
Engineering Multimedia User Interfaces with Objects and Patterns

Fernando D. Lyardet
LIFIA. Departamento de

Inforrfktica, UNLP
fer@sol.info.unlp.edu.ar

Gustav0 H. Rossi
LIFIA. Departamento de

Informitica, UNLP. Also at
UNLM and Conicet

gustavo@sol.info.unlp.edu.ar

Daniel Schwabe
Departamento de InformStica,

PUC-Rio, Brazil
schwabe@inf.puc-rio.br

Abstract
In this paper we discuss the use of an object-oriented

design model to describe multimedia user interfaces. Our
approach is complemented with a set of design patterns
aimed at capturing recurrent interface design problems
together with good solutions to those problems. We first
introduce the problem of designing usable multimedia
interfaces; we then present the Object-Oriented
Hypermedia Design Method to contextualize our work;
then we discuss in depth the ADV object model and its
feasibility for describing static and dynamic aspects of
multimedia user interfaces; we finally introduce design
patterns and present some simple patterns together with
real examples taken from well-known multimedia
applications, including web applications. Some further
work is also discussed.

1. Introduction

Building Multimedia and Hypermedia applications is
not easy. The combination of navigation through an
information space with the inherent difficulties of dealing
with multimedia data (in which complex transformations
may occur) has been usually reported as the origin of
many implementation and usability problems.

Electronic worlds provide both special challenges and
opportunities in navigation. As electronic worlds become
vast, distributed, and more integrated with daily activities,
improved support for navigation is increasingly needed.
Fortunately, good interface and information design
provides such support and offer new ways of navigating
the cyberspace [5].

Within a growing trend to the use of formal
design methods in multimedia applications development,
we can observe that:
. Human-computer i n t e r f a c e s o f multimedia

applications are often built in their entirety using
implementation- and environment-dependent tools.

l Current hypermedia and multimedia design methods
tend to emphasize conceptual and navigational
design, but the design problems associated with the
interface are usually neglected.

We claim that a formal design model should be used
prior to implementation in order to maximize dialogue-
independence and reuse-in-the-large of interface
components. In addition, a design model can support
improved communication between designers and
implementors; when interface design decisions are well
documented, they can be used both as a test to validate the
implementation and as a reference during maintenance.

In this position paper we briefly describe our design
approach for building multimedia user interfaces. It
combines the use of some well-known principles of
object-orientation together with design patterns as a way
to document design decisions that are hard to specify
using the method’s primitives. As our approach has been
developed in the context of the Object-Oriented
Hypermedia Design Method (OOHDM) [29, 301, we first
present the most outstanding aspects of the method. We
next present our approach to user interface design and
present some simple patterns to support our claim. Some
further work is finally discussed.

2. Overview of OOHDM

The Object-Oriented Hypermedia Design Method is a
model-based approach for bui lding hypermedia
applications. It comprises four different activities namely
conceptual design, navigational design, abstract interface
design and implementation. They are performed in a mix
of incremental, iterative and prototype-based development
style. During each activity a set of object-oriented models
describing particular design concerns are built or enriched
from previous iterations. In Table 1 we summarize
OOHDM activities, modeling primitives, abstraction and
presentation mechanisms. We next describe each activity.
(See [191 for a more detailed description).

51
O-8186-8925-0/98 $10.00 0 1998 IEEE

2.1. Conceptual Design

During Conceptual Design a model of the application
domain is built using well known object-oriented
model ing pr inciples 1261, augmented with some
primitives such as attribute perspectives and sub-systems.
Conceptual classes may be built using aggregation and
generalization/specialization hierarchies. The main
concern during this stage is to capture the domain
semantics as “neutrally” as possible, with very little
concern for the types of users and tasks. The product of
this stage is a class and instance schema built out of Sub-
Systems, Classes and Relationships.

