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An Asymptotic Expansion Approach

An asymptotic expansion approach in finance is initiated by
Kunitomo-T[1992], Yoshida[1992b] and T[1995,1999].

It provides us a unified methodology for valuation problems
under a general diffusion model in finance, which is useful for
evaluation of values/Greeks of European derivatives. So, it is
used

in calibration.
in American option pricing through its value decomposition.
as an explanatory variable for the least square method (or as an
estimator for excercise boundary) in Bermudan option pricing.
as a control variable for the control variate method in Monte Carlo
simulation.
with known characteristic functions of jump processes to be applied
to jump-diffusion models.

It is mathematically justified by Watanabe theory in Malliavin
calculus. (Watanabe[1987], Yoshida[1992a], Kunitomo- T[2003])
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Today’s Talk

This talk will introduce our results in the asymptotic expansion
approach. In particular, I will

...1 briefly describe the outline of the asymptotic expansion
approach, and list up its applications to option pricing.

...2 present a new approximation scheme (perturbation scheme) for
solutions of forward backward stochastic differential
equations(FBSDEs) with some applications.

...3 introduce a Monte Carlo implementation using the perturbation
scheme for FBSDEs with interacting particle method.
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An Asymptotic Expansion in a General Diffusion Setting

An Asymptotic Expansion in a General Diffusion Setting

Shiraya-Takahashi-Toda [2009]

Setting

(W,P): a r-dimensional Wiener Space

X(ϵ) = (X(ϵ),1, · · · ,X(ϵ),d): d-dimensional stochastic process
dependent on a perturbation parameter ϵ ∈ (0,1]:

X(ϵ), j
t = x0 +

∫ t

0
V j

0(X(ϵ)
s , ϵ)ds+ ϵ

∫ t

0
V j(X(ϵ)

s )dWs (1)

where
V0 = (V1

0 , · · · ,Vd
0 ): Rd × (0,1] 7→ Rd, and

V = (V1, · · · ,Vd): Rd 7→ Rd ⊗ Rr

are smooth functions with bounded derivatives of all orders.
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An Asymptotic Expansion in a General Diffusion Setting

Next, suppose that a function g : RN 7→ R to be smooth and all
derivatives have polynomial growth orders.

Then, g(X(ϵ)
T ) has its asymptotic expansion;

g(X(ϵ)
T ) ∼ g0T + ϵg1T + · · ·

in Lp for every p > 1 as ϵ ↓ 0,

The coefficients in the expansion are obtained by Taylor’s
formula and represented based on multiple Wiener-It ô integrals.
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An Asymptotic Expansion in a General Diffusion Setting

Let Akt the k-th expansion coefficient of X(ϵ)
t (Akt =

1
k!
∂kX(ϵ)

t

∂ϵk

∣∣∣∣∣
ϵ=0

),

and A j
kt, j = 1, · · · ,d denote the j-th elements of Akt.

In particular, A1t is represented by

A1t =

∫ t

0
YtY

−1
u

(
∂ϵV0(X(0)

u , 0)du+ V(X(0)
u )dWu

)
(2)

where Y denotes the solution to the differential equation;

dYt = ∂V0(X(0)
t ,0)Ytdt; Y0 = Id.

Here, ∂V0 denotes the d × d matrix whose ( j, k)-element is

∂kV
j
0 =

∂V j
0(x,ϵ)
∂xk

, V j
0 is the j-th element of V0, and Id denotes the

d × d identity matrix.

Note that A1t follows a normal distribution.
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An Asymptotic Expansion in a General Diffusion Setting

For k ≥ 2, A j
kt, j = 1, · · · , d is recursively determined by the following: 2

A j
kt =

1
k!

∫ t

0
∂k
ϵV

j
0(X(0)

u ,0)du

+

k∑
l=1

(l)∑
l⃗β ,d⃗β

1
(k− l)!

1
β!

∫ t

0

 β∏
j=1

A
d j
l j u

 ∂βd⃗β∂k−l
ϵ V j

0(X(0)
u ,0)du

+

(k−1)∑
l⃗β ,d⃗β

1
β!

∫ t

0

 β∏
j=1

A
d j

l j u

 ∂βd⃗βV j (X(0)
u )dWu (3)

where ∂l
ϵ =

∂l

∂ϵ l
, ∂β

d⃗β
= ∂β

∂xd1
···∂xdβ

,

(l)∑
l⃗β ,d⃗β

:=
l∑
β=1

∑
l⃗β∈Ll,β

∑
d⃗β∈{1,··· ,d}β

, (4)

and

Ll,β :=

l⃗β = (l1, · · · , lβ);
β∑

j=1

l j = l; (l, l j , β ∈ N)

 . (5)

2They can be expressed as the finite sum of iterated multiple Wiener -Itô integrals.
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An Asymptotic Expansion in a General Diffusion Setting

Then, g0T and g1T can be written as

g0T = g(X(0)
T ),

g1T =

d∑
j=1

∂ jg(X(0)
T )A j

1T .

For n ≥ 2, gnT =
1
n!
∂ng(X(ϵ)

T )
∂ϵn

∣∣∣∣∣
ϵ=0

is expressed as follows:

gnT =

(n)∑
l⃗β,d⃗β

1
β!
∂
β

d⃗β
g(X(0)

T )Ad1
l1T · · ·A

dβ
lβT

(6)
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An Asymptotic Expansion in a General Diffusion Setting

Next, normalize g(X(ϵ)
T ) to

G(ϵ) =
g(X(ϵ)

T ) − g0T

ϵ

for ϵ ∈ (0,1]. Then,

G(ϵ) ∼ g1T + ϵg2T + · · ·

in Lp for every p > 1.
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An Asymptotic Expansion in a General Diffusion Setting

Moreover, let
V̂(x, t) = (∂g(x))

′
[YTY−1

t V(x)]

and make the following assumption:

(Assumption 1) ΣT =

∫ T

0
V̂(X(0)

t , t)V̂(X(0)
t , t)

′
dt > 0.

Note that g1T follows a normal distribution with variance ΣT ; the
density function of g1T denoted by fg1T (x) is given by

fg1T (x) =
1

√
2πΣT

exp

(
− (x−C)2

2ΣT

)
where

C = (∂g(X(0)
T ))

′
∫ T

0
YTY−1

t ∂ϵV0(X
(0)
t ,0)dt.

Hence, Assumption 1 means that the distribution of g1T does
not degenerate.
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An Asymptotic Expansion in a General Diffusion Setting

Let S be the real Schwartz space of rapidly decreasing
C∞-functions on R and S′ be its dual space.

Next, take Φ ∈ S′. Then, the asymptotic expansion of a
generalized Wiener functional Φ(G(ϵ)) as ϵ ↓ 0 can be verified by
Watanabe theory. (e.g. Watanabe(1987))

In particular, if we take the delta function at x ∈ R, δx as Φ, we
obtain an asymptotic expansion of the density for G(ϵ).
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An Asymptotic Expansion in a General Diffusion Setting

The expectation of Φ(G(ϵ)) is expanded as follows:

E[Φ(G(ϵ))] =

N∑
n=0

ϵn
(n)∑
k⃗δ

1
δ!

