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A new approach to estimate soil moisture (SM) based on evaporative fraction (EF) retrieved from optical/
thermal infrared MODIS data is presented for Canadian Prairies in parts of Saskatchewan and Alberta. An
EF model using the remotely sensed land surface temperature (Ts)/vegetation index concept was modi-
fied by incorporating North American Regional Reanalysis (NAAR) Ta data and used for SM estimation.
Two different combinations of temperature and vegetation fraction using the difference between Ts from
MODIS Aqua and Terra images and Ta from NARR data (Ts�Ta Aqua-day and Ts�Ta Terra-day, respec-
tively) were proposed and the results were compared with those obtained from a previously improved
model (DTs Aqua-DayNight) as a reference. For the estimation of SM from EF, two empirical models were
tested and discussed to find the most appropriate model for converting MODIS-derived EF data to SM val-
ues. Estimated SM values were then correlated with in situ SM measurements and their relationships
were statistically analyzed. Results indicated statistically significant correlations between SM estimated
from all three EF estimation approaches and field measured SM values (R2 = 0.42–0.77, p values < 0.04)
exhibiting the possibility to estimate SM from remotely sensed EF models. The proposed Ts�Ta MODIS
Aqua-day and Terra-day approaches resulted in better estimations of SM (on average higher R2 values
and similar RMSEs) as compared with the DTs reference approach indicating that the concept of incorpo-
rating NARR Ta data into Ts/Vegetation index model improved soil moisture estimation accuracy based
on evaporative fraction. The accuracies of the predictions were found to be considerably better for inter-
mediate SM values (from 12 to 22 vol/vol%) with square errors averaging below 11 (vol/vol%)2. This indi-
cates that the model needs further improvements to account for extreme soil moisture conditions. The
findings of this research can be potentially used to downscale SM estimations obtained from passive
microwave remote sensing techniques.
� 2013 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) Published by Elsevier

B.V. All rights reserved.
1. Introduction

Soil moisture (SM) is a critical factor in various environmental
studies and is used as a key variable in several applications such
as drought severity and duration, irrigation scheduling, soil ero-
sion, evapotranspiration, forest fire hazard and forest management.
Although direct measurement is the most accurate method for
estimating soil moisture, this technique is expensive, time con-
suming and only provides point measurements. Therefore, in situ
measurements may not represent the spatial distribution of SM
and are not available for continuous spatial and temporal coverage
at regional and global scales.
Technological advances in satellite remote sensing have offered
an alternative to field measurements of SM and enabled us to mon-
itor it at higher temporal and spatial resolutions at lower cost and
time. Since the 1970s a number of remote sensing methods have
been developed to investigate soil moisture using different regions
of electromagnetic spectrum from the optical to microwave
regions (Carlson et al., 1995a; Gillies and Carlson, 1995; Jackson
et al., 1976; Njoku, 1977; Sandholt et al., 2002; Schmugge, 1978;
Schmugge and Jackson, 1994). Comprehensive reviews on the
application of remotely sensed methodologies for the estimation
of surface SM including the principles, advantages and constraints
can be found in Carlson (2007), Moran et al. (2004), Owe et al.
(2008), Verstraeten et al. (2008), Wang and Qu (2009).

The main disadvantage of current methods to estimate SM from
passive microwave techniques is the low spatial resolution
(�40 km) making it difficult to study sub-pixel variations in an
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appropriate manner (Merlin et al., 2010). Therefore, there is need
for the development of approaches for downscaling SM data from
low resolution microwave sensors. Optical/thermal remote sensing
data provide finer resolution information that can be used to im-
prove passive microwave estimations. Efforts are being made to
downscale passive microwave SM estimations using optical/ther-
mal infrared data (Chauhan et al., 2003; Merlin et al., 2010; Merlin
et al., 2008; Piles et al., 2011) but downscaling methodologies still
need to be improved.