Table 1: Summary of the OOHDM Methodology

Activities 1 Rwducts
Classes, sub- Model the semantics
systems, of the application
relationships, domain
attribute

Takes into account
User profile and task.
Emphasis on cognitive
aspects.
Build the navigational
structure of the
application

transformations

Abstract interface Model perceptible
objects, responses objects, implementing
to external events, chosen metaphors.
interface Describe interface for
transformations navigational objects.

Define lay-out of
interface objects

Running Performance,
application completeness

2.2. Navigational Design

In OOHDM, an application is conceived as a
navigational view over the conceptual domain. This
reflects the point of view that one of the key
distinguishing features of hypermedia applications is the
notion of navigation. It is in this stage that the designer
takes into account the types of intended users, and the set
of tasks they are to perform using the application.

2.3. Abstract Interface Design

Once the navigational structure has been defined, it
must be made perceptible to the user through the
application’s interface; in this stage we describe the
abstract interface model. This means defining which
interface objects the user will perceive, and in particular
the way in which different navigational objects will look
like, which interface objects will activate navigation, the
way in which multimedia interface objects will be

synchronized and which interface transformations will
take place

A c l e a n separation between both concerns,
navigational and abstract interface design, allows the
building of different interfaces for the same navigational
model, leading to a higher degree of independence from
user-interface technology, and also allowing conformance
with varying user needs or preferences.

3. Issues in Building the Abstract Interface
Model.

In order to specify the abstract interface model we
need to define interface metaphors and objects, and
describe their static and dynamic properties and their
relationships with the navigational model in an
implementation-independent way [31]. We need to
specify:

The interface appearance of each navigational object
seen by the user. The same navigational object may
have different interface representations in different
situations. For example, a node may have the
representation of a picture of a monument when
browsing the information and be an icon when used in
the context of an access structure, such as an icon on a
city map acting as an index to monuments.
Other interface objects for providing access to other
application functions such as menu bars, control
buttons, and menus.
The relationships among interface and navigational
objects such as the way an external event such as the
user clicking the mouse will affect navigation.
Interface transformations occurring because of the
effect of navigation or external events on the behavior
of different interface objects.
Finally, synchronization of some interface objects
must be considered particularly when dynamic media
such as audio and video are involved.

In the following sections we will show our design
approach for defining the abstract interface model.
Although the design method is discussed in the context of
the OOHDM approach, it will become evident that
Abstract Data Views can be easily adapted to other design
approaches such as HDM [11, 121, EORM [151 or RMD
[2]. Furthermore it can be used as a design front-end to
advanced object-oriented hypermedia environments such
as MacWeb [171, or DEVISE [131.

Our object-oriented approach for describing user
interfaces can be also used with more general multimedia
applications as interactive kiosks, web information
systems, etc.

5 2

3.1. Overview of the Abstract Data View (ADV)
Design Model

The ADV design model was originally devised to
specify clearly and formally the separation of the user
interface from the application components of a software
system and to provide an environment-independent design
method leading to higher degrees of reuse for both
interface and application components [4, 7, 81. ADVs are
objects in that they have a state and an interface, where
the interface can be exercised through regular functional
or procedural calls or input and output events. ADVs are
abstract in that they only represent the interface and the
state, and not the implementation. ADVs are generally
used to represent interfaces between two different media
such as a user, a network or a device such as a timer, or as
an interface between two or more Abstract Data Objects
(A D OS) where ADOS are ADVs that do not support
events.

In a typical application using ADVs, we have a set of
ADOS managing data structures and control within the
application and a set of interface objects (instances of
ADVs) managing interface aspects of the application such
as user input and system output to the user.

Thus, ADVs can be viewed as media transformers or
transformers between ADOS . Thus ADVs are active
objects while ADOS are passive and must be activated
through one or more ADVs. Because of the split between
active and passive objects, ADVs and ADOS can be used
in client-server pairs to represent a software system.

Typically an ADO “owns” one or more ADVs which
represent some aspect of its state to the “external” world.
Each ADV must be consistent with its owning ADO and
all ADVs owned by an ADO must be consistent with each
other. These two types of consistency are called vertical
and horizontal consistency respectively, and are illustrated
in Figure 3.