E

Φ(δ)(g1T)
δ∏

j=1

g(k j+1)T

 + o(ϵN)

=

N∑
n=0

ϵn
(n)∑
k⃗δ

1
δ!

∫
R
Φ(δ)(x)

×E
[
Xk⃗δ |g1T = x

]
fg1T (x)dx+ o(ϵN)

=

N∑
n=0

ϵn
(n)∑
k⃗δ

1
δ!

∫
R
Φ(x)(−1)δ

× dδ

dxδ

{
E

[
Xk⃗δ |g1T = x

]
fg1T (x)

}
dx+ o(ϵN) (7)

where Φ(δ)(g1T) = dδΦ(x)
dxδ

∣∣∣∣
x=g1T

,
∑(n)

k⃗δ
=

∑n
δ=1

∑
k⃗δ∈Ln,δ

, and

Xk⃗δ :=
δ∏

j=1

g(k j+1)T . (8)

13 / 88



. .
Introduction

. . . . . . . . . . . . . . . . .
Outline of A.E.

. . . . . . .
Applications

. . . . . . . . . . . . . . . . . . . .
FBSDE Approximation Scheme

. . . . .
Perturbation Technique for Non-linear FBSDEs with Interacting Particle Method References

Comments on Computation Scheme

Computation of the Asymptotic Expansion

To compute the asymptotic expansion ( 7), we need to evaluate
the conditional expectations of the form

E
[
Xk⃗δ

∣∣∣∣ g1T = x
]

where Xk⃗δ is represented by a product of multiple Wiener-It ô
integrals.

Previous works(e.g. T[1995,1999]) provide the conditional
expectation formulas necessary for the expansions up to the
third order.

T-Takehara-Toda[2009] shows a general scheme for deriving
formulas for the higher order expansions.
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Comments on Computation Scheme

Computation of the Asymptotic Expansion

Takahashi- Toda[2009] introduces an alternative but equivalent
computational algorithm for an asymptotic expansion.

We compute the unconditional expectations instead of the
conditional ones by deriving a system of ordinary differential
equations which the expectations satisfy.
Thus, we are able to derive high order approximation formulas in
an automatic manner.
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Asymptotic Expansion of Density Function

The next theorem shows a general result for an asymptotic
expansion of the density function for G(ϵ).

In particular, the coefficients in the expansion are obtained
through the solution of a system of ordinary differential
equations(ODEs).

Each ODE does not involve any higher order terms, and only
lower or the same order terms appear in the right hand side of
the ODE. Hence, one can easily solve (analytically or
numerically) the system of ODEs.
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Asymptotic Expansion of Density Function

.
Theorem 1: The asymptotic expansion of the density function
..

......

The asymptotic expansion of the density function of

G(ϵ) =
g(X(ϵ)

T )−g(X(0)
T )

ϵ
up to ϵN-order is given by

fG(ϵ) (x) = fg1T (x)

+

N∑
n=1

ϵn

 3n∑
m=0

CnmHm(x−C,ΣT )

 fg1T (x) + o(ϵN),

(9)

where Hn(x;Σ) is the Hermite polynomial of degree n which is defined as

Hn(x;Σ) = (−Σ)nex2/2Σ dn

dxn e−x2/2Σ, (10)

and

Cnm =
1
Σm

T

m∑
δ=1

∑
k⃗δ∈Ln,δ

(k1+1)∑
l⃗1
β1
,d⃗1
β1

· · ·
(kδ+1)∑
l⃗δ
βδ
,d⃗δ
βδ

1
δ!(m− δ)!

 δ∏
j=1

1
β j !
∂
β j

d⃗ j
β j

g(X(0)
T )

 1

im−δ
∂m−δ

∂ξm−δ
η

d⃗1
β1
⊗···⊗d⃗δ

βδ

l⃗1
β1
⊗···⊗l⃗δ

βδ

(T; ξ)

∣∣∣∣∣∣
ξ=0

,
(
i =
√
−1

)
. (11)
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Asymptotic Expansion of Density Function

.
Theorem 1(continued)
..

......

η
d⃗β

l⃗β
(T; ξ) are obtained as a solution to the following system of ODEs:

d
dt

{
η

d⃗β

l⃗β
(t; ξ)

}
=

β∑
k=1

1
lk!
η

d⃗β/k

l⃗β/k
(t; ξ)∂lk

ϵ Vdk
0 (X(0)

t ,0)

+

β∑
k=1

lk∑
l=1

(l)∑
m⃗γ ,
⃗̃dγ

1
(lk − l)!

1
γ!
η

(d⃗β/k)⊗ ⃗̃dγ
(⃗lβ/k)⊗m⃗γ

(t; ξ)∂γ
⃗̃dγ
∂

lk−l
ϵ Vdk

0 (X(0)
t ,0)

+

β∑
k,m=1
k<m

(lk−1)∑
m⃗γ ,
⃗̃dγ

(lm−1)∑
m⃗δ ,
⃗̂dδ

1
γ!δ!
η

(d⃗β/k,m)⊗ ⃗̃dγ⊗ ⃗̂dδ
(⃗lβ/k,m)⊗m⃗γ⊗m⃗δ

(t; ξ)

×∂γ
⃗̃dγ

Vdk (X(0)
t )∂δ

⃗̂dδ
Vdm(X(0)

t )

+ (iξ)
β∑

k=1

(lk−1)∑
m⃗γ ,
⃗̃dγ

1
γ!
η

(d⃗β/k)⊗ ⃗̃dγ
(⃗lβ/k)⊗m⃗γ

(t; ξ)∂γ
⃗̃dγ

Vdk (X(0)
t )V̂(X(0)

t , t)

η
d⃗β

l⃗β
(0;ξ) = 0, (⃗lβ, d⃗β) , (∅, ∅),

(
η(∅)(∅)(t; ξ) = 1

)
. (12)
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Asymptotic Expansion of Density Function

.
Theorem 1(continued)
..

......

Here, we use the following notations:

l⃗β/k := (l1, · · · , lk−1, lk+1, · · · , lβ)
l⃗β/k,n := (l1, · · · , lk−1, lk+1, · · · , ln−1, ln+1, · · · , lβ), 1 ≤ k < n ≤ β

l⃗β ⊗ m⃗γ := (l1, · · · , lβ,m1, · · · ,mγ)

for l⃗β = (l1, · · · , lβ) and m⃗γ = (m1, · · · ,mγ).
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Asymptotic Expansion of Density Function

Some Comments

Due to the hierarchical structure of the ODEs with respect to
l =

∑β
j=1 l j and η(∅)

(∅)(t; ξ) = 1, one can easily solve these ODEs
successively from lower order terms to higher order terms with

initial conditions η
d⃗β

l⃗β
(0;ξ) = 0 for (⃗lβ, d⃗β) , (∅, ∅).

