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Abstract

Background

The color of crop leaves is closely correlated with nitrogensghijlus and can be quantifi
easily with a digital still color camera and image proecgssoftware. The establishment

the relationship between image color indices and N status undealrafiot is important for

crop monitoring and N diagnosis in the field. In our study, a digiitihlcelor camera wa:
used to take pictures of the canopies of 6 ri@e/4a sativa L.) cultivars with N treatment
ranging from 0 to 315 kg N Rkin the field under sunny and overcast conditions in 201(
2011, respectively.

Results

Significant correlations were observed between SPAD readesfsN concentration (LNGC
and 13 image color indices calculated from digital camera isnag@g three color mode
RGB, widely used additive color model; HSV, a cylindrical-coordirsat@lar to the huma|
perception of colors; and thea' b™ system of the International Commission on Illuminat
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Among these color indices, the indeX which represents the visual perception of vell
blue chroma, has the closest linear relationship with SPAD gadiid LNC. However, th
relationships between LNC and color indices were affected byékelopmental phas
Linear regression models were used to predict LNC and SPADdoton indices and phas
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development. After that, the models were validated with independent @ateerally
acceptable performance and prediction were found between therm#abi, SPAD reading
and LNC with different cultivars and sampling dates under different natunalclignditions.

Conclusions

Our study showed that digital color image analysis could benplsimethod of assessing
rice N status under natural light conditions for different cultieard different developmental
stages.

Keywords

Digital still color camera, Leaf color, Image processing technologyutdl light, Nitrogen,
Rice

Background

Nitrogen (N) is one of the most important nutrients essentiah&growth of crops, and is a
major component of chlorophyll and protein which are closely agedciaith leaf color,
crop growth status and yield [1]. Insufficient N supply leads tallem leaves, lower
chlorophyll content and less biomass production, and consequently, reducegiejdaand
guality [2,3]. Conversely, excessive N application can lead to theoamvental problems of
water and atmospheric pollution [4]. Hence, measuring crop N diate$y is critical for
increasing N use efficiency and environmental quality [5,6].

The spectral reflectance of crop leaf or canopy is known to belatmd with N status [7,8].
The instruments for measuring spectral reflectance arehtbeophyll meter [9-11], multi-
spectral sensor [12], hyper-spectral sensor [7,8] and commergitl damera [13-15], are
used in precision agriculture for growth monitoring, nitrogen diagnosissie-specific crop
management. The SPAD meter (SPAD-502, Minolta Camera Co., Qkgban), measures
leaf chlorophyll content nondestructively, has potential for improvingigd efficiency
without affecting grain yield in real-time nitrogen managen{BTtNM) experiments [9,11].
A disadvantage of the SPAD-502 for assessing crop N statussisdts sampling area (6
mn?). In addition, the measurements are subject to operator bias sgeaniamber of
repetitions are needed to obtain reliable results [16,17], and SPABr meperiences
difficulties in distinguishing chlorophyll levels when crops arerra@aabove the optimum N
supply [10,18]. In contrast, satellite or airborne-mounted hyperspeensiors can obtain
spectral information in a larger sampling area and recor@ syectral bands [7,8,12]. The
high cost of images, infrequent satellite overpasses and riskagfeasnbeing obscured by
clouds limit the application of these platforms for commercial[L8¢ The proximal sensors
GreenSeeker® (NTech Industries Inc., USA) and Yara N-sensoa (Yiternational ASA,
Germany) which measure red and near infra-red (NIRga&tfhce, overcome some of the
limitations of satellite or airborne sensors [20], but their amuris influenced by
background soil interference [8].