Optical/thermal infrared sensing method known as Surface
Temperature/Vegetation Index Method is a promising approach
to estimate SM as surface temperature (Ts) and vegetation have
been found to have a complicated dependence on SM. The applica-
tion of approaches combining vegetation indices and the Ts dates
back to the 70 s using the concept for detecting canopy water
stress and crop evapotranspiration using aerial thermal scanners
(Bartholic et al., 1972; Heilman et al., 1976). Later, using remote
thermal sensing instruments, indices such as the Crop Water Stress
Index (CWSI) were developed to be used for irrigation scheduling
(Idso et al., 1981; Jackson et al., 1981). Over the past 40 years,
the Ts/vegetation concept has been applied for various applications
such as the estimation of evapotranspiration (ET), evaporative frac-
tion (EF) and SM using Advanced Very High Resolution Radiometer
(AVHRR), Landsat, MODerate resolution Imaging Spectroradiome-
ter (MODIS) sensors, etc. A number of studies have documented
the Ts/vegetation index (mainly NDVI) relationship and described
the triangular shape of the data falling between the Ts and the
NDVI axes (Carlson et al., 1995b; Gillies et al., 1997; Jiang and
Islam, 2001; Nishida et al., 2003; Price, 1990; Venturini et al.,
2004). Comprehensive reviews on the application of remotely
sensed Ts/vegetation indices for the estimation of soil surface
moisture and evapotranspiration can also be found in Petropoulos
et al. (2009) and Li et al. (2009).

The application of the Ts/vegetation concept for SM estimation
began with the work of Nemani et al. (1993) who found a strong
negative relationship between Ts and Normalized Difference Veg-
etation Index (NDVI) for all biome types studied with a distinct
change in the slope between dry and wet days. The idea was fur-
ther developed by Carlson et al. (1995a), Carlson et al. (1995b) pre-
senting the universal triangular method to explore relationships
between SM, Ts and NDVI. Since then, a number of studies have
suggested the application of Ts/vegetation concept for SM estima-
tion (Gillies and Carlson, 1995; Mallick et al., 2009; Sandholt et al.,
2002; Wang et al., 2011). The above mentioned studies mainly fo-
cused on direct estimation of SM from the Ts/vegetation index
space.

Another potential, although not as well documented in the re-
mote sensing literature, method to estimate SM is through the
relationship between SM and evaporative fraction (EF). To do this,
EF needs to be estimated and then transformed into SM values
using empirical equations. Many water and energy balance models
such as the bulk transfer (Deardorff, 1978) and Priestley–Taylor
(Priestley and Taylor, 1972) models parameterized evaporation
rate by the so-called surface moisture availability factors. As de-
scribed by Lee and Pielke (1992), surface moisture availability fac-
tors are either a-type or b-type. While a-type models express the
land surface moisture as the air relative humidity, b-type models
also take onto account water transport from inner soil pores to soil
surface. b-type models are easier to use than a-type ones as they
are only a function of SM and wind speed (Kondo et al., 1990;
Lee and Pielke, 1992). A number of empirical models ranging from
simple linear to more sophisticated exponential and cosine models
(Crago, 1996; Deardorff, 1978; Jacquemin and Noilhan, 1990;
Komatsu, 2003; Kondo et al., 1990; Lee and Pielke, 1992; Noilhan
and Planton, 1989) have been suggested to correlate surface mois-
ture availability factors to SM at different soil depths. In the
Priestley–Taylor model, a is equivalent to Priestley–Taylor coeffi-
cient and b is equivalent to EF (Davies and Allen, 1973; Crago,
1996).

As described above, because there is a relationship between EF
and SM, it will be then possible to estimate SM from EF retrieved
from remotely sensed data as well. A number of models have been
developed to estimate EF using the Ts/vegetation index concept
but they have been used for ET estimation (Jiang and Islam,
2001; Nishida et al., 2003). It has been found that EF is generally
more stable during the day than evapotranspiration and therefore
can be regarded to be a more suitable indicator of SM than ET (Yao
et al., 2011). Remotely sensed EF data have already been shown to
have strong correlations with field measured SM suggesting the
possibility of SM estimation at a larger scale than laboratory exper-
iments (Anderson et al., 2007; Wang et al., 2006). Recently, a sim-
ilar concept was used to downscale passive microwave soil
moisture data using the SM/EF relationship (Merlin et al., 2010;
Merlin et al., 2008). However, not many studies on the develop-
ment of sound models for the estimation of SM from remotely
sensed EF are available.

