
t
= 1{τ>t}E

[
1{τ<T} f̂ tτ

(
Xτ, v(0), z(0)

)∣∣∣∣Ft

]
(7.22)

Z(1)
t
= 1{τ>t}E

[
1{τ<T}(Yt,τγ(Xτ))i∇i(Xτ, v(0), z(0)) f̂ tτ(Xτ, v(0), z(0))

∣∣∣∣Ft

]
(7.23)

which allows efficient time integration with the following Monte Carlo
scheme:
• Run the diffusion processes of X and Y
• Carry out Poisson draw with probability λs∆s at each time s and if ”one” is
drawn, set that time as τ.
• Then stores the relevant quantities at τ, or in the case of (τ > T) stores 0.
• Repeat the above procedures and take their expectation.
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Z(2)
t

The second order stochastic flow: for t < s < u,

(Γt,s,u)i
jk

:=
∂2

∂x j
t
∂xk

s

Xi
u;

(
(Γt,s,s)i

jk
= 0

)
.
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Figure:
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Numerical Example

An example for pre-default values with imperfect collateralization 12:

The counter party sells OTC European options on WTI futures. 13

For simplicity, we consider a unilateral case, where counter party is
defaultable, while the investor is default-free, and the collateral is
posted as the same currency as the payment currency (that is, the
currency is USD).

We consider the following imperfect collateral cases:

No collateral
Cash collateral with time-lag
Asset collateral with time-lag

12As for an application to American option pricing, please see [11]
13Later, we will see a basket option on WTI and Brent futures.
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Model

CIR model for the hazard rate process ( h).

SABR model for WTI futures price process ( S and ν).

Log-Normal model for a collateral asset price process ( A).

dht = κ (θ − ht) dt + γ
√

ht c1dW1
t ; h0 = h0 (8.1)

dSt = µiSt dt + νt (St)
β (

2∑
η=1

c2,ηdWη
t
); S0 = s0, (8.2)

dνt = σννt(
3∑
η=1

c3,ηdWη
t
); ν0 = ν0, (8.3)

dAt = µA At dt + σA At(
4∑
η=1

c4,ηdWη
t
); A0 = a0. (8.4)
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Model

The dynamics of pre-default value V can be described by a non-linear
FBSDE:  dVt = rV t dt − f (ht ,Vt , Γt)dt + Z t · dWt

VT = (ST − K)+ or (K − ST)+ ,
(8.5)

where

Γt : collateral process
(e.g. cash collateral with a constant time lag ∆ : Γt = Vt−∆)

r(risk free rate), c(collateral rate), l(loss rate) : nonnegative constants
for simplicity. 14

We put ϵ in front of the driver, f to apply our perturbation technique with
interacting particle method.

14[14] Later, we will see a more general case, where a stochastic collateral cost is taken
into account.
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Model

Counter party does not post collateral or posts collateral with the
constant time-lag ( ∆) by cash or an asset A.

no collateral case:

f (ht ,Vt , Γt) = −lh t(Vt)+. (8.6)

time-lag collateral case

cash collateral:

f (ht ,Vt , Γt) = (r − c)Vt−∆

−lh t (Vt − Vt−∆)
+ , (8.7)

asset collateral:

f (ht ,Vt , Γt) = (r − c)Vt−∆

(
At

At−∆

)
−lh t

(
Vt − Vt−∆

(
At

At−∆

))+
. (8.8)
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Parameters

We use the data of CME WTI option and futures prices.
The maturity of the underlying futures is DEC 15, and the maturity of WTI option
is Nov 17, 2015.

Parameters of WTI futures are obtained by calibration to the market values of
futures option prices on July 10, 2012.

We assume that the risk free rate r is equal to collateral rate c.

The discount rate is c = 0.295% which is calculated by OIS with the same
maturity as the option maturity.

The recovery rate is R = 0 (i.e. l = 1).

Calibrated parameters are as follows 15:

Table: Parameters of WTI DEC15 in SABR model

S(0) β ν(0) σν ρ

WTI DEC15 84.48 0.5 2.117 0.410 -0.112

15As futures options traded in CME(WTI) are American type, we calibrate to European
option prices with the implied BS(log-normal) volatilities that are obtained by a binomial
method.
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Parameters, Monte Carlo

We use the results of Denault et al., 2009 [ 7] for the parameters of
hazard rate processes.

We calculate the pre-default value of European option whose maturity
is the same as that of futures option.