For instance, η j
(1), η

j,k
(1,1) and η j

(2) are evaluated in the following
order:

η
j
(1)→ η

j,k
(1,1)→ η

j
(2).

Different approximation formulas are obtained (T-Toda
[2009,2012])
(e.g. the limiting distribution: Normal, Log-Normal, Shifted
Log-Normal, Non-central Chi-square)
through change of variables of X(ϵ), j

or/and
the different way to setting the perturbation parameter ϵ;
(V j

0(X(ϵ)
s , ), ϵV

j
0(X(ϵ)

s ), ϵ2V j
0(X(ϵ)

s ) · · · )
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Asymptotic Expansion of Option Price

Asymptotic Expansion of Option Price

We consider a plain vanilla call option on g(X(ϵ)
T ).

An asymptotic expansion of a call option price with maturity T

and strike price K = X(0)
T − ϵy is given by

C(K,T) = ϵP(0,T)
∫ ∞

−y
(x+ y) fG(ϵ),N(x)dx+ o(ϵ(N+1)),

where,

P(0,T) : the price at time 0 of a zero coupon bond with maturity T

fG(ϵ) ,N : the asymptotic expansion of density of G(ϵ) up to ϵN-th
order.

Integrals are calculated by the formulas:∫ ∞

−y
(x+ y)Hk(x;Σ) fg1T (x)dx= Σ2Hk−2(−y;Σ) fg1T (y).
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Applications

Some existing applications are as follows:

Calibration and pricing cap/floor and swaption under
CEV-Heston LMM and Quadratic-Heston LMM.
(Shiraya-T-Yamazaki [2011])

Calibration and pricing under double-Heston model (T-Yamada

[2012])

Pricing continuous and discrete barrier options.
( Shiraya-T-Toda [2012]: pricing barrier options with continuous
monitoring (by static hedging).
Shiraya-T-Yamada [2011]: pricing barrier options with discrete
monitoring.

Kato-T-Yamada [2012]: pricing barrier options with continuous

monitoring (PDE approach). )
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Applications(Continued)

Pricing discrete average options.
( Shiraya-T [2011,2012].: pricing WTI average options based on

calibration to the relevant futures (vanilla) option market.)

Pricing currency options under a market model of interest rates
and a general diffusion stochastic volatility model with jumps of
spot exchange rates. (T- Takehara [2010], T- Takehara-Toda [2009])

Pricing currency basket and cross-currency average options
based on calibration to the relevant (vanilla) option markets.
(Shiraya-T [2012])
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Numerical Examples

Numerical Example: SABR/ λ-SABR model

For numerical examples, we take SABR/ λ-SABR model (
Hagan-Kumar-Lesniewski-Woodward [2002], Henry-Labord ère
[2008]).

We consider the European plain-vanilla, average and basket
call/put prices under the following λ-SABR/SABR ( λ = 0) model
(interest rate= 0%, for simplicity) :

dS(ϵ)(t) = ϵσ(ϵ)(t)(S(ϵ)(t))βdW1
t ,

dσ(ϵ)(t) = λ(θ − σ(ϵ)(t))dt+ ϵν1σ
(ϵ)(t)dW1

t + ϵν2σ
(ϵ)(t)dW2

t ,

where ν1 = ρν，ν2 = (
√

1− ρ2)ν．

(Remark) We can modify the model to have smooth and bounded
coefficients in order that regularity conditions for the expansion are
satisfied: practically, it can be regarded as the original model, and its
approximation formula can be the same.
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Numerical Examples

Numerical Example: SABR/ λ-SABR model

Approximated prices by the asymptotic expansion method are
calculated up to the fifth/fourth order.

Note that all the solutions to differential equations are obtained
analytically.

Benchmark values are computed by Monte Carlo simulations
with 108 samples.

In the SABR ( λ = 0) case, we also calculate the approximated
price by Hagan-Kumar-Lesniewski-Woodward [2002] formula to
compare with our method.
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Numerical Examples

Numerical Example: Plain-Vanilla Option (SABR model)

Figure: Approximation errors of ATM/OTM option prices with several strikes.

S0 = 100, K = 10∼ 200, β = 0.5 σ0 = 3, ν = 0.3, ρ = −0.7, ϵ = 1, T = 10.
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Numerical Examples

Numerical Example: Average Option ( λ-SABR)

Shiraya-Takahashi-Toda Payoffs of Average Call( C(ϵ)
A (K,T)) and

Put(P(ϵ)
A (K,T)) :

C(ϵ)
A (K,T) = E

[
max

{
1
T

∫ T

0
S(ϵ)(u)du− K, 0

}]
P(ϵ)

A (K,T) = E
[
max

{
K − 1

T

∫ T

0
S(ϵ)(u)du, 0

}]
Parameters :

Model S(0) β σ(0) λ θ ν ρ T

λ-SABR 100 1.0 0.3 1.0 0.3 0.3 -0.5 2
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Numerical Examples

Numerical Example: Average Option ( λ-SABR)

Asymptotic expansions for average option prices under the λ-SABR
model up to the fourth order

A.E. Price(Difference)
Model Strike(C/P) MC Price(std. error) 1st 2nd 3rd 4th

λ-SABR 50 Put 0.024 (0.000) 0.162 -0.076 -0.001 0.001
80 Put 2.251 (0.001) 0.609 0.060 0.004 0.003

100 Call 9.685 (0.002) 0.088 0.088 0.001 0.001
120 Call 3.348 (0.001) -0.488 0.061 0.005 0.006
150 Call 0.495 (0.000) -0.309 -0.071 0.004 0.002
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Numerical Examples

Numerical Example: Basket Option ( λ-SABR)

We consider the valuation of basket options with the following
payoff ( C(ϵ)

B (K,T)):

C(ϵ)
B (K,T) = max

{
Ŝ(ϵ)(T) − K,0

}
,

where Ŝ(ϵ)(t) =
∑100

i=1 S(ϵ)
i (t).

Model of each Si :λ-SABR with Ŝ(ϵ)(0) = 10, 000,
λi = 1, βi = 0.5, ρi = −0.4. (As for the other parameters, please see
Shiraya-Takahashi [2012] for the details.) 3

3The average of σi (0) and that of θi are 15%, and the average of νi is 30%. The
correlation between two different asset prices(volatilities) is 0.8(0.3).
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Numerical Examples

Numerical Example: Basket Option ( λ-SABR)

Numerical Example: Basket Option with 100 Underlying Assets 4

Table: Basket Call Option (T = 1)

Strike(K) 8,000 9,000 10,000(ATM) 11,000 12,000

Monte Carlo 2,037.1 1,167.5 517.6 160.8 31.7
AE3rd 2,037.4 1,167.6 517.6 160.5 31.5

Difference 0.3 0.2 -0.0 -0.2 -0.2
Relative Difference (%) 0.0% 0.0% 0.0% -0.2% -0.7%
MC Std Error 0.7 0.6 0.4 0.2 0.2

Monte Carlo: the number of trials is 3 million with the antithetic variable

method.