Jiang and Islam (2001) estimated EF by using the Ts/vegetation
index concept to calculate the Priestley–Taylor parameter and
eventually ET using AVHRR data. The authors obtained satisfactory
estimation accuracies with fewer number of input variables than
the original Priestley–Taylor model. Further research (e.g. (Stisen
et al., 2008; Wang et al., 2006)) evaluated improvements to the
Jiang and Islam (2001) methodology. A different approach was ta-
ken by Nishida et al. (2003); their method used a two-source mod-
el considering a landscape to be consisted of bare soil and
vegetation to estimate EF from the Ts/vegetation concept (Nishida
et al., 2003). ET was then estimated from EF data and a coefficient
of determination of around 0.69 between their estimates and SM
was obtained for the prototype product based on NOAA/AVHRR
data.

Overall, this brief review of the literature illustrates that EF can
be estimated from remotely sensed data and can be used satisfac-
torily to estimate ET. However, the applicability of remotely sensed
EF estimation methods to estimate SM is yet to be evaluated. The
objectives of this research are to find the best approach to estimate
EF from remotely sensed data to be used as the input for models to
estimate SM in Canadian Prairies.

Canadian Prairies are located in the northern region of North
American Great Plains and are characterized by semi-arid to sub
humid climate. The three Prairie Provinces (Alberta, Saskatchewan
and Manitoba) account for approximately 80% of Canada’s crop-
land area, making them agriculturally, socio-economically and
environmentally important. However, the area is prone to drought
conditions due to its location on the leeward side of the Rocky
Mountains, and its distance from the moderating influence of large
water bodies. The region is divided by soil-climatic zones, with a
brown soil zone in the arid regions in southeastern Alberta and
southwestern Saskatchewan, a dark brown soil zone surrounding
the brown soil zone; a black soil zone surrounding this dark brown
zone covering southern Manitoba and mid-latitude areas of Alberta
and Saskatchewan; and a gray and dark gray soil zone covering the
northern areas of the agricultural extent of all three provinces
(Champagne et al., 2010). The southwestern Canadian Prairies are
semi-arid receiving on average around 350–400 mm of precipita-
tion annually with the majority falling between April and June
and are highly prone to frequent and severe droughts. The eastern
section of the Canadian Prairies has higher amounts of precipita-
tion and contains several large lakes such as Lake Winnipeg and
several large rivers.

Studies on the application of passive microwave data for SM
estimation in Canadian Prairies have been carried out (Champagne
et al., 2011; Champagne et al., 2012) but fewer attempts have
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evaluated the use of optical/thermal infrared remote sensing meth-
ods alone or in combination with passive microwave methods to
obtain SM maps (Hassan et al., 2007). Here, the evaporative frac-
tion is first estimated based on Jiang and Islam (2001) with modi-
fications applicable to the study region. Three different
combinations of a vegetation index and surface temperature are
evaluated for obtaining the Priestley–Taylor parameter which is
used for EF and eventually SM estimation. Two new approaches
are presented and the results are compared with estimates ob-
tained by a previously improved EF estimation method (Wang
et al., 2006). Two different empirical models to obtain SM from
EF are also tested and discussed and correlation analysis is per-
formed between estimated and field measured SM data to find
the most accurate soil moisture estimation approach.
2. Study area and data

The study area covers parts of Canadian Prairies over Saskatch-
ewan and Alberta (Fig. 1). The study area has semi-arid continental
climate with cold winters and warm summers. Most of the precip-
itation occurs in May to July and averages around 350 mm annu-
ally. The orange inset in Fig. 1 located near Saskatoon, SK, shows
the region where field data were used to validate the results. This
encompasses a network of soil moisture probes installed by the
University of Guelph. The network consists of 16 stations with soil
moisture monitoring probes installed horizontally at depths of 5,
20 and 50 cm. For this analysis, surface soil moisture from the
5 cm probe was used to match those estimated by the techniques
described below. Further description of the region and instrumen-
tation can be found in Champagne et al. (2010) and Magagi et al.
(2013). Over the soil moisture network locations the soil moisture
probes (Stevens Vitel Hydra Probe II) have been field calibrated to
accuracy of ±3% soil moisture. The values were quality checked to
Fig. 1. The study area with the locations of soil moisture measurement stations and
land cover composition.
remove unrealistically extreme values. SM data covered the period
between May 1st 2008 and October 31st 2008 with no data avail-
able from end of June to mid August. On average, 11 stations were
operating for each day.