Alternatively, images from digital still color cameras, whielcord spectral information of
visible bands, have a low cost but very high image resolution (constaneeras in 2014
record up to 40 megapixels per image). At a sensor height of abaitef above the canopy,
high-spatial-resolution images separate crops from background seoiher interferences,
which is important for accurate diagnosis of N status when thetatgan fraction was low



[13,21]. Moreover, images from digital still cameras contain aelamount of information
about the crop structure and leaf color, such as leaf orientation, hagtit, biomass
accumulation and leaf senescence [22-24], and these parameteesyarte obtain [13,25]
with existing software, such as MatLab® (MathWorks Inc.), tlkee-ivare package ImageJ
[26]. Previous studies showed that canopy cover estimated from tigesmaas not only
highly correlated with leaf area index (LAI), aboveground biomass Mraccumulation
[13,27], but was also stable in varying environmental conditions [28,2%ddlition to
canopy cover, color digital images provide spectral information in the visible tadmcls are
closely related to the leaf N concentration (LNC) and SPAddings [17]. Huntt al. [30]
found that the triangular greenness index (TGI), which was dkefieen red, green and blue
bands of a digital still color camera, was sensitive to lé&drophyll content of a whole
canopy.

The color-related indices from digital still cameras can rtbag crop N status [17,30,31].
Previous studies on the analysis of leaf color were mostly underiakeontrolled light
conditions [17,32-34]. This approach could reduce the impact of light on #yeioolor, and
easily obtain a reliable relationship between N status andctdaf indices. However, the
results derived from the controlled light cannot be completely apmie@atural light because
of the variable light conditions [15,35,36]. Besides, there are sitlynuncertainties in the
use of digital still cameras for N diagnosis under naturdit ligonditions, and further
validation is necessary to ensure the application in the field.

In this study, experiments with different N application ratese carried out in the field
under sunny and overcast conditions (1) to analyze the relationshipehethtrophyll
content, LNC and canopy color related indices in different cultiesus stage of phasic
development, (2) to establish the possible models for the diagnosispofNcstatus using
image color indices, and (3) to validate the applicability of the teadeler different natural
light conditions.

Results and discussion

Correlation of color related indices and crop nitragen status

Correlations between two rice N parameters (leaf N concemtrand SPAD reading) and 13
image-color related indices (Eq. 1-10) were calculated with oha@viand pooled cultivars
in 2011. Similar results were obtained from the three rice cudtiviag., Liangyoupeijiu,
Nanjing45 and Nanjing46. Therefore, only correlation coefficients fiteenLiangyoupeijiu
dataset (n = 72) and the pooled dataset (n = 240) were displayed enIT&PAD readings
showed significant correlations with each color index except g imdethsets. Among these
color indices,L", b, R, G, B, r and INT were negatively correlated with SPARdegs,
while the other indices were positively correlated with SPARdmgs. Most of the color
indices were closely correlated with LNC, however, the ntadai and direction of the
correlation coefficients were not consistent with those betweesr audlices and SPAD
readings. Overall, the indices derived from the Cl& b color model had relatively higher
correlation coefficients with SPAD readings and LNC. In thicohodel, the index’
represents the visual perception of yellow-blue chroma which idasimith the leaf color
variation, and it has been used in many other studies for image amddysis [37,38].
Therefore, we select indéx as a representative for further analysis.



Table 1Correlation coefficients between SPAD readings, leaf pigrqgen conceation (LNC, g kg %) and image color related indices
(digital number from three color models: RGB, HSV and CIEL a b)