4Please see Alos-Bayer-Laurence [2011] for other fast accurate analytical method for
pricing basket options with 100 underlying assets, for instance.
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FBSDE Approximation Scheme

The forward backward stochastic differential equations (FBSDEs) have
been found particularly relevant for various valuation problems (e.g.
pricing securities under the existence of relevant parties’ credit risks,
optimal portfolio and indifference pricing issues in incomplete and/or
constrained markets).

Their financial applications are discussed in details for example,
El Karoui, Peng and Quenez [1997], Ma and Yong [2000], a recent book
edited by Carmona [2009], Cr épey [2011], and references therein.

The importance of FBSDEs is expected to increase in coming years
since the new financial regulations will put significant constraints on
available assets and trading strategies.
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FBSDE Approximation Scheme- Setup-

Fujii-Takahashi[2011]

The probability space is taken as (Ω,F ,P) and T ∈ (0,∞) denotes some
fixed time horizon. Wt = (W1

t , · · · ,Wr
t )∗, 0 ≤ t ≤ T is Rr -valued Brownian

motion defined on (Ω,F ,P), and (Ft){0≤t≤T} stands for P-augmented
natural filtration generated by the Brownian motion.

We consider the following forward-backward stochastic differential
equation (FBSDE):

dVt = − f (Xt,Vt,Zt)dt+ Zt · dWt (13)

VT = Φ(XT), (14)

where V takes the value in R, and Xt ∈ Rd is assumed to follow a
diffusion which is the solution to the (forward) SDE:

dXt = γ0(Xt)dt+ γ(Xt) · dWt; X0 = x . (15)

32 / 88



. .
Introduction

. . . . . . . . . . . . . . . . .
Outline of A.E.

. . . . . . .
Applications

. . . . . . . . . . . . . . . . . . . .
FBSDE Approximation Scheme

. . . . .
Perturbation Technique for Non-linear FBSDEs with Interacting Particle Method References

FBSDE Approximation Scheme- Setup-

Φ(XT) denotes the terminal payoff where Φ(x) is a deterministic
function of x.

Z and γ take values in Rr and Rd×r respectively.

We assume that the appropriate regularity conditions are
satisfied for the necessary treatments.
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Perturbative Expansion for Non-linear Generator

In order to solve the pair of (Vt,Zt) in terms of Xt, we extract the
linear term from the generator f and treat the residual
non-linear term as the perturbation to the linear FBSDE.

We introduce the perturbation parameter ϵ, and then write the
equation as

dV(ϵ)
t = c(Xt)V

(ϵ)
t dt− ϵg(Xt,V

(ϵ)
t ,Z

(ϵ)
t )dt+ Z(ϵ)

t · dWt (16)

V(ϵ)
T = Φ(XT) , (17)

where ϵ = 1 corresponds to the original model by 5

f (Xt,Vt,Zt) = −c(Xt)Vt + g(Xt,Vt,Zt) . (18)

5Or, one can consider ϵ = 1 as simply a parameter convenient to count the approximation
order. The actual quantity that should be small for the approximation is the residual part g.
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Perturbative Expansion for Non-linear Generator

Usually, c(Xt) corresponds to the risk-free interest rate at time t,
but it is not a necessary condition. One should choose the
linear term in such a way that the residual non-linear term
becomes as small as possible to achieve better convergence.

Now, we are going to expand the solution of BSDE ( 16) and (17)
in terms of ϵ: that is, suppose V(ϵ)

t and Z(ϵ)
t are expanded as

V(ϵ)
t = V(0)

t + ϵV
(1)
t + ϵ

2V(2)
t + · · · (19)

Z(ϵ)
t = Z(0)

t + ϵZ
(1)
t + ϵ

2Z(2)
t + · · · . (20)
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Perturbative Expansion for Non-linear Generator

Once we obtain the solution up to the certain order, say k for
example, then by putting ϵ = 1,

Ṽt =

k∑
i=0

V(i)
t , Z̃t =

k∑
i=0

Z(i)
t (21)

is expected to provide a reasonable approximation for the
original model as long as the residual term is small enough to
allow the perturbative treatment.

As we will see, V(i)
t and Z(i)

t , the corrections to each order can be
calculated recursively using the results of the lower order
approximations.
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Recursive Approximation
Zero-th Order

For the zero-th order of ϵ, one can easily see the following
equation should be satisfied:

dV(0)
t = c(Xt)V

(0)
t dt+ Z(0)

t · dWt (22)

V(0)
T = Φ(XT) . (23)

It can be integrated as

V(0)
t = E

[
e−

∫ T

t
c(Xs)dsΦ(XT)

∣∣∣∣Ft

]
(24)

which is equivalent to the pricing of a standard European
contingent claim, and V(0)

t is a function of Xt.

Applying It ô’s formula (or Malliavin derivative), we obtain Z(0)
t as

a function of Xt, too.
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Recursive Approximation
First Order

Now, let us consider the process V(ϵ) − V(0). One can see that its
dynamics is governed by

d
(
V(ϵ)

t − V(0)
t

)
= c(Xt)

(
V(ϵ)

t − V(0)
t

)
dt

− ϵg(Xt,V
(ϵ)
t ,Z

(ϵ)
t )dt+

(
Z(ϵ)

t − Z(0)
t

) · dWt

V(ϵ)
T − V(0)

T = 0 . (25)

Now, by extracting the ϵ-first order term, we can once again recover
the linear FBSDE

dV(1)
t = c(Xt)V

(1)
t dt− g(Xt,V

(0)
t ,Z

(0)
t )dt+ Z(1)

t · dWt

V(1)
T = 0 , (26)

which leads to

V(1)
t = E

[∫ T

t
e−

∫ u
t c(Xs)dsg(Xu,V

(0)
u ,Z

(0)
u )du

∣∣∣∣∣∣Ft

]
. (27)
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Recursive Approximation
First Order

Because V(0)
u and Z(0)

u are some functions of Xu, we obtain Z(1)
t as

a function of Xt through It ô’s formula (or Malliavin derivative).

From these results, we can see that the required calculation is
nothing more difficult than the zero-th order case as long as we
have explicit expression for V(0) and Z(0).
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Recursive Approximation
Second and Higher Order Corrections

We can proceed the same way to the second order correction.

By extracting the ϵ-second order terms from V(ϵ)
t − (V(0)

t + ϵV
(1)
t ),

one can show that

dV(2)
t = c(Xt)V

(2)
t dt−

(
∂

∂v
g(Xt,V

(0)
t ,Z

(0)
t )V(1)

t

+ ∇zg(Xt,V
(0)
t ,Z

(0)
t ) · Z(1)

t

)
dt+ Z(2)

t · dWt

V(2)
T = 0 (28)

is a relevant FBSDE, which is once again linear in V(2)
t .
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Recursive Approximation
Second and Higher Order Corrections

As before, it leads to the following expression
straightforwardly:

V(2)
t = E

[∫ T

t
e−

∫ u

t
c(Xs)ds

(
∂

∂v
g(Xu,V

(0)
u ,Z

(0)
u )V(1)

u

+ ∇zg(Xu,V
(0)
u ,Z

(0)
u ) · Z(1)

u

)
du

∣∣∣∣Ft

]
.