Satellite data used in this study were MODIS Terra (10:30 am)
and Aqua (1:30 am, 1:30 pm) daily surface temperature having
1 km resolution (MOD11A1 and MYD11A1, respectively) and
MODIS Terra 7-day NDVI composite product supplied by
Agriculture and Agri-food Canada (AAFC) retrieved from daily
250 m surface reflectance data (MOD09GQ). For this research,
MODIS Terra-day and Aqua-day surface temperatures for four days
during growing season (DOY 137, 148, 232 and 260) and MODIS
Aqua-night for 3 days (DOY 148, 232 and 260) were selected. This
was done to obtain three cloud free images per day for the days
with available soil moisture data and to cover a wide range of veg-
etation condition and enable us to have a comparison between the
performances of the three different approaches to estimate EF and
SM on the same days.

Air temperature data were obtained from the National Center
for Atmospheric Environmental Prediction (NCEP)/North America
Regional Reanalysis (NARR) having 32 km spatial resolution and
3 h temporal resolution. Air temperature data at the height of
2 m were used in this research. NAAR data have been shown to
provide reasonable estimations of air temperature and precipita-
tion (Choi et al., 2009; Keshta and Elshorbagy, 2011). We revalidat-
ed air temperature data with available climatic data in
Saskatchewan (10 meteorological stations) in DOY 2008-148 and
260 during MODIS Aqua and Terra satellite overpasses and found
accuracies around ±0.6 �C (R2 = 0.97, p-value < 0.0001). Compared
to NCEP/National Center for Atmospheric Research (NCAR) data,
NAAR data have better spatial resolution and show better correla-
tions with in situ observations (Mesinger et al., 2006; Nigam and
Ruiz-Barradas, 2006). Wind speed data were also needed for one
of the SM models (Komatsu, 2003) evaluated in this study. How-
ever, the NARR data have been shown to underestimate wind
speed values (Rasmussen et al., 2011). Therefore, station based
meteorological data of wind speed were used for this research.
All imagery used in this research was resampled to 500 m resolu-
tion before performing the analyses.
3. Methodology

3.1. EF estimation

EF defined as the ratio of ET to available energy can be directly
estimated from the last part of the Eq. (1) (Jiang and Islam, 2001):

EF ¼ LE
Rn � G

¼ /
D

Dþ c
ð1Þ

where LE is a representative of ET (Wm�2), Rn is the net radiation
(Wm�2), G is the soil heat flux and / is the so-called Priestley–Tay-
lor parameter, which is slightly different from the original Priest-
ley–Taylor’s parameter (a) as a is generally applicable for wet
surfaces whereas / can be applied for a wide range of surface evap-
orative conditions (Jiang and Islam, 2001). D is the slope of satu-
rated vapor pressure and air temperature (Ta) (hPa K�1) and c is
the psychometric constant having the same dimension as D. The
term D/(D + c) also called the air temperature control parameter
varying between 0.55 and 0.85 for air temperatures between 10
and 40 �C is used to normalize the EF so that the seasonal variation
of air temperature can be partly removed and better relationships
between soil moisture and EF can be established (Wang et al.,
2006). For the purpose of this research, D and c were calculated
using the relationships given by WMO (2008) (WMO, 2008) and
NARR data for air temperature.
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Assuming that there are physical relationships between /, SM,
Ts and vegetation index or fraction (Fveg), / can be estimated
through the Ts/vegetation space from remote sensing data as ex-
plained in the next section.