SPAD LNC L a b b'/a’ H R G B r g b INT VI Greer
SPAD 1.00 0.21 -0.67 0.78 -0.90" 0.76" 0.83 -0.68" -0.67" -0.48" -0.76 0.01 0.41 -0.63 0.66"
LNC 0.37 1.00 0.48 -0.26 -0.06 0.35 0.13 0.47 0.48 0.63 -0.37" -0.68" 0.65 0.57 -0.28
L -0.67 0.35" 1.00 -0.83 0.73 -0.43" -0.63 1.00" 1.00" 0.96" 0.38 -0.64" 0.21 1.00 -0.90"
a 0.61" -0.04 -0.70 1.00 -0.86 0.50" 0.69" -0.87" -0.84" -0.69 -0.57 0.18 0.17 -0.80 0.67"
b’ -0.73 -0.35 0.54" -0.72" 1.00 -0.86 -0.95 0.74 0.73 0.51" 0.87 0.04 -0.51 0.68 -0.73"
b'/a 0.60" 0.48" -0.29" 0.36" -0.91" 1.00 0.96 -0.45 -0.43" -0.18 -0.99 -0.26* 0.72 -0.37" 0.63"
H 0.61 0.40 -0.39" 0.47 -0.91" 0.97" 1.00 -0.64 -0.63" -0.40" -0.95" -0.09 0.58 -0.58" 0.75
R -0.63 0.33 1.00" -0.68" 0.56" -0.34" -0.44" 1.00 1.00 0.96" 0.39" -0.64" 0.21 1.00 -0.97"
G -0.67 0.35 1.00° -0.71" 0.54 -0.29" -0.39 1.00 1.00 0.96 0.38 -0.64" 0.21 1.00 -0.90
B -0.37" 0.58" 0.91" -0.47" 0.15 0.09 -0.03 0.90 0.91" 1.00 0.12 -0.82 0.48" 0.98" -0.83"
r -0.56" -0.54" 0.19" -0.35 0.89" -0.99" -0.95 0.24" 0.19" -0.20° 1.00 0.36 -0.79 0.31" -0.56"
g 0.05 -0.66 -0.62" 0.03 0.3T -0.44" -0.34 -0.60 -0.61" -0.87" 0.56" 1.00 -0.86 -0.69 0.58
b 0.27" 0.69" 0.27" 017 -0.66" 0.79" 0.71" 0.23" 0.26" 0.63" -0.87" -0.90" 1.00 0.29 -0.08
INT -0.56" 0.47 0.99 -0.64" 0.45 -0.20 -0.31" 0.99 0.99 0.95 0.10 -0.70 0.37 1.00 -0.89
VlGreer 0.67 -0.10 -0.85 0.42" -0.65 0.62" 0.68" -0.88" -0.85" -0.68 -0.51" 0.43 0.02 -0.83 1.00

Numbers in the upper diagonal were calculated with Liangyoupeijiu (n = 72) dataset and numbershia lower diagonal were calculated with the combidata of Liangyoupeijiu,
Nanjing45 and Nanjing46 in 2011 (n = 240).
™ indicate the significance &< 0.01," indicate the significance &t< 0.05.



Relationships between SPAD, LNC and the color index

Regression analyses were performed between SPAD readingsamdN@e color indek’
using the 2011 dataset. Positive linear relationships were observezehdtNC and SPAD
readings, with the same trends in different sampling dates atidacsil(Figure 1). The
determination coefficient @in different sampling dates varied from 0.61 to 0.88 along with
the root mean square error (RMSE) from 1.81 to 2.647§ Rine LNC decreased with the
rice development, while the maximum SPAD values increased wighgrowth. Smaller
RMSE was obtained in jointing and booting stages than in vegetativéllandg stages.
Similarly, Xue et al. [39] reported that the ratio index of Kiieen (R1/Rse0) reached the
best accuracy with LNC at jointing stage. When data were pooledsathe sampling dates,
there was no significant trend observed between SPAD readings and LN (Fegu

Figure 1 Relationships between leaf nitrogen concentration (LNC, g kg) and SPAD
readings in vegetative (a), tillering (b), jointing (c), booting (d) stages, anti¢ pooled
data of the four stages (e) in 2011.

Significant negative linear relationships were seen betwedh amdl color index’, with R?
ranging from 0.58 to 0.86 in the four developmental stages (Figuré@@)RTbetweerb and
LNC at booting stage (Figure 2d) was less than that betwe&D 8adings and LNC. Same
as the relationship between SPAD readings and LNC, no significamd was observed
betweenb and LNC when data pooled across the sampling dates (Figuren 2&jdition,
there were negative linear relationships betweesnd SPAD readings (Figure 3). ThéiR
the vegetative stage was lower than that in the other stages. Waee obvious differences
among cultivars for the relationship betweén and SPAD readings, especially the
Liangyoupeijiu in jointing and booting stages (Figure 3c and d) andN#iging45 in
vegetative stage (Figure 3a). In this case, the regression ianalgs carried out with
individual cultivars (Table 2). Overall, highef Rere observed from individual cultivars and
sampling dates than that from the pooled dataset (Table 2). Howheeintercepts and
slopes of the linear relationship varied with rice cultivars, tlig$erences might be partly
caused by the different plant type among cultivars, with a Ilsbape and large mean leaf
angle in hybrid indica rice (Liangyoupeijiu) [40,41] while tight paaand small mean leaf
angle in japonica rice (Nanjing45, Nanjing46). The different plgpe tlead to different
distribution of reflectance [42,43] and finally caused different image-demadices.