Figure 1: ADVs as user interfaces
A standard textual schema exists that can be completed

to define an ADV or ADO. The expressions in the schema

are usually written in some form of temporal logic or
other formal design language (such as VDM or one of its
object-oriented extensions).

An ADV when used in the design of hypermedia
applications can be viewed as an interface object
comprising a set of attributes which define its perception
properties, and the set of events it can handle such as
user-generated events. Attribute values may be defined as
constants thus defining a particular style of appearance
such as position, color, or sound. A reserved variable,
“perceptionContext”, is used to indicate modifications to
the perception space. When we want to make some object
perceivable we add it to perceptioncontext, and elements
r e m o v e d f r o m perceptioncontext a r e n o l o n g e r
perceivable.

In the context of OOHDM, navigational objects such
as nodes, links or access structures will act as ADOS, and
their associated ADV will be used for specifying their
appearance to the user.

Different abstraction and composition mechanisms are
used in the ADV design approach; first ADVs may be
composed by aggregation or composition of lower-level
ADVs, thus allowing the construction of user-interfaces
with nested perceivable objects.

3.2. Configuration Diagrams

Configuration diagrams have been originally defined in
the context of ObjectCharts [6]. They are useful for
expressing patterns of communication between objects in
terms of provided and required services. In the ADV
design approach they are used to represent external (user-
initiated) events that an ADV handles; the services
provided by the ADV (such as display) and the
communication among ADVs and ADOS. A configuration
diagram may also show the nesting structure of composite
ADVs. In our context, we are interested in defining the
way in which the user will interact with the hypermedia
application and in particular which interface objects will
cause navigation. Each Node Class will define a public
interface with the services provided by its objects. In
particular all nodes will react to the message:
anchorSelected (A) by asking anchor A to initiate
navigation across its associated link. In a composite ADV
with different interface objects such as buttons associated
with node anchors, we annotate the name of the anchor in
the configuration diagram.

Using Configuration Diagrams it is possible to specify
the abstract interface of a hypermedia application, that is,
interface objects, their structural relationships and the
relationships among interface objects (ADVs) and
navigational objects (ADO). We next explain ADVcharts,
a visual formalism for specifying the dynamic aspects of a
hypermedia application.

5 3

3.3. ADV charts

ADVcharts are a generalization of Statecharts [14]
and ObjectCharts [5] supporting nesting of states and
ADVs and allowing the expression of the association
among external events (typical of hypermedia
applications) with ADVs.

As ADVs may be composed from lower-level ADVs,
expressing the behavior of an ADV using an ADVchart
will usually involve describing nested states and ADVs.
Nesting states are the expression of behavioral nesting
while nesting of ADVs expresses structural nesting.

ADVcharts are equivalent to StateCharts although the
notation of ADVcharts allows the compact expression of
the behavior of composite objects through both behavioral
and structural nesting.

3.4. Hypermedia interface specification

To make this presentation concrete we will show some
examples using a real hypermedia application: Microsoft’s
Art Gallery. In Figure 9 we show an outline of the
navigational scheme of Art Gallery as described using
OODHM. As previously explained, defining the abstract
interface model of a hypermedia application implies:

Defining ADVs for each navigational object. In fact,
defining at least one ADV type for each navigational
class.
Specifying the configuration diagram showing static
relationships among ADVs and ADOS (which are
navigational objects);
Specifying the ADVchart for each ADV showing the
dynamics of the hypermedia application.

I I Im I=?
I I I J

Figure 2: Navigational Scheme of Art Gallery
(focusing Paintings)

3.4.1. Defining ADVs and Configuration Diagrams.
We need to define the way in which each navigational

object will be perceived by the final user, as well as to

specify other interface objects that we intend to make
available. This process is usually performed in
hypermedia and other interactive applications by defining
the interface metaphor, which determines the overall
interface structure of the hypermedia application. This
metaphor determines whether there will be some regular
interface structures omnipresent throughout the
application.