The details of Monte Carlo method simulation are as follows:

time step size is 1/200 years.
the number of trial is 10 million.
Hagan et al. formula [2002] is used for evaluation of default-free
European options, that is V(0).
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Analysis

We check the following points.

correlation effect: ( S, h), (S, v), (h, v), (S, A), (ν, A) and ( h, A).
collateral effect: no collateral, cash collateral with constant
time-lag or asset collateral with constant time-lag.
rating effect: from Aaa to B.
the second order value’s effect.
maturity effect: from 2 years to 10 years.
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Correlation Effect

Firstly, we test the correlation effects among the hazard rates, the
underlying asset price, its volatility and the collateral asset price.
In this example, we set the following assumptions.

the correlations which are not explicitly specified are set to be 0.

parameters of the hazard rate processes are those of Baa rating.

parameters of the collateral asset are µA = 0 and σA = 50%.

the time-lag ( ∆) of collateral is 0.1.

strike price is ATM.
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Correlation Effect - No Collateral

Table: Pre-default values of call option contracts without collateral

Correlation -0.7 -0.35 0 0.35 0.7

S and h 0th 14.648 14.648 14.648 14.648 14.648
1st -0.784 -0.987 -1.220 -1.465 -1.742
2nd 0.027 0.043 0.065 0.091 0.123
Total 13.890 13.704 13.492 13.273 13.029

S and ν 0th 13.789 14.338 14.648 14.719 14.553
1st -1.147 -1.192 -1.220 -1.231 -1.222
2nd 0.061 0.063 0.065 0.066 0.065
Total 12.703 13.210 13.492 13.554 13.397

h and ν 0th 14.648 14.648 14.648 14.648 14.648
1st -1.055 -1.134 -1.220 -1.312 -1.410
2nd 0.050 0.057 0.065 0.074 0.085
Total 13.642 13.570 13.492 13.410 13.322

When the correlation between S and h increases ( −0.7 → +0.7), the absolute
values of the first and the second order become larger. (High correlation
between S and h means that the default risk becomes high when the option
value is high.)
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Correlation Effect - Cash Collateral

Table: Pre-default values of call option contracts with cash collateral

Correlation -0.7 -0.35 0 0.35 0.7

S and h 0th 14.648 14.648 14.648 14.648 14.648
1st -0.116 -0.137 -0.160 -0.185 -0.211
2nd 0.00004 0.00004 0.00004 0.00004 0.00004
Total 14.532 14.511 14.488 14.463 14.436

S and ν 0th 13.789 14.338 14.648 14.719 14.553
1st -0.127 -0.144 -0.160 -0.174 -0.187
2nd 0.00004 0.00004 0.00004 0.00004 0.00004
Total 13.663 14.194 14.488 14.545 14.366

h and ν 0th 14.648 14.648 14.648 14.648 14.648
1st -0.130 -0.144 -0.160 -0.177 -0.195
2nd 0.00004 0.00004 0.00004 0.00004 0.00004
Total 14.518 14.503 14.488 14.471 14.452

The effect of the second order value seems negligible under collateralization
with this level of time-lag.
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Correlation Effect - Asset Collatral

Table: Pre-default values of call option contracts with asset collateral

Correlation -0.7 -0.35 0 0.35 0.7

S and h 0th 14.648 14.648 14.648 14.648 14.648
1st -0.128 -0.154 -0.183 -0.214 -0.249
2nd 0.0001 0.0002 0.0003 0.0004 0.0006
Total 14.520 14.494 14.465 14.433 14.399

S and ν 0th 13.789 14.338 14.648 14.719 14.553
1st -0.154 -0.169 -0.183 -0.194 -0.204
2nd 0.0003 0.0003 0.0003 0.0003 0.0003
Total 13.635 14.169 14.465 14.525 14.350

h and ν 0th 14.648 14.648 14.648 14.648 14.648
1st -0.152 -0.166 -0.183 -0.201 -0.220
2nd 0.0002 0.0003 0.0003 0.0003 0.0004
Total 14.496 14.481 14.465 14.447 14.428

The first order value with asset collateral is about 1.2 times as large as that with
cash collateral.

The effect of the second order value also seems negligible.
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Correlation Effect - Asset Collateral

Table: Pre-default values of call option contracts with asset collateral

Correlation -0.7 -0.35 0 0.35 0.7

S and A 0th 14.648 14.648 14.648 14.648 14.648
1st -0.220 -0.202 -0.183 -0.160 -0.132
2nd 0.0007 0.0005 0.0003 0.0001 0.0000
Total 14.428 14.446 14.465 14.487 14.515

ν and A 0th 14.648 14.648 14.648 14.648 14.648
1st -0.192 -0.188 -0.183 -0.178 -0.172
2nd 0.0004 0.0004 0.0003 0.0002 0.0002
Total 14.455 14.460 14.465 14.470 14.475

h and A 0th 14.648 14.648 14.648 14.648 14.648
1st -0.192 -0.188 -0.183 -0.178 -0.174
2nd 0.0004 0.0004 0.0003 0.0002 0.0002
Total 14.456 14.460 14.465 14.470 14.474

Correlation effect between the underlying asset price and the collateral asset
price seems similar order as the one between the underlying asset price and
the hazard rate.