Figure 2 Relgtionships between leaf nitrogen concentration (LNC, g kg) and image
color indexb in vegetative (a), tillering (b), jointing (c), booting (d) stages, and the
pooled data of the four stages (e) in 2011.

Figure 3 Relationships between SPAD readings and image color indexin vegetative
(a), tillering (b), jointing (c), booting (d) stages, and the pooled data of tHeur stages (e)
in 2011.




Table 2 Statistics of the linear regression analysis between color indexand SPAD
readings in different development stages and cultivars in 2011

Vegetative Tillering Jointing Booting All stages

Liangyoupeijiu R 0.74 0.62" 0.97 0.86" 0.80
RMSE 0.87 1.18 0.86 1.23 1.24

Nanjing45 R 0.4 0.2¢8" 0.90" 0.79 0.60"
RMSE 1.61 1.41 0.64 0.91 1.60

Nanjing46 R 0.83 0.52" 0.87 0.83" 0.59"
RMSE 0.94 1.62 1.47 1.26 1.85

All cultivars R 0.31 0.64 0.65" 0.61" 0.53"
RMSE 1.94 1.66 1.87 2.59 2.23

Dependent variable: SPAD.
™ indicate the significance &< 0.01.
@ Root mean square error.

In our experiments, image acquisition was carried out in the diether natural light near
solar noon which was the period with the most stable illuminatiorhettap of the
atmosphere. This makes sure that the light intensity is not cltgatmp much during image
acquisition in a single day. The results from Table 2 indicttad reliable estimates of N
status could be obtained from images taken under natural light. Congitlexistability of N
diagnosis in different locations and sampling dates, individual sagngéites could not meet
the needs of crop monitoring and N diagnosis in various environmental conditionsofderef
regression analysis was carried out with the pooled data of isgnalgites. There were large
differences of light intensity among different sampling slaeen under overcast days (Table
3, PAR ranging from 145 to 692nol m%s™*in 2011).

Table 3Rice cultivars, sampling dates (indicated as days after transplanting, DAT
photosynthetic active radiation (PAR,zmol m™2s %) and the number of samples in the
two experiments

Experiment  Year Cultivar Vegetative Tillering Jointing Booting Number of samples
I 2010 Wuyunjing24 25(937F 36 (1536) 50 (1369) 64 (1532) 18
2011 Nanjing46 18 (145) 35 (692) 55 (203) 75 (296) 24
] 2010 Nanjing44 22 (1215) 35 (1058) 49 (1759) (6877) 18
Yangjing48 22 (1449) 35 (1058) 49 (1759) 63 (477 18
2011 Nanjing45 16 (427) 29 (654) °H589) 57 (289) 18
Liangyoupeijiu 16 (427) 29 (654) 51 (589) 65 (21 18

& represents sampling dates (the days after tramspda DAT).
P represents the average PAR during the period afiénacquisition.
¢ Because of the continuous sunny days in the jairgtage for Nanjing45, sampling dates was delapedit a week.