Also, Z(2)
t is obtained through It ô’s formula (or Malliavin

derivative).

In exactly the same way, one can derive an arbitrarily higher
order correction. Due to the ϵ in front of the non-linear term g,
the system remains to be linear in the every order of
approximation.
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Evaluation of (V(i),Z(i)) in terms of X

Suppose we have succeeded to express backward components
(Vt,Zt) in terms of Xt up to the (i − 1)-th order. Now, in order to
proceed to a higher order approximation, we have to give the
following form of expressions with some deterministic function
G(·) in terms of the forward components Xt, in general:

V(i)
t = E

[∫ T

t
e−

∫ u

t
c(Xs)dsG

(
Xu

)
du

∣∣∣∣∣∣Ft

]
(29)
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Evaluation of (V(i),Z(i)) in terms of X

Even if it is impossible to obtain the exact result, we can still
obtain analytic approximation for (V(i)

t ,Z
(i)
t ).

In principle, The asymptotic expansion technique described
before allows us to obtain the expression.

Fujii-T [2011] have provided some explicit expressions for V(i)
t

and Z(i)
t .

Fujii-T [2012] have explicitly derived an approximation formula
for the dynamic optimal portfolio in an incomplete market and
confirmed its accuracy comparing with the exact result by
Cole-Hopf transformation. (Zariphopoulou [2001])
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Remark on Approximation of Coupled FBSDEs

Let us consider the following generic coupled non-linear FBSDE:

dVt = − f (t,Xt,Vt,Zt)dt+ Zt · dWt

VT = Φ(XT)

dXt = γ0(t,Xt,Vt,Zt)dt+ γ(t,Xt,Vt,Zt) · dWt; X0 = x .

We can treat this case in the similar way as before(decoupled case) by
introducing the following perturbation to the forward process:

dṼt = c(t, X̃t)Ṽtdt− ϵg(t, X̃t, Ṽt, Z̃t)dt+ Z̃t · dWt

ṼT = Φ(X̃T)

dX̃t =
(
r(t, X̃t) + ϵµ(t, X̃t, Ṽt, Z̃t)

)
dt

+
(
σ(t, X̃t) + ϵη(t, X̃t, Ṽt, Z̃t)

)
· dWt

We can also apply the same method under PDE(partial differential
equation) formulation based on four step scheme (e.g. Ma-Yong [2000]).

Please consult Fujii-T [2011] for the details.
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A forward agreement with bilateral default risk

A forward agreement with bilateral default risk

As the first example, we consider a toy model for a forward agreement
on a stock with bilateral default risk of the contracting parties, the
investor (party- 1) and its counter party (party- 2). The terminal payoff of
the contract from the view point of the party- 1 is

Φ(ST) = ST − K (30)

where T is the maturity of the contract, and K is a constant.

We assume the underlying stock follows a simple geometric Brownian
motion:

dSt = rStdt+ σStdWt (31)

where the risk-free interest rate r and the volatility σ are assumed to
be positive constants.

The default intensity of party- i hi is specified as

h1 = λ, h2 = λ + h (32)

where λ and h are also positive constants.
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A forward agreement with bilateral default risk

A forward agreement with bilateral default risk

In this setup, the pre-default value of the contract at time t, Vt, follows

dVt = rVtdt− h1 max(−Vt,0)dt+ h2 max(Vt, 0)dt+ ZtdWt

= (r + λ)Vtdt+ hmax(Vt,0)dt+ ZtdWt (33)

VT = Φ(ST) . (34)

Now, following the previous arguments, let us introduce the expansion
parameter ϵ, and consider the following FBSDE:

dV(ϵ)
t = µV(ϵ)

t dt− ϵg(V(ϵ)
t )dt+ Z(ϵ)

t dWt (35)

V(ϵ)
T = Φ(ST) (36)

dSt = St(rdt + σdWt) , (37)

where we have defined µ = r + λ and g(v) = −hv1{v≥0}.
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A forward agreement with bilateral default risk

A forward agreement with bilateral default risk

The next figure shows the numerical results of the forward contract
with bilateral default risk with various maturities with the direct
solution from the PDE (as in Duffie-Huang [1996]).

We have used

r = 0.02, λ = 0.01, h = 0.03, (38)

σ = 0.2, S0 = 100 , (39)

where the strike K is chosen to make V(0)
0 = 0 for each maturity.

We have plot V(1) for the first order, and V(1) + V(2) for the second order.
(Note that we have put ϵ = 1 to compare the original model.)
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A forward agreement with bilateral default risk

A forward agreement with bilateral default risk

Figure: Numerical Comparison to PDE
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A forward agreement with bilateral default risk

A forward agreement with bilateral default risk

One can observe how the higher order correction improves the
accuracy of approximation.

In this example, the counter party is significantly riskier than the
investor, and the underlying contract is quite volatile 6.

Even in this situation, the simple approximation to the second order
works quite well up to the very long maturity.

6Of course, people rarely make such a risky contract to the counter party in the real
market.
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A self-financing portfolio with differential interest rates

A self-financing portfolio with differential interest rates

As in Gobet-Lemor-Warin[2005], we consider the following valuation
problem of self-financing portfolio under the situation where there
exists a difference between the lending and borrowing interest rates.
Here, we consider the problem under the physical measure.

dVt = rVtdt−
{
(R− r) max

(Zt

σ
− Vt, 0

)
− θZt

}
dt+ ZtdWt,

VT = Φ(ST) = max(ST − K1, 0)− 2 max(ST − K2, 0), 7

dSt = St

(
µdt+ σdWt

)
, (40)

where r and R are the lending and the borrowing rate, respectively;
θ = (µ − r)/σ denotes the market price of risk; r , R, µ and σ are all
positive constants. Here, Zt/σ represents the amount invested in the
risky asset, i.e. stock St.

7 This spread introduces both of the lending and borrowing activities.
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A self-financing portfolio with differential interest rates

A self-financing portfolio with differential interest rates

Let us introduce the expansion parameter as

dV(ϵ)
t = rV (ϵ)

t dt− ϵg(V(ϵ)
t ,Z

(ϵ)
t )dt+ Z(ϵ)

t dWt (41)

V(ϵ)
T = Φ(ST) , (42)

where we have defined the non-linear perturbation function as

g(v, z) = (R− r) max
( z
σ
− v, 0

)
− θz . (43)

Now, we are going to expand V(ϵ)
t in terms of ϵ.
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A self-financing portfolio with differential interest rates

A self-financing portfolio with differential interest rates

Gobet-Lemor-Warin[2005] have carried out the detailed numerical
study for the above problem using the regression-based Monte Carlo
simulation.