For each navigational class, we need to define its
corresponding ADV. In the case of Nodes the ADV
structure should be easily determined by the node’s
structure, i.e. there is an enclosing ADV that stands for
the whole node, and nested ADVs for each node attribute.
Usually there will be some kind of “active” ADVs for
anchors such as buttons, In Figure 3 we show an outline
of ADV Art Gallery, using the ADVchart notation.

In Figure 3, ADV Art Gallery is a composition of
several ADVs including Painting, Painter, Help, Options,
and GoBack. The XOR composition of Painting, Painter
and Place indicates that they represent exclusive states
and they will not usually be perceived at the same time by
the user. Meanwhile ADVs Help, Options and GoBack
(AND composed in the ADV Art Gallery) will be always
perceivable. Short Reference and Reference are different
ADVs for Node Class General Reference. A Short
Reference may appear as a “pop-up” ADV in the context
of another ADV such as Painting and so it is modelled
with AND composition.

Figure 3: ADVs in Art Gallery

In many hypermedia applications, standard ADVs like
Text, Graphic, Image and Button (with the semantics of
their counterparts in current hypermedia environments)
will be used. Sometimes we will need to define “special
purpose” ADVs such as EditableText or AnchoredText as
sub-types of existing ADVs. As shown in Figure 4 an
AnchoredText will specify a set of anchors (acting as “hot
words”) and will refine events such as MouseClicked or
MouseOn to support the expected behavior.

Although modem hypermedia environments provide
similar functionality to those just described, the ADV
design formalism allows us to describe the interface

54

structure and behavior in an abstract way, thus avoiding
ambiguities and helping to record critical design
decisions.

Usually we will not specify interface aspects of one-to-
one links because their presence will be indicated by
ADVs corresponding to their anchors; however we can
define perceived aspects of one-to-many links by actions
such as showing the end-points in a Menu-like style each
time the link is activated. In this case we will specify
ADV LinkInterface and corresponding sub-types when
necessary and will express the desired functionality using
ADVcharts.

The same is true for access structures like indexes and
guided tours. An access structure may be perceived as a
menu, a set of icons, or another more complex
representation such as an orientation map. However in all
cases we will specify it as a collection of ADVs whose
owners will be the target nodes. In this case we could use
different ADVs for the elements of an index. For
example, we could show a text string for each target node,
or an iconic tabletop, with an icon for each node.

In hypermedia applications, navigational operations are
usually triggered by the user selecting an interface object
that stands for a links anchor. We use Configuration
Diagrams as the formalism to express behavioral
relationships between interface objects and navigational
objects. In Figure 4 we show the Configuration Diagram
for ADV Painting.

For the sake of clarity we have omitted some required
and provided services such as those for getting attributes’
values such as name, creationDate, or technicalData, from
Node Painting. In Figure 5 we present ADVs Art Gallery
and Painting with part of the actual interface used in
Microsoft’s Art Gallery.

Figure 4: Configuration Diagram for Painting

3.4.2. Expressing Interface and Navigational
Transformations. The overall application behavior is
completely specified by defining the way in which
external events affect both navigation and the interface
appearance of the application.

The navigational semantics specify the “internal state”
of the application, and how it changes during the

navigation process. We must now show the effect of each
external event in terms of the transformations occurring in
the interface. We will use ADVcharts to show possible
states and corresponding transitions of each ADV, in
order to understand the way in which individual interface
components, in this case ADVs a s s o c i a t e d w i t h
navigational objects behave when reacting to external
events. We will suppose all ADVs in our example react to
the “Display” event by displaying themselves - in the case
of dynamic media “Display” may be understood as
“Play”.

Figure 5: ADV Painting in Art Gallery

In this paper we will only focus on behavior that
activates navigation. However, it should be indicated that
we can also specify more complex behavior, such as the
user selecting a menu option or clicking a button may
cause the opening of a special-purpose editor, or create a
new link.