Interestingly, regression analysis did not show any evideratetlie relationship between
SPAD and color indeb was affected by the varying light intensity (Figure 3d)is might

be attributed to the auto exposure controlled by the digital cambieh adjusted the
exposure time to make compensation for the amount of light reachinigndge sensor.
However, there were no significant trends between LNC and SkABings, or between
LNC and color indexy” using data pooled across different sampling dates (Figures 1e and
2e). Previous studies revealed that, for rice and corn, the relapobstween LNC and
SPAD readings could be improved simply by dividing the readings specific leaf weight
(SLW = dry leaf weight/leaf area) of the sampled leavemtooducing SLW as a second
independent variable in the multiple regression [44-46]. The reasont ISRAD readings
vary with leaf thickness which can be different in cultivars, dgvelental stages and
environmental conditions [46,47], while the LNC has a relatively ctemgisvalue. The
uncertain relationship between LNC and color indefFigure 2e) may also be caused by the
difference of leaf thickness, because the color indeand SPAD readings both reveal the



spectral information of leaves, and their relationship keeps consmtarthe pooled data of
different sampling dates (Table 2 and Figure 3e). Nowadaystudidge sampling or
hyperspectral-reflectance [48] is required for the measureaie®LW, however, including
this defeats the purpose of using a cheap and simple digital camera.

Model calibration and validation

Since developmental stages in rice affected the responsepafaxheters to color indices,
multiple linear regression analysis was carried out with dbesideration of days after
transplanting (DAT) to estimate LNC and SPAD (Table 4). The multipéali models highly
improved the R of SPAD readings ant with LNC (Table 4, Figure 4a and b). The
relationships between SPAD readings abnd were less affected by the process of
development for all the cultivars (Table 2 and Figure 3e). Thexetbe consideration of
DAT in the multiple linear regression did not improve theeectively (Figure 4c). The
slope of the regression lines in Figure 4 was all less than 1lhwiddcated that predicted
LNC or SPAD were generally smaller at the high value arehbigger at the low value area,
than the observed ones. It was noteworthy that most of the preditédnLthe vegetative
stage (red symbols) were underestimated in Figure 4a and hsThanly because that the
plants at this stage has higher concentration of N but lower coatentof chlorophyll. In
this case, the lower concentration of chlorophyll would cause an tideagon of the LNC
in the vegetative stage.

Table 4 Statistics of the calibration and validation results; for estimating leahitrogen
concentration (LNC, g kg™*) and SPAD with color indexb’, SPAD and days after
transplanting (DAT)

Models « B Y RMSE? R? NMBP
Calibration

Model 1LNC = aSPAD +BDAT +y  1.02 +0.07 -0.31+0.01 7.01+2.95 3.07gkg 0.78

Model 2LNC = ab" + PDAT +7v -0.67 +0.06 -0.29 +0.01 69.27 +2.10 3.36g'kg 0.71

Model 3SPAD =ab’ + PDAT +vy -0.60 + 0.04 0.024 +0.007 59.66 + 1.14 1.62 0.55

Model 4SPAD =ab" +y -0.60 + 0.04 60.70 +1.12 1.62 0.53

Validation

Model 1 2.43 g kg 0.75 1.19%
Model 2 2.59 g kg 0.62 -1.32%
Model 3 2.01 0.46 -1.94%
Model 4 1.89 0.47 -2.00%

The dataset in 2011 was used for model calibratimhthe dataset in 2010 used for model validation.
& Root mean square error.
® Normalized mean bias.

Figure 4 Calibration of the four models in Table4 for the estimation of leaf nitrogen
concentration (LNC, g kg %) and SPAD.Model 1(a), LNC = aSPAD + BDAT +v, model 2
(b), LNC =ob™ + BDAT +1v, model 3(c), SPAD = ab + BDAT +y, model 4(d), SPAD = ob’
+v. Different colors denote different developmental stages (red: viegeigiteen: tillering,
blue: jointing, purple: booting). Different symbols denote different cultivars usedddelm
calibration ¢ Liangyoupeijiu,A Nanjing45,0 Nanjing46).

Validations were performed on the four models in Table 4 with &l dhtained in 2010
under sunny days. The images used in model calibration and validatiortakerneunder
different weather conditions, the objective of this combination wavatuate whether the
model was robust under different light conditions. In general, good perfoasaon the
predicted models were observed for the estimation of LNC and SF#&Dre 5). Model 1
showed the best performance on the prediction of LNC with a normatiseeh bias of



1.19% (Table 4 and Figure 5a). Model 2, 3 and 4 showed relatively lovandRsmaller
negative bias. The model for the prediction of LNC with color indlegFigure 5b) was not
severely affected by the different light conditions in 2010 and 2011, cethga the
prediction of LNC with SPAD (Figure 5a). As with the caliboatresults, most of the data in
the vegetative stage were below the 1:1 line in models 1 and 2. hoaddne data in
tillering stage deviated from the 1:1 line in models 3 and 4, whdshlted in the low R
(Figure 5). The similar Rand RMSE in Figure 5¢c and d indicated that the relationship
between SPAD and color index was not affected by the developmental stage.