They have used

µ = 0.05, σ = 0.2, r = 0.01, R= 0.06

T = 0.25, S0 = 100, K1 = 95, K2 = 105 .

After trying various sets of basis functions, they have obtained the
price as V0 = 2.95 with standard deviation 0.01.
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A self-financing portfolio with differential interest rates

A self-financing portfolio with differential interest rates

Now, let us provide the results from our perturbative expansion. Using
the same model inputs, we have obtained

V(0)
0 = 2.7863

V(1)
0 = 0.1814

V(2)
0 = −0.0149.

Thus, up to the first order, we have V(0)
0 + V(1)

0 = 2.968, which is already
fairly close, and once we include the second order correction, we have∑2

i=0 V(i)
0 = 2.953, which is perfectly consistent with their result of Monte

Carlo simulation.

Note that, we have derived analytic formulas with explicit expressions
both for the contract value and its volatility.
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Approximation of CVA

CVA

Fujii-Shiraya-Takahashi [2012]

When this technique is applied to evaluation of a pre-default contract
value with bilateral counter party risk, Its first order approximation
term can be regarded as CVA(credit value adjustment) 8.

We present a simple example of an analytic approximation for this
term by the asymptotic expansion method.

In particular, we consider a forex forward contract with bilateral
counter party risk, where both parties post their collateral perfectly
with the constant time-lag ( ∆) by the same currency as the payment
currency. We also assume the risk-free interest rate is equal to the
collateral rate.

8Our convention of CVA is different from other literatures by sign where it is defined as
the “charge” to the clients. Thus, our CVA = -CVA.
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Approximation of CVA

FBSDE

We consider a forward contract on forex Sϵ with strike K and
maturity τ; the relevant FBSDE for the pre-default contract value is
given as follows: ( h j,ϵ ( j = 1,2): each counter party’s hazard rate
process; δ, ϵ: expansion parameters.)

dVδt = rVδt dt− δ f (t,Vδt ,V
δ
t−∆)dt+ Zδt dWt; Vτ = Sϵτ − K, (44)

f (t,Vδt ,V
δ
t−∆) = h1,ϵ

t (Vδt−∆ − Vδt )+ − h2,ϵ
t (Vδt − Vδt−∆)

+ (45)

dhj,ϵ
t = ϕ j(h

j,ϵ
t )dt+ ϵσh j g j(h

j,ϵ
t )(

j∑
η=1

c j,ηdWηt ); h j,ϵ
0 = h j

0, ( j = 1,2)

dSϵt = µSϵt dt+ ϵg4(νϵt )g3(Sϵt )S
ϵ
t (

3∑
η=1

c3,ηdWηt ); Sϵ0 = s0, µ = r − r f

dνϵt = ϕ3(νϵt )dt+ ϵξg4(νϵt )(
4∑
η=1

c4,ηdWηt ); νϵ0 = ν0.

55 / 88



. .
Introduction

. . . . . . . . . . . . . . . . .
Outline of A.E.

. . . . . . .
Applications

. . . . . . . . . . . . . . . . . . . .
FBSDE Approximation Scheme

. . . . .
Perturbation Technique for Non-linear FBSDEs with Interacting Particle Method References

Approximation of CVA

First order of δ

The first order equation is expressed as follows:

dV1
t = rV1

t dt− f (t,V0
t ,V

0
t−∆)dt+

4∑
η=1

Z1
t,ηdWηt ; V1

τ = 0

Then, our CVA is represented by the following:

V1
t =

∫ T

t
e−r(u−t)Et

[
f (u,V0

u ,V
0
u−∆)

]
du

f (u,V0
u ,V

0
u−∆) = h1,ϵ

u · (V0
u−∆ − V0

u)+ − h2,ϵ
u · (V0

u − V0
u−∆)

+,

where Vu−∆ = 0 when u < t + ∆.

V0
u = e−r f (τ−u)Sϵu − e−r(τ−u)K,

V0
u − V0

u−∆ = e−r f (τ−u)Sϵu − e−r f (τ−u+∆)Sϵu−∆ − k(u;∆, r),

k(u;∆, r) := e−r(τ−u)(1− e−r∆)K.
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Approximation of CVA

Example

Specifically, we apply the following local stochastic volatility model
(S,ν) to the underlying asset price that has correlations with both
counter parties’ hazard rate processes ( h1, h2). (ϕ j(x) = α j

t x, ( j = 1, 2),
ϕ3(x) = κt(θt − x), g3(x) = γt x1−β and gj(x) = x, ( j = 1, 2, 4)):

dhj,ϵ
t = α

j
t h

j,ϵ
t dt+ ϵσh j hj,ϵ

t (
j∑
η=1

cj,ηdWηt ); hj,ϵ
0 = hj

0, ( j = 1,2)

dSϵt = µSϵt dt+ ϵγtν
ϵ
t

(
Sϵt

)β (
3∑
η=1

c3,ηdWηt ); Sϵ0 = s0,

dνϵt = κt(θt − νϵt )dt+ ϵξνϵt (
4∑
η=1

c4,ηdWηt ); νϵ0 = ν0.

(ϵ is an expansion parameter.)
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Approximation of CVA

Example

We apply the asymptotic expansion method to evaluation of
IC(t,u) = e−r(u−t)Et

[
f (u,V0

u ,V
0
u−∆)

]
up to the third order. Then, the

value of CVA is approximated by

CVA(t, τ) =

∫ τ

t
ICAE(t,u)du+ o(ϵ3). (46)

Due to the analytical approximation of each ICAE(t,u), we have
no problem in computation, which is very fast.
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Approximation of CVA

Example

The parameters are set as follows:

parameters of h1;
h1

0 = 0.02, α1 = −2%, σh1 = 20%.
parameters of h2;
h2

0 = 0.01, α2 = 2%, σh2 = 30%.
parameters of S;
S0 = 10,000, r = µ = 1%, β = 1, γ = 1.
parameters of ν;
ν0 = 10%, κ = 1, θ = 20%, ξ = 30%.
correlation matrix

h1 h2 S ν

h1 1 0.5 -0.3 0.2
h2 0.5 1 0.1 0.1
S -0.3 0.1 1 -0.8
ν 0.2 0.1 -0.8 1
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Approximation of CVA

Density of CVA

We show the density function of approximate CVA by the
asymptotic expansion method with Monte Carlo simulation. The
maturity of forward contract is τ, T denotes the future time when
CVA is evaluated, and ∆ denotes the lag of collateral.

maturity ( τ): 5 years.

strike: 10,000.

time step size: 1
400year.

the number of trials: 325,000 with antithetic variates.
Procedure:

...1 implement Monte carlo simulation of the state variables ( h1, h2, S, ν)
until T.

...2 given each realization of the state variables, compute ICAE(T,u).