When the correlation between S and A is negative, the increase in the option
premium and the decrease in the collateral value occur simultaneously. (That
is, it requires more collateral.) 77 / 101
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Rating Effect - No Collateral

Table: Pre-default values of call option contracts without collateral

Strike 70 80 85 90 100

Aaa 0th 22.658 16.798 14.333 12.179 8.744
1st -0.474 -0.351 -0.300 -0.254 -0.182
2nd 0.005 0.004 0.003 0.003 0.002
Total 22.189 16.450 14.036 11.928 8.564

Baa 0th 22.658 16.798 14.333 12.179 8.744
1st -1.879 -1.392 -1.186 -1.007 -0.720
2nd 0.100 0.074 0.063 0.054 0.038
Total 20.879 15.480 13.210 11.226 8.062

B 0th 22.658 16.798 14.333 12.179 8.744
1st -7.877 -5.833 -4.972 -4.219 -3.017
2nd 2.155 1.595 1.359 1.153 0.823
Total 16.936 12.560 10.720 9.113 6.551

the worse is the rating, the more important the second order becmoes.

For the case of single B, if the second order value is not taken into account, the
pre-default value is more than 10% different from the first order pre-default
value.
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Rating Effect - Asset Collateral

Table: Pre-default values of call option contracts with asset collateral

Strike 70 80 85 90 100

Aaa 0th 22.658 16.798 14.333 12.179 8.744
1st -0.064 -0.051 -0.045 -0.040 -0.031
2nd 0.00003 0.00002 0.00002 0.00001 0.00001
Total 22.594 16.747 14.288 12.139 8.714

Baa 0th 22.658 16.798 14.333 12.179 8.744
1st -0.250 -0.199 -0.177 -0.156 -0.120
2nd 0.00047 0.00035 0.00030 0.00025 0.00018
Total 22.409 16.599 14.157 12.024 8.624

B 0th 22.658 16.798 14.333 12.179 8.744
1st -1.029 -0.822 -0.729 -0.644 -0.497
2nd 0.00996 0.00737 0.00628 0.00533 0.00380
Total 21.639 15.983 13.610 11.541 8.251

The effect of the second order value seems negligible under collateralization
with this level of time lag, even if the rating is single B.
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Rating Effect - Implied Volatility (No Collateral)

Figure: Implied volatilities of call options without collateral
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The shape of the skew of rating B is different from that of rating Aaa. The
difference of IV from the default-free case is larger for ITM, and the size of
difference varies in rating.
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Rating Effect - Implied Volatility (Asset Collateral)

Figure: Implied volatilities of European call options with risky asset collateral
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In this case, the shape of all ratings is similar.

The level of implied volatility is different in rating.
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Correlation Effect ( S, h) - Implied Volatility (Rating : B)

Figure: Implied volatilities of European call and put options without collateral
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When the correlation between the underlying asset price and the hazard rate
becomes high, a call option’s implied volatility becomes low.

This is because a default probability will increase if the price rises (that is, the
option value rises).

For the case of put options, the shape is reversed.
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The Second Order Effect - Implied Volatility (Baa)

Figure: Implied volatilities of European call and put options without collateral
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The difference between the first and the second is not so large in this case.
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The Second Order Effect - Implied Volatility (B)

Figure: Implied volatilities of European call and put options without collateral
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It seems better to take the second order value into account.
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Maturity Effect - No Collateral (Baa)

Next graph shows the values of 0th (default free), 1st and 2nd order price of the ATM
option without collateral in Baa rating.

Figure: Pre-default values of call option contracts without collateral
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For the long maturity case, the second order value has larger impact on the
pre-default value.

For the case of 10 years maturity, the 2nd order affects by more than 5%.
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Maturity Effect - Asset Collateral (Baa)

Figure: Pre-default values of call option contracts with asset collateral
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When we post the collateral, the second order effect does not increase.

The second order effect can be ignored even if the maturity is more than 10
years.
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Stochastic Collateral Cost

Next, we consider a more general case:

dVt = cVt dt − f (yt , ŷt , ht ,Vt , Γt)dt + Z · dWt , (8.9)

where

f (yt , ŷt , ht ,Vt , Γt) = ŷtΓt − ytVt − lh t (Vt − Γt)
+ (8.10)

yt = r t − c(collateral cost of USD ) (8.11)

ŷt = r̂ t − ĉt(collateral cost of Γt) (8.12)

For numerical examples, we set ŷ ≡ 0 and suppose yt = r t − c where r
follows a CIR process with a nonnegative constant c. Then, we put ϵ in
front of f to apply our perturbation technique with interacting particle
method.
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Stochastic Collateral Cost

CIR model for risk free rate process ( r).

drt = κr (θr − r t) dt + γr
√

r t(
5∑
η=1

c5,ηdWη
t
); r0 = r(0). (8.13)

Table: Parameters of USD risk free rate process

r(0) κr θr γr

USD Risk Free Rate 1% 0.2 1% 0.05

The other parameters are the same as before.