Figure 5 Validation of the four models using the fitted parameters in Tablel for the
estimation of leaf nitrogen concentration (LNC, g kg') and SPAD.Model 1(a), LNC =
aSPAD + BDAT + v, model 2(b), LNC =ab™ + BDAT + v, model 3(c), SPAD = ab + BDAT
+v, model 4d), SPAD =ab" +1. Different colors denote different developmental stages
(red: vegetative, green: tillering, blue: jointing, purple: booting). Diffesgnibols denote
different cultivars used for model validatiom Nanjing44 A Wuyunjing24,0 Yangjing48).

In our study, the light conditions during image acquisition weredifft between 2010 and
2011. Image acquisition in 2011 was under overcast days with low but stifidedilight.

In contrast, images were taken under sunny days in 2010 withg sruoh variable (PAR
ranging from 937 to 175&mol m? s™) light (Table 3). We can remove the effect of
illumination change on images when the change is over the whole mgagemalizing the
image [49] or using a calibration panel [36]. However, there weasynother differences
caused by the different light conditions. The strong illumination in 2818ed many white
spots and shadows which affected the image color (Additional fileglird=S1) while this
phenomenon was hardly seen in the images taken in 2011. With the ricé,gtoavtight
status within rice canopy (transmittance, reflectance, absojpbecoming more and more
complex, the change of illumination will cause different degre@sfloience on canopies that
in different height (Additional file 2: Figure S2). In this cagds difficult to calibrate the
image color accurately. Sakama@tal. [15] calibrated image indices with the introduction of
exposure value (EV) and obtained reliable camera retrieved tiegetadices (VIS).
However, this method cannot apply to our study for the calibration @pyacolor because
of the different influence in one image.

Besides the light conditions, the prediction of crop N status withctdar may be affected
by many other environmental factors, such as developmental stagases and drought
stress [50]. These factors may be detectable from high-resolcanopy images [22,23].
Color indices analysis associated with these factors and otlage irwharacteristics (e.g.
canopy cover, plant shape, leaf texture or even soil statuspramide more reliable results
to N diagnosis. Further studies will be devoted to the exploration ajencharacteristics,
leaf color correction and the calibration of the established modtsl physiological

parameters (e.g. SLW) in the evaluation of N status under different envir@mamditions.

Conclusions

Image color indices calculated from RGB, HSV dnd'b color models have significant
correlations with SPAD readings and leaf N concentration (LNC) of risese@dmong these
color indices, the indelg, which represents the visual perception of yellow-blue chroma, had
the highest correlation coefficients with SPAD readings andC.LRegression analysis
showed significant linear relationships between inexand N parameters. However, the



relationship between LNC and SPAD reading, LNC and irzlewere affected by the rice
developmental stage. This is mainly caused by the leaf thaskwhich can be different in
cultivars, developmental stages and environmental conditions. In thislinase regression
models were established between color indlexNC and SPAD readings by considering the
developmental process in rice. The multiple linear models improveRf theSPAD readings
andb’ with LNC, yet most of the predicted LNC in the vegetative stage underestimated
because of the inconsistent relationship between chlorophyll and Nentoateon.
Validations on the models showed good performance and acceptablegor@dextision with
different cultivars and sampling dates under different natural tightlitions. These results
indicated that digital color image analysis could be a sim@éhod for assessing rice N
status under natural light conditions.