...3 integrate ICAE(T, u) numerically with respect to the time parameter u

from T to τ, and plot the values and their frequencies after
normalization.
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Approximation of CVA

Density of CVA

The cases of simulations are
...1 Different Time-Lags

time-lag ( ∆): 0.01, 0.05, 0.1 and 0.2 years.
evaluation date ( T): 2.5 years.

...2 Different Evaluation Dates

time-lag ( ∆): 0.1 years.
evaluation date ( T): 0.5, 1, 2.5, 4 and 4.5 years.
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Approximation of CVA

Density of CVA

Figure: Density Functions of CVA with Different Time-Lags
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Approximation of CVA

Density of CVA

The longer the time lag is, the wider the density is.

The mode (average) moves to the right when the time-lag
becomes longer.

f (u,V0
u ,V

0
u−∆) = h1,ϵ

u · (V0
u−∆ − V0

u)+ − h2,ϵ
u · (V0

u − V0
u−∆)

+.

When the first term increases, the CVA also increases.
The hazard rate h1 in the first term tends to be larger than h2 in the
second term in our parameterization.
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Approximation of CVA

Density of CVA

Figure: Density Functions of CVA with Different Evaluation Dates
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The shorter the time to maturity ( τ − T) becomes, CVA becomes smaller.
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Perturbation Technique with Interacting Particle Method

Fujii-Takahashi[2012]

We consider the following forward-backward stochastic differential
equation (FBSDE):

dVs = − f (Xs,Vs,Zs)ds+ Zs · dWs; (47)

VT = Ψ(XT), (48)

where V takes the value in R, and Xt ∈ Rd is assumed to follow a
generic Markovian forward SDE

dXs = γ0(Xs)ds+ γ(Xs) · dWs; Xt = xt (49)

Again, let us introduce the perturbation parameter ϵ: dV(ϵ)
s = −ϵ f (Xs,V

(ϵ)
s ,Z

(ϵ)
s )ds+ Z(ϵ)

s · dWs

V(ϵ)
T = Ψ(XT).

(50)
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Perturbation Technique with Interacting Particle Method

Let us fix the initial time as t. We denote the Malliavin derivative of
Xu (u ≥ t) at time t as

DtXu ∈ Rr×d (51)

Its dynamics in terms of the future time u is specified by stochastic flow,
(Yt,u)i

j = ∂x j
t
Xi

u

d(Yt,u)
i
j = ∂kγ

i
0(Xu)(Yt,u)

k
jdu+ ∂kγ

i
a(Xu)(Yt,u)

k
jdWa

u

(Yt,t)
i
j = δij (52)

where ∂k denotes the differential with respect to the k-th component of
X, and δij denotes Kronecker delta. Here, i and j run through {1, · · · , d}
and {1, · · · , r} for a. Here, we adopt Einstein notation which assumes
the summation of all the paired indexes.

Using the chain rule of Malliavin derivative, one sees

(DtX
i
u)a = (Yt,u)

i
jγ

j
a(xt)

= (Yt,uγ(xt))
i
a, (53)

where a ∈ {1, · · · , r} is the index of r-dimensional Brownian motion.
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Perturbation Technique with Interacting Particle Method

ϵ-0th order: For the zeroth order, it is easy to see

V(0)
t = E

[
Ψ(XT)

∣∣∣∣Ft

]
(54)

Za(0)
t = E

[
∂iΨ(XT)(Da

t Xi
T)

∣∣∣∣Ft

]
= E

[
∂iΨ(XT)(YtTγ(Xt))

i
a

∣∣∣∣Ft

]
(55)

It is clear that they can be evaluated by standard Monte Carlo
simulation. However, for their use in higher order approximation, it is
crucial to obtain explicit approximate expressions for these two
quantities. We apply asymptotic expansion technique as before.

In the following, let us suppose we have obtained the solutions up to a
given order of asymptotic expansion, and write each of them as a
function of xt:  V(0)

t = v(0)(xt)

Z(0)
t = z(0)(xt)

(56)
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Perturbation Technique with Interacting Particle Method

ϵ-1st order:

V(1)
t =

∫ T

t
E
[
f (Xu,V

(0)
u ,Z

(0)
u )

∣∣∣∣Ft

]
du

=

∫ T

t
E
[
f
(
Xu, v

(0)(Xu), z
(0)(Xu)

)∣∣∣∣Ft

]
du (57)

Next, define the new process for (s> t):

V̂(1)
ts = e

∫ s
t λuduV(1)

s , (58)

where deterministic positive process λt (It can be a positive constant
for the simplest case.).
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Perturbation Technique with Interacting Particle Method

Then, its dynamics is given by

dV̂(1)
ts = λsV̂

(1)
ts ds− λs f̂t(Xs, v

(0)(Xs), z
(0)(Xs))ds+ e

∫ s
t λuduZ(1)

s · dWs ,

where

f̂t(x, v
(0)(x), z(0)(x)) =

1
λs

e
∫ s
t λudu f (x, v(0)(x), z(0)(x)).

Since we have V̂(1)
tt = V(1)

t , one can easily see the following relation
holds:

V(1)
t =

∫ T

t
E

[
e−

∫ u
t λsdsλu f̂t(Xu, v

(0)(Xu), z
(0)(Xu))

∣∣∣∣Ft

]
du (59)

It is clear for those familiar with credit risk modeling (e.g.
Bielecki-Rutkowski [2002]), it is nothing but the present value of
default payment where the default intensity is λ with the default payoff
at s as f̂t(Xs, v(0)(Xs), z(0)(Xs)). Thus, we obtain the following proposition.
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Perturbation Technique with Interacting Particle Method

.
Proposition
..

......

The V(1)
t in (57) can be equivalently expressed as

V(1)
t = 1{τ>t}E

[
1{τ<T} f̂t

(
Xτ, v

(0)(Xτ), z
(0)(Xτ)

)∣∣∣∣Ft

]
. (60)

Here τ is the interaction time where the interaction is drawn independently from

Poisson distribution with an arbitrary deterministic positive intensity process λt. f̂

is defined as

f̂t(x, v
(0)(x), z(0)(x)) =

1
λs

e
∫ s
t λudu f (x, v(0)(x), z(0)(x)) . (61)
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Perturbation Technique with Interacting Particle Method

Now, let us consider the martingale component Z(1). It can be
expressed as

Z(1)
t =

∫ T

t
E

[
Dt f

(
Xu, v

(0)(Xu), z
(0)(Xu)

)∣∣∣∣Ft

]
du (62)

Firstly, let us observe the dynamics of Malliavin derivative of V(1)

follows

d(DtV
(1)
s ) = −(DtX

i
s)∇i(x, v

(0), z(0)) f (x, v(0), z(0)) + (DtZ
(1)
s ) · dWs; (63)

DtV
(1)
t = Z(1)

t , (64)

where

∇i(x, v
(0), z(0)) ≡ ∂i + ∂iv

(0)(x)∂v + ∂iz
a(0)(x)∂za , (65)

f (x, v(0), z(0)) ≡ f (x, v(0)(x), z(0)(x)). (66)
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Perturbation Technique with Interacting Particle Method

Define, for (s> t),

D̂tV
(1)
s = e

∫ s
t λudu(DtV

(1)
s ). (67)

Then, its dynamics can be written as

d(D̂tV
(1)
s ) = λs(D̂tV

(1)
s )ds− λs(DtX

i
s)∇i(Xs, v

(0), z(0)) f̂t(Xs, v
(0), z(0))ds

+e
∫ s
t λudu(DtZ

(0)
s ) · dWs. (68)

We again have

D̂tV
(1)
t = Z(1)

t . (69)

Hence,

Z(1)
t =

∫ T

t
E

[
e−

∫ u
t λsdsλs(DtX

i
u)∇i(Xu, v

(0), z(0)) f̂t(Xu, v
(0), z(0))

∣∣∣∣Ft

]
. (70)
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Perturbation Technique with Interacting Particle Method

Thus, following the same argument for the proposition 1, we have the
result below:

.
Proposition
..