3.2. The Ts/NDVI method

As presented in the Introduction, the triangular/trapezoidal
shape of the data falling between the Ts and the NDVI has been
documented by a number of studies. The lower edge of this space
(Wet edge) is characterized by wet land surfaces with maximum
evapotranspiration whereas the upper edge (Dry edge) of the scat-
ter plot represents dry land with limited evapotranspiration. Of
note, the surface temperature axis in the Ts/NDVI space described
above is a simplified term of Ts�Ta which is the difference be-
tween surface temperature and air temperature mostly seen as a
trapezoidal shape (Moran et al., 1994). Ts�Ta is a representative
of energy exchange at the earth surfaces and is linearly related to
Vapour Pressure Deficit (VPD) (Idso et al., 1981; Jackson et al.,
1981). Ts�Ta is often replaced by Ts due to lack of air temperature
data especially for large areas. However, when using the Ts instead
of Ts�Ta to estimate soil moisture status, heterogeneity of the
earth surfaces increases the uncertainty of the method to estimate
SM (Rahimzadeh-Bajgiran et al., 2012). Therefore, the Ts/NDVI
method should ideally be applied over smaller regions and those
with little topographic variation.

Stisen et al. (2008) and Wang et al. (2006) also considered tem-
poral variations of Ts (day-night Ts differences) instead of only
using Ts in the temperature axis of the scatter plot to better esti-
mate EF. The diurnal Ts difference has a similar concept to that
of thermal inertia; as soil thermal inertia relates to SM, it can be
applied to SM estimation as well (Cai et al., 2007; Verstraeten
et al., 2006).

In Jiang and Islam (2001) model, / can be estimated through the
Ts/vegetation space from remote sensing data. In this research, / is
estimated by three different combinations of temperatures and
NDVI is replaced by vegetation fraction. The schematic presented
in Fig. 2 was used to estimate / values. Three different variables
were examined to be used as the y axis; (1) Ts�Ta where Ts is de-
rived from MODIS Terra-day acquisition, (2) Ts�Ta where Ts is de-
rived from MODIS Aqua-day acquisition and (3) DTs where the
difference between day and night temperatures of MODIS Aqua
was used. Terra-day, Aqua-day and Aqua-night Ts values corre-
spond to 10:30 am, 1:30 pm and 1:30 am measurement times,
respectively. Ta is NARR 3-h average air temperature around satel-
lite overpass times. The DTs approach (Approach 3) was previously
developed by Wang et al. (2006) and had provided improved rela-
tionships with field measured EF than the original model (Jiang and
Fig. 2. Theoretical space between temperature and vegetation fraction.
Islam, 2001) and therefore has been used here as a reference to
compare with our approaches. The x axis of the scatter plot is veg-
etation fraction as calculated from NDVI values according to Gillies
and Carlson (1995) where NDVImin and NDVImax were 0.11 and
0.87, respectively.

In the scatter plot presented schematically in Fig. 2, the lower
edge of the space (Wet edge = CD) is representative of wet land
covers with maximum evapotranspiration whereas the upper edge
(Dry edge = AB) of the scatter plot represents dry land covers with
reduced evapotranspiration. The / value ranges between zero
(/min) for zero vegetation fraction with maximum temperature
and 1.26 (/max) for maximum vegetation fraction and minimum
temperature. The / value for each pixel i (e.g. E(Ts�Ta/Fveg) is cal-
culated by connecting point A to point E and extending it to point
G. The / value at point A is equal to /min and the wet edge has the
maximum /max. Therefore, the length of line AG will be equal to
/max�/min whereas AE will be /i�/min. Using the similarity of tri-
angles EFG and ACG, /i at any point in the scatter plot can be cal-
culated as:

/i ¼
Tmax � Ti

Tmax � Tmin
ð/max � /minÞ þ /min ð2Þ

where T is Ts�Ta or DTs in the scatter plot. Details on the calcula-
tion procedure for each pixel using this two-step linear interpola-
tion method are described elsewhere (Jiang and Islam, 2001; Tang
et al., 2010; Venturini et al., 2004; Wang et al., 2006). Finally Eq.
(1) was used to calculate EF values.

3.3. Soil moisture estimation from EF

For soil moisture estimation using satellite data it is crucial to
select a model that can best correlate remotely sensed EF to soil
moisture. Here we used the Komatsu (2003) and Lee and Pielke
(1992) models for the estimation of soil moisture from EF data.

Komatsu (2003) suggested a relationship to describe EF based
on soil moisture:

EF ¼ 1� expð�h=hcÞ ð3Þ

where EF is the evaporative fraction, h is the volumetric soil mois-
ture and hc is the characteristic volumetric water content depending
on the soil type and wind speed calculated using:

hc ¼ hc0ð1þ c=raÞ ð4Þ

where hc0 and c are two soil dependent parameters estimated from
Komatsu (2003) and ra is the aerodynamic resistance over bare soil
determined using wind speed and soil roughness data and was con-
sidered to be 0.005 m for bare soil (Nishida et al., 2003).