4. Conveying design knowledge using Design
Patterns

Design Methodologies provide the software designer
with the means to express an idea with an appropriate
language (usually a set of graphic primitives enriched
with textual specifications). Nevertheless, extracting
reusable knowledge information from specific, product-
oriented designs is usually hard. Furthermore, even when
such knowledge can be devised, there are no methodology
constructs to help the designer in expressing rationales,
trade-offs, etc. In the same way, user interfaces designers
tend to reuse successful solutions they found in the past
though these usually remain in their minds. This is where
design patterns are useful.

Though originated in architecture [l] design patterns
are being increasingly used in software design [9]. Design
patterns are a good means for recording design experience
as they systematically name, explain and evaluate
important and recurrent designs in software systems. They
describe problems that occur repeatedly, and describe the
core of the solution to that problem, in such a way that we

5 5

can use this solution many times in different contexts and
applications. Looking at known uses of a particular
pattern, we can see how successful designers solve
recurrent problems.

In some cases, it is possible to give structure to simple
patterns to develop a pattern language: a partially ordered
set of related patterns that work together in the context of
certain application domain. Design Patterns complement
methodologies in that they address problems at a higher
level of abstraction. Many design decisions that cannot be
recorded through the uses of the primitives of a method
can be described using patterns. In our work with
OOHDM we have found many different kinds of patterns:
those describing general architectural constructs in
complex hypermedia applications, those showing
solutions to recurrent navigational design problems [181
and those that describe usual problems and their solutions
in the interface domain [IO].

We next present a set of simple design patterns that
addresses usual aspects concerning the organization of the
interface. They constitute the basis of a pattern system for
designing user interfaces. These patterns should not be
seen as ultimate solutions to interface problems but rather
well known and documented solutions; they have worked
in successful applications and can be adapted to others.
We describe each pattern using a simple template
including the problem that originates the pattern, a short
motivation and the solution. In all cases we include an
example of the use of each pattern in real applications.

4.1. Information-Interaction Decoupling

Problem: How do you differentiate contents and
various types of controls in the interface?

Motivation: A page of a complex application display
different contents, and is related to many other pages, thus
providing many anchors. Moreover, if the page supplies
means of control activation other than navigation (such as
triggering some query), the user may experience cognitive
overhead. It is well known that when too many anchors
are provided in a text, the reader is distracted and cannot
take profit of all of them.

Solution: Separate the input communication channels
from the output channels, by grouping both sets
separately. Allow the “input interaction group” to remain
f=ed while “the output group” reacts dynamically to the
control activation. Within the output group, it is also
convenient to differentiate the “substantive information”
(i.e. content) from the “status information”. This solution
not only improves the perception of a node’s interface, but
also the efficiency of the implementation.

Example: In figure 6, all links to related information
on the current topic are displayed on the left. The graphics
and video relevant to the current topic are displayed in the
middle. Notice there are no links in the text itself.

Figure 6: “Information-Interaction Decoupling”
from the MS-Encarta97 CD-ROM and the
Discovery Channel’s educational web page.

4.2. Behavioral Grouping

Problem: How to recognize the different types of
controls in the interface so that the user can easily
understand?

Motivation: A problem we usually face when building
the interface of multimedia applications is how to
organize control Objects (such as anchors, buttons, etc.) to
produce a meaningful interface. In a typical application
there are different kinds of active interface objects: those
that provide “general” navigation, such as “back’ button,
or anchors for returning to indexes, objects that provide
navigation inside a context; objects that control the
interface, e tc . Even when applying Information-
Interaction decoupling, there may be a lot of different
kinds of control objects.

Figure 7: “Behavioral Grouping” from the
MindQ’s CD-ROM .

Solution: Group control interface objects according to
their functionality in global, contextual, structural and
application objects, and make each group enhance
comprehension.

Example: In figure 7, the first picture is taken from
MindQ’s CD-Rom “An introduction to programming Java
Applets” groups the navigation controls on the left and the
current topic playing controls at the bottom.