......

Z(1)
t in (62) is equivalently expressed as

Za(1)
t = 1{τ>t}E

[
1{τ<T}(Ytτγ(Xτ))

i
a∇i(Xτ, v

(0), z(0)) f̂t(Xτ, v
(0), z(0))

∣∣∣Ft

]
(71)

where the definitions of random time τ and the positive deterministic process λ

are the same as those in proposition 1.
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Perturbation Technique with Interacting Particle Method
Monte Carlo Method

Now, we have a new particle interpretation of (V(1),Z(1)) as follows:

V(1)
t = 1{τ>t}E

[
1{τ<T} f̂t

(
Xτ, v

(0), z(0)
)∣∣∣∣Ft

]
(72)

Z(1)
t = 1{τ>t}E

[
1{τ<T}(Yt,τγ(Xτ))

i∇i(Xτ, v
(0), z(0)) f̂t(Xτ, v

(0), z(0))
∣∣∣Ft

]
(73)

which allows efficient time integration with the following Monte Carlo
scheme:
• Run the diffusion processes of X and Y

• Carry out Poisson draw with probability λs∆s at each time s and if ”one” is
drawn, set that time as τ.
• Then stores the relevant quantities at τ, or in the case of (τ > T) stores 0.
• Repeat the above procedures and take their expectation.
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Z(2)
t

(Γt,s,u)
i
jk :=

∂2

∂x j
t ∂xk

s

Xi
u; (t < s< u) (74)
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Figure:

76 / 88



. .
Introduction

. . . . . . . . . . . . . . . . .
Outline of A.E.

. . . . . . .
Applications

. . . . . . . . . . . . . . . . . . . .
FBSDE Approximation Scheme

. . . . .
Perturbation Technique for Non-linear FBSDEs with Interacting Particle Method References

Application - American Option -

Pricing American Option

Fujii-Sato-Takahashi [2012]

Let us take the probability space as (Ω,F ,Q), where Q is a risk-neutral
probability measure. We consider a generic process for the relevant
stock price as

dSt = (r t − yt)Stdt+ Stσt · dWt, (75)

where W is a d-dimensional Q-Brownian motion. All the stochastic
processes are Ft adapted. Here, r and y are processes for a risk-free
interest rate and a dividend yield, respectively.

Based on the previous works for the early excercise premium of an
American option (e.g. Kim [1990], Jacka [1991], Carr-Jarrow-Myneni
[1992], Rutkowski [1994], Karatzas-Shreve [1998],
Benth-Karlsen-Reikvam [2003]), we can express the dynamics of an
American option value as the following BSDE: dVt = r tVtdt−C(St)1{Vt≤Ψ(St)}dt+ Zt · dWt

VT = Ψ
+(ST)

(76)
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Application - American Option -

Pricing American Option

Here, Z ∈ Rd is an appropriate Ft-adapted process that should be
solved at the same time with V. Here, we have replaced Ψ+ by Ψ in the
indicator function since V should be clearly positive.

Ψ+(x) = [Ψ(x)]+ denotes a payoff function:

Ψ(x) =

x− K for a Call

K − x for a Put

C(St) is a process denoting an instantaneous early exercise premium:

C(St) =

(ytSt − r tK)+ for a Call

(r tK − ytSt)+ for a Put
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Application - American Option -

Pricing American Option

Let us introduce perturbation parameter ϵ as dV(ϵ)
t = r tV

(ϵ)
t dt− ϵC(St)θ(Ψ(St) − V(ϵ)

t )dt+ Z(ϵ)
t · dWt

V(ϵ)
T = Ψ

+(ST)
(77)

where θ(·) is the Heaviside step function. Since the dynamics of the
stock price S and the other possible state processes are not affected
by (V(ϵ),Z(ϵ)), we have a decoupled non-linear FBSDE system to solve.
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Application - American Option -

Pricing American Option

In the Black-Scholes model, the dynamics of stock is given by

dSt/St = (r − y)dt+ σdWt (78)

where r, y and σ are all constants, the transition density is explicitly
known.

We give the approximated prices of American options by our Monte
Carlo method of V(i) up to the 2nd order. ( V(0) is the corresponding
Black-Scoles European price.)

”Benchmark” denotes the American option price taken from Ju-Zhong
[1999], which is obtained by 10,000 time steps binomial tree methods.
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Application - American Option -

Pricing American Option -Monte Carlo-

S0 Benchmark ϵ-0th ϵ-1st ϵ-2nd

80 2.69 2.65 2.71 2.70

90 5.72 5.62 5.78 5.73

100 10.24 10.02 10.37 10.26

110 16.18 15.77 16.44 16.22

120 23.36 22.65 23.79 23.40

Table: American Calls with T = 0.5, K = 100, r = 0.03, y = 0.07, σ = 0.40. S0

denotes the initial value of the stock. one million sample paths, 500 time steps.

81 / 88



. .
Introduction

. . . . . . . . . . . . . . . . .
Outline of A.E.

. . . . . . .
Applications

. . . . . . . . . . . . . . . . . . . .
FBSDE Approximation Scheme

. . . . .
Perturbation Technique for Non-linear FBSDEs with Interacting Particle Method References

References I

[1] Alos, E., Bayer,C., and Laurence, P., Pricing Basket Options , preprint, 2011.

[2] F.E. Benth, K.H. Karlsen, K. Reikvam Optimal portfolio management rules in a
non-Gaussian market with durability and inter-temporal substitution’ , Finance
Stochast. 2001.

[3] Bielecki., Rutkowski, Credit Risk, , Springer, 2000.

[4] Bismut, J.M. (1973). ”Conjugate Convex Functions in Optimal Stochastic
Control,” J. Political Econ., 3, 637-654.

[5] Carmona (editor) (2009). ”Indifference Pricing,” Princeton University Press.

[6] Carr, P., Jarrow, R., and Myneni, R. Alternative Characterizations of American
put options, , Mathematical Finance, 1992.
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