The second model is suggested by Lee and Pielke (1992) as pre-
sented in:

EF ¼
1
4 1� cos h

hfc
p

� �h i2
h < hfc

1 h P hfc

8<
:

where h and hfc are the volumetric soil moisture and the volumetric
soil moisture at field capacity, respectively. Assuming that all differ-
ent soils should behave the same at some fixed soil-water charac-
teristics, a reference point (soil field capacity) is used in this
model. Based on the soil texture of the study area varying from silt
loam and clay loam, hfc was assumed to be 0.3 and 0.35 vol/vol,
respectively (Saxton and Rawls, 2006). The application of both mod-
els is assessed in discussion below.

3.4. Estimated and observed soil moisture correlation

The estimated SM data obtained through all three approaches
were correlated with field measured SM values using Pearson’s
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correlation analysis. Confidence and prediction bands at 95% confi-
dence level were calculated based on Scheffé method (Scheffé,
1999) within Sigmaplot� software. Root Mean Square Error (RMSE)
values for all three approaches were also calculated as a measure of
the accuracy of the estimations.
4. Results

4.1. Comparing EF estimations retrieved from three different
approaches

Sample scatter plots of vegetation fraction and temperature dif-
ference for the three approaches namely, Ts�Ta Terra-day, Ts�Ta
Aqua-day and DTs Aqua-DayNight used in this study are presented
in Fig. 3 for the same day (DOY 2008-148). All scatter plots repre-
sent the trapezoidal shape described by Moran et al. (1994). Very
similar scatter plots are seen for Ts�Ta/Fveg derived from Terra
day and Aqua day data. On the other hand, the scatter plot for
the DTs Aqua-DayNight/Fveg shows both wider range and higher
Fig. 3. Examples of scatter plots of vegetation fraction and the three different te
values as compared with the other two scatter plots. The Ts�Ta/
Fveg scatter plot for Terra day data constructed here is similar to
that presented by Rahimzadeh-Bajgiran et al. (2012), which
was used for the estimation the improved Temperature Vegeta-
tion Dryness Index (iTVDI). The scatter plot for DTs Aqua-Day-
Night/Fveg resembles that reported by Wang et al. (2006) used
to estimate EF.

EF maps calculated using Eq. (1) for 2 days (DOY 2008-148 and
DOY 2008-260) for the 60 km by 60 km area with soil moisture
data are presented in Fig. 4. The fundamental relationships existing
between satellite derived EF and field measured EF have been pre-
viously established for Ts/NDVI method (Jiang and Islam, 2001;
Venturini et al., 2004) and DTs/NDVI (Stisen et al., 2008; Wang
et al., 2006). Therefore, our discussion will be limited to the com-
parison of our suggested approaches to retrieve EF from satellite
data with the reference DTs approach to find the most appropriate
one for soil moisture estimation over this study region.

For all days studied in this research, the Aqua-day approach re-
sulted in the highest estimated EF values whereas those derived
from the Aqua-DayNight approach exhibited the lowest values.
mperature combinations evaluated in this study (data from DOY 2008-148).
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The Terra-day approach gave intermediate values. This trend is
clearly seen in Fig. 4 for DOY 2008-148 and DOY 2008-260 where
all three approaches exhibit similar trends.
4.2. Soil moisture estimation from evaporative fraction