56

4.3. Information on Demand

Problem: How to organize the interface in such a way
that we can make perceivable all the information in a
node, taking into account both aesthetic and cognitive
aspects?

Motivation: We usually find ourselves struggling to
decide how to show the attributes and anchors ina node.

Unfortunately, the screen is usually smaller than what
we need and many times we cannot make use of other
media (such as simultaneously playing an audio tape and
showing an image) either for technological or cognitive
reasons. For example, many times it does not make sense
to play an audio recording while the user is watching a
video or animation.

Solution: Present only a sub set of the most important
ones, and let the user control which further information is
presented on the screen, by providing him with active
interface objects (e.g. buttons). The activation of those
buttons does not produce navigation; they just cause
different information of the same node to be shown. This
just follows the “What you see is what you need”
principle.

Known Uses: Information on Demand is used for
example, in the Microsoft Atlas Encarta97 combined with
“Node as a Single Unit”. Instead of splitting the
information unit in several pieces, the user selects which
information about the current topic he is interested in.

Figure 8: An example of “Information on
Demand”

Example: In figure 8, the first picture taken from the
“Le Louvre” CD-ROM shows the painting as the main
interface object. On the second, we have Information on
demand: a textual attribute is perceived.

4.4. Behavior Anticipation

Problem: How do you tell the user the effect or
consequence of activating an interface object?

Motivation: Many times, when building an interface,
it is necessary to combine different interface elements
such as buttons, hotwords, media controls or even
custom-designed controls. It is usual to find readers
wondering what has happened after activating a control,
and the exact consequence of the action performed.

Solution: Provide feedback about the effect of
activating each interface element. Choose the kind of
feedback to be non-ambiguous and complete: different
cursor shapes, highlighting, small text-based explanations
called “tool tips”. Also, these elements can be combined
with sound and animations.

If we are using the behavioral Grouping interface
pattern we can select different kinds of feed-back
according to the kind of behavior provided; when the
interface controls refer to a particular media such as
animation, we could use a small status field for that
family.

Example: In figure 9, there is an example from the
Microsoft Atlas Encarta97. Each time the user positions
the cursor over an interface element, a tool tip pops up
with an explanation about the effect of activating the
control.

Figure 9: Example of “Behavior Anticipation”.

5. Concluding Remarks and Further work

We have briefly presented a design approach for
engineering multimedia user interfaces; it is based on the
use of well-known object oriented principles, via the
Abstract Data Views design model plus the systematic
application of ideas coming from the design patterns
community [9]. We believe that carefully documenting
design aspects of multimedia interfaces is a step towards
achieving a higher level of reuse besides ensuring correct
and predictable behavior. As we have discussed in this
paper, many critical design decisions remain hidden in the
designers’ mind either because design primitives do not
allow him to express what he needs to (see for example
“Behavioral Grouping) or because the solution involves
many complex relationships among interface objects (see
“Information on Demand”). Design Patterns are a
powerful conceptual tool for enriching the designer’s
vocabulary and for allowing those designers to share their

57

expertise. We have presented some simple patterns
addressing recurrent problems in multimedia interface
design; our aim is not to present them as ultimate
solutions but to illustrate the power of patterns as the
vehicle to record and reuse design knowledge.
Discovering design patterns in existing successful
applications is a rewarding task and this paper is a way to
stimulate the multimedia design community to share its
collective knowledge in the form of design patterns; we
aimed at building catalogues or pattern systems (as the
one in [9]) describing recurrent problems and their
solutions in an abstract way so they can be reused by
others later.

We are now working to discover some more patterns
and to incorporate them into our design vocabulary to
obtain more abstract design descriptions. In this way, a
designer may, for example, use the ADV approach and
use the components of the Interface on Demand pattern
without needing to express all the dynamic relationships
existing among active interface objects (buttons for
example) and the transformations they cause.
Incorporating patterns into the development cycle is not
easy and requires the designer to be aware of the
existence of those patterns thus leveraging its design
experience.