The rating of counter party is Baa.

We check the following points.

correlation effect: ( S, h), (S, y), and ( h, y).
collateral effect: no collateral, cash collateral with constant
time-lag 0.1.
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Correlation Effect - No Collateral

Table: Correlation Effects - No Collateral

Correlation -0.7 -0.35 0 0.35 0.7

S and h 0th 14.648 14.648 14.648 14.648 14.648
1st -1.129 -1.335 -1.565 -1.821 -2.100
2nd 0.051 0.072 0.099 0.131 0.170
Total 13.570 13.385 13.181 12.958 12.717

S and y 0th 14.648 14.648 14.648 14.648 14.648
1st -1.418 -1.488 -1.565 -1.650 -1.742
2nd 0.083 0.090 0.099 0.109 0.119
Total 13.313 13.250 13.181 13.106 13.025

h and y 0th 14.648 14.648 14.648 14.648 14.648
1st -1.565 -1.565 -1.565 -1.565 -1.565
2nd 0.093 0.096 0.099 0.102 0.105
Total 13.176 13.179 13.181 13.184 13.187

Change in the correlation between S and y affects on the value by at most 2 %, while

change in the correlation between S and h does by around 6%.
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Correlation Effect - Cash Collateral

Table: Correlation Effects - Cash Collateral

Correlation -0.7 -0.35 0 0.35 0.7

S and h 0th 14.648 14.648 14.648 14.648 14.648
1st -0.490 -0.511 -0.533 -0.558 -0.584
2nd 0.007 0.007 0.007 0.008 0.008
Total 14.164 14.144 14.121 14.097 14.072

S and y 0th 14.648 14.648 14.648 14.648 14.648
1st -0.370 -0.448 -0.533 -0.627 -0.730
2nd 0.003 0.005 0.007 0.010 0.014
Total 14.281 14.205 14.121 14.030 13.931

h and y 0th 14.648 14.648 14.648 14.648 14.648
1st -0.533 -0.533 -0.533 -0.534 -0.534
2nd 0.007 0.007 0.007 0.007 0.008
Total 14.121 14.121 14.121 14.121 14.121

Change in the correlation between S and y has a larger effect than change in the

correlation between S and h, (yt is multiplied by Vt , whereas ht is multiplied by

Vt − Vt−∆.)
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Basket Option

Next, we consider about a basket option of WTI and Brent.

To calculate V(0) analytically, we use the asymptotic expansion method (please
see [39] for the detail).

The maturity of the underlying futures is DEC 15.

The maturity of basket option is Nov 10, 2015.

The discount rate is c = 0.295% which is calculated by OIS with the same
maturity as the option maturity.

The parameters of the underlying asset prices are obtained by calibration to the
market values of futures options on July 10, 2012.

Calibrated parameters are follows. 16 :

Table: Parameters of Brent DEC15 in SABR model

S(0) β ν(0) σν ρ

Brent DEC15 90.14 0.5 2.184 0.446 -0.044

16As futures options traded in ICE(Brent) are American type, we calibrate to European
option prices with the implied BS(log-normal) volatilities that are obtained by a binomial
method.
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Basket Option

The correlation between WTI futures price (or Brent futures price) and
Brent volatility (or WTI volatility) is set as the same value as the
correlation between WTI futures price (or Brent futures Price) and WTI
volatility (or Brent volatility).

The correlations between WTI futures price (or volatility) and Brent
futures price (or volatility) are calculated by using logarithmic
historical price changes for the 30 days before July 10, 2012.

The correlation between WTI future price and Brent future price is
0.980, and the correlation between WTI volatility and Brent volatility is
0.907.
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Basket Option

Table: Pre-default values of call option contracts without collateral

Strike 140 160 170 180 200

Aaa 0th 49.798 37.475 32.224 27.590 20.083
1st -1.036 -0.780 -0.671 -0.575 -0.418
2nd 0.011 0.009 0.007 0.006 0.005
Total 48.774 36.704 31.561 27.021 19.669

Baa 0th 49.798 37.475 32.224 27.590 20.083
1st -4.101 -3.089 -2.657 -2.276 -1.658
2nd 0.217 0.164 0.141 0.121 0.088
Total 45.915 34.550 29.708 25.435 18.513

B 0th 49.798 37.475 32.224 27.590 20.083
1st -17.176 -12.937 -11.130 -9.534 -6.946
2nd 4.680 3.531 3.041 2.607 1.904
Total 37.303 28.069 24.135 20.662 15.041

Moreover, applying the asymptotic expansion method, we are able to
calculate pre-default values of various type of basket options. (Please
see [39] for the detail.)
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