Materials and methods

General information of the experimental site

The experiment was laid out at Changshu Agricultural Ecology Erpat Station,
Changshu, Jiangsu, China (31983120°42E). Located in the humid subtropical climate
zone, the station receives average annual solar radiation of 49304visumshine of 1800
hours, precipitation of 1200 mm and cumulative temperature above 10°C of 4988-degr
days (°C-d). The soil type for the field experimental site ggeyed paddy soil of the Taihu
Lake region, which contains total nitrogen (N) of 1.79 g'ktptal phosphorus (P) of 0.93 g
kg™, total potassium (K) of 18.7 g K organic matter of 30.8 g ky alkali-extractable N of
123 mg kg*, Olsen-P of 13.1 mg k§ plant available K of 121 mg kgand pH of 7.4 (soil:
water, 1:2) in the 0-15 cm soil layer.

Experimental design

Two independent experiments with different N fertilization gradiem¢re implemented in
our study. Experiment | was a long-term site-specific-wbeat rotation experiment that
started in 1997. The trial comprised six fertilizer treatmegpsesented as CK, NO, N1, N2,
N3, and N4 for N application of 0, 0, 180, 225, 270 and 315 kg N iharice season,
respectively. Each treatment had four replicates which wezeged in a randomized block
design. The data used in this paper were from the period May to Nevam®010 and 2011
with cultivars Wuyunjing24 and Nanjing46, respectively. Experimeéntas carried out in
paddy fields with a rice-wheat rotation in 2010 and 2011. Six N appilrcatites with three
replicates were designed in this trial, which were represast@®tD, N1, N2, N3, N4 and N5
with N application of 0, 120, 180, 240, 270 and 300 kg N,haspectively. The cultivars
were Nanjing44 and Yangjing48 in 2010, and Nanjing45 and Liangyoupeijiu in EOt1.
both experiments, the N was split into three applications, 40% ak B8%6 at tillering and
40% at booting. In addition, each plot received 90 kg K had 20 kg P ha except the CK
treatment in experiment |. The applied K was split into 50%aaaltand 50% at booting, and
all the P was applied as basal fertilizer. Other crop managsemeere same as the local
traditional practices.

Sample collection and digital image acquisition

For measuring rice growth and nutrition parameters, the above-grounaf pag plant was
sampled about every two weeks after transplanting until the boo#igg. A total of 4 sets of



samples were collected in 2010 and 2011 (Table 3). The plant samp&separated into
leaves and stems (including sheaths), and dried at 105°C for half anniotirea at 70°C
until constant weight. After that, the samples were weighedrorweight and analyzed for
leaf N concentration (LNC) by the Kjeldahl method [51]. Along witie plant sampling, a
chlorophyll meter (SPAD-502, Minolta Camera Co., Osaka, Japan)sedsto obtain SPAD
values on the four youngest fully expanded leaves. Each blade wasr@deasthree points:
on the upper, middle and lower thirds on either side of the midrib. Therggav&PAD

readings were calculated for each plot.

On the same day or following day of plant sampling, images ofdbeanopy were captured
using a digital still color camera (EOS 50D, Canon Inc.) witesalution of 15 mega pixels.
The camera was mounted on a tripod at the nadir position with a constant height of 1 m above
the top of the rice canopy. Aperture priority mode was seleatatl the camera was set at
aperture of /5.6, 1ISO of 100, white balance of 4,900 K, auto exposure anfbeusowith
the flash turned off. In 2010, the pictures were taken at local tin@® 1213:00 in sunny
days, while in 2011, the pictures were taken at the same tinoel fleert on overcast days. In
the days of picture taken (July and August), the deviation betlweahtime and solar noon
was within 4 minutes. All the pictures from the experiments wareed in CR2 (Canon raw
image file) format. The photosynthetic active radiation (PAR) illuminance were recorded
by a portable light meter (GLZ-C, Top Instrument Co., ZhejiangR.PChina) during the
period of image acquisition. Average PAR was calculated with sat of pictures, and
observed 937-1758mol photons it s* and 145-692:mol photons i s * in 2010 and
2011, respectively (Table 3).

Image segmentation and color indices calculation

A raw image file contains minimally processed data fromithage sensor of a digital
camera. This file saves settings of white balance, colaragain, contrast and sharpness in
it, but defers the processing. Therefore, all the modification maderaw image file is non-
destructive.