6. References

[l] Alexander, S.Ishikawa, M. Silverstein, M. Jacobson, I.
Fiksdahl-King and S. Angel: A Pattern Language”.
Oxford University Press, New York 1977.

[2] P. 2, T. Isakowitz and E. Stohr: “Designing
Hypermedia Applications”, Proceedings of the 27th.
Hawaii International Conference on System Sciences,
Hawaii, Jan. 1994.

[3] L.M.F. Cameiro, M.H. Coffin, D. D. Cowan and
C.J.P. Lucena: “ADVcharts: a Visual Formalism for
Highly Interactive Systems”. In M.D. Harrison and C.
Johnson editors, Software Engineering in Human-
Computer Interaction. Cambridge University Press, 1994.

[4] Susanne Jul and George W, Fumas: “Navigation in
electronic Worlds: a CHI 97 Workshop”, ACM CHI
Conference Workshop, 1997

[5] D. Coleman, F. Hayes and S. Bear: “Introducing
Objectcharts or how to use Statecharts in Object-Oriented
Design”. IEEE Transactions on Software Engineering,
18(l): 9-18, January 1992.

[6] D. D. Cowan R. Ierusalimschy, C.J.P. Lucena and
T.M. Stepien: “Abstract Data Views”. Structured
Programming, 14(1):1-13, January 1993.

[7] D. D. Cowan, ; C. J. P.Lucena, ; “Abstract Data
Views: An Interface Specification Concept to Enhance

Design for Reuse”. IEEE Transactions on Software
Engineering, Vo1.21, No.3, March 1995.

[8] Gamma, R. Helm, R. Johnson and J. Vlissides: Design
Patterns : elements of reusable object-oriented software: ,
Adisson Wesley, 1995.

[9] A. Garrido, G. Rossi and D. Schwabe. “Pat te rn
Systems for Hypermedia” In Proceedings of PloP’97,
Pattern Language of Programming, 1997.

[lo] F. Garzotto, P. Paolini and D. Schwabe: “HDM- A
Model for the Design of Hypertext Applications”,
Proceedings ofHypertext’ , ACM Press. pp. 313.

[121 K. Gronbaek: “Composites in a Dexter-Based
Hypermedia Framework”, Proceedings of the ACM
European Conference on Hypermedia Technology,
Edinburgh, 1994.

[131 J. Hannemann, M. Thuring: “What matters in
developing interfaces for hyperdocument presentation?”
Workshop in Methodological Issues on the Design of
Hypertext-based User Interfaces, Darmstadt, Germany,
July 1993.

[14] D. Harel, A. Pnueli, J.P. Schmidt, R. Sherman: “On
the formal semantics of statecharts”. Proc. 2nd. IEEE
Symposium on Logic in Computer Science, Ithaca, N.Y.,
June 1987.

[151 D. Lange: “An Object-Oriented design method for
hypermedia information systems”, Proceedings of the
27th. Annual Hawaii International Conference on System
Science, January 1994.

[161 Michael D. Levi and Frederik Conrad: “Usability
Testing of World Wide Web Sites: A CH197 Workshop”.
ACM CHI’97 Workshop

[171 J. Nanard and M. Nanard. “Using Structured Types
to Incorporate Knowledge in Hypertext, Third ACM
Conferences on Hypertext Proceedings, Hypertext’9 1 ed.
ACM Press. pp.. 329.

[181 G. Rossi, D. Shwabe and A. Garrido: “Design Reuse
in Hypermedia Design Applications Development
“Proceedings of ACM International Conference on
Hypertext (Hypertext’97), Southampton, April 7- 11,
1997, ACM Press.

[19] D. Schwabe, G. Rossi and S. D. J. Barbosa.
“Systematic Hypermedia Application Design with
OOHDM”.Proceedings o f Hypertext’96 (HT96).
Washington, March 1996.

58