A simulated representation of the Komatsu (2003) and Lee and
Pielke (1992) models along with data points for Terra-day and
Aqua-day estimated EF and field soil moisture values for 2 days
(DOY 2008-137 and DOY 2008-148) is presented in Fig. 5. It was
observed that our data were better fitted to the cosine model
(Eq. (5)) presented by Lee and Pielke (1992) whereas the Komatsu
(2003) exponential model (Eq. (3)) resulted in very low SM estima-
tions for all EF values. As an example, the EF value of 0.6 results in
SM values of less than 0.1 vol/vol and around 0.2 vol/vol, using Eqs.
(3) and (5), respectively which is closer to data retrieved from
MODIS for the latter. As explained by Komatsu (2003), this model
is more appropriate for wet soils in thin layers and the shape of the
curve approaches that of Lee and Pielke (1992) at higher soil
Fig. 5. Theoretical representation of EF/SM relationships used in the present study.
hc in Komatsu (2003) for agricultural soil ranges between 0.07 and 0.09 based on
varying wind speeds of 2–6 m/s. hfc is 0.3 vol/vol for Lee and Pielke (1992).
depths. Therefore, Eq. (5) was used in the present study to estimate
SM from EF.
4.3. Correlations between estimated soil moisture and field data

Results of correlation analyses performed between estimated
SM data obtained from Eq. (5) and field measurements for the
three different approaches in days DOY 2008-137, 148, 232 and
260 are presented in Fig. 6 and corresponding data are tabulated
in Table 1. Aqua-DayNight data for DOY 2008-137 were not avail-
able due to cloud contamination. All three approaches resulted in
statistically significant correlations between estimated and ob-
served SM for all days. For each day, estimated SM obtained from
Ts�Ta Aqua-day generally had better correlations with field data
confirmed by higher coefficients of determination. This is in agree-
ment with Fig. 5 where Aqua-day data points are better distributed
around the cosine curve. SM values estimated from DTs Aqua-Day-
Night resulted in the lowest R2 values compared with the other
two approaches.

Coefficients of determination were found to be higher for DOY
137 and DOY 148 as compared with the other 2 days. This can be
attributed to the amount of vegetation fraction whose variations
are presented in Fig. 7 for all days. As it can be seen, vegetation
fraction is the highest for DOY 2008-232 where the lowest R2 val-
ues were obtained.

Average RMSE values for the three approaches of estimations
and various days ranged between 3.9 and 6.9 vol/vol%. However,
as presented in Fig. 8 where square errors for all days and ap-
proaches are plotted versus field SM data, the highest errors of esti-
mation correspond to high and low SM values where the number
of samples were limited. Intermediate SM values in the range of
12–22 vol/vol% resulted in square errors averaging lower than
11 (vol/vol%)2 and consequently more accurate estimations.
5. Discussion

The analysis of EF values obtained from the three studied ap-
proaches showed similar trends for each day but slightly higher
values for the Ts�Ta Aqua-day approach. On the other hand, the



Fig. 6. Correlations between MODIS estimated and observed SM data.
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DTs Aqua-DayNight approach gave slightly lower EF values. The EF
estimated from Terra-day can be considered to be equivalent to
mid morning EF whereas that from Aqua-day represents noon or
early afternoon EF. Therefore, the slight variations observed in esti-
mated EF values derived from different approaches can be attrib-
uted to the overpass time of the satellite data. However, previous



Fig. 8. Square errors of the estimation of SM as a function of observed SM values.

Table 1
Coefficients of determination (R2), statistical significance (p value), and average root
mean square errors (RMSEave) for each day and satellite data combination.

Approach Satellite data DOY R2 p Value RMSEave (vol/vol%)

Ts�Ta Terra-day 137 0.66 0.0025 6.9
Aqua-day 137 0.67 0.0019 6.4

DTs Aqua-DayNight 137 – – –
Ts�Ta Terra-day 148 0.77 0.0004 6.5

Aqua-day 148 0.77 0.0004 6.2
DTs Aqua-DayNight 148 0.71 0.0012 7.2
Ts�Ta Terra-day 232 0.42 0.0425 4.6

Aqua-day 232 0.48 0.0259 4.7
DTs Aqua-DayNight 232 0.42 0.0417 3.9
Ts�Ta Terra-day 260 0.57 0.0046 4.4

Aqua-day 260 0.61 0.0025 5.0
DTs Aqua-DayNight 260 0.50 0.0101 4.6
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studies indicate that contrary to ET, EF does not significantly vary
during the day and that noon time EF values can be considered
to be equivalent to daily EF (Crago, 1996). The DTs Aqua-DayNight
approach had been previously proposed as an alternative to im-
prove the accuracy of EF estimation as compared with Jiang and
Islam model which only uses Ts in the y axis of the scatter plot
(Wang et al., 2006