The canopy images in CR2 format were adjusted for white balssing the 18% gray card
(R-27, Kodak) pictures which were taken simultaneously with the canmgyes. Then, lens
distortion correction was applied, and exposure was set to +1 fanadjes. After that,
images were saved as joint photographic experts group (JPES&Ydil further processing.
All the procedures above were processed with Adobe Camera Raw (Adobe Sgstgms

Since the images contained the rice canopy and some non-cano@ntslesuch as soil,
water and plant residues, images were segmented into canopy pamtiomon-canopy
portion. A computer program was developed based on the G-R thresholding f2&t284i

using MatLab® (MathWorks Inc.) to extract the canopy portion ef ithage. The G-R
thresholding method was proposed according to the difference of aeflectspectrum
between green vegetation and non-canopy elements in the visible barelisTaeeflection
peak for green vegetation in the green band, whereas no apparent tarasgje or water

albedo in the whole visible band. Therefore, the value of green channel thatust red

channel expands the difference between canopy and non-canopy portion.

After the image segmentation, 13 color indices derived from 3 caldels were calculated.
RGB model is the most common color model for the representationital digages. A color
in the RGB model is described by indicating how much of eacheofdd, green, and blue is



included. The color is expressed as an RGB triplet (R, G, B), with the represefdablack
of (0, 0, 0) and for the brightest representable white of (255, 255, 255) ihiamtage [52].
R, G and B are the mean values of the red, green and blue channelsg amdi b are the
normalized RGB values, respectively. Intensity (INT) is theayeof R, G and B. VleeniS
a widely used vegetation index [13]. These indices were calculated as fRI629]f

r=R/(R+G+B)

(1)
g=G/(R+G+B) 2)
b=B/(R+G+B) 3)
INT =(R+G+B)/3 4)
Vigen =(G-R)/(G+R) (5)

In addition, the CIEL'a b and HSV color spaces were also tested in thisystlide L"
coordinate in CIEL'a’b” [53] closely matches human perception of lightnessand b’
dimensions represent the visual perception of reerg and yellow-blue chroma,
respectively. Botre" andb™ are independent with image lightne$s)( and take on both
negative and positive valuesa+reds, —a greens, +b yellows, —b  blues). The three
coordinates ol."a’b’ are computed from the tristimulus values X, Y ahds following
equations [32,54]:

L”=116f (Y/Y,) - 16

(6)
a”=500[ f (X/X,)=f(Y/Y,)] )
b”=20q f (Y/Y,)-f(Z/z,)] (8)
‘ ):{ (a,vs) |w<0.00885¢

7.787(w) + 16 116 |w= 0.0088¢ (9)

whereX,, Y, andZ, describe a specified white object-color stimulus.

The HSV color space is represented as a cylindceatdinate in which the angle around the
central vertical axis corresponds to hue (H). Télewation of H was listed below [27,29]:

60{(G - B) /[ max(RGB) - min(RGB) |} ,maRGB) =R
H =160C{ 2+{(B-R) [ ma{RGB) - mifRGB)[}} ,makRGB)
60r{ 4+{(R-G) /[ max(RGB) - mir(RGB) }} ,mafRGB) = (10

G
B

Pearson correlation and regression analyses we@ tosdetect the relationship between
color indices and crop N status. The significanténear regressions was evaluated using
Student’st-test at 95% confidence levels. Significance of ANG was evaluated with the
least significant difference test (LSD) at 0.05 hability level. Data analysis and figure
production were done using the R v3.0.3 softwa®g. [5



Correlation analysis, linear regression analysid amodel establishment between color
indices and crop N status were based on the d&@lifh, and the data in 2010 were used for
model validation.
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Additional files

Additional_file_1 as PDF
Additional file 1: Figure S1 Examples of the “white spots”, which are over-esgumbareas
where the reflected light came into the cameractlye

Additional_file_2 as PDF
Additional file 2: Figure S2 Canopy images of Nanjing46 in different developtakstages
(a, vegetative; b, tillering; c, jointing; d, boady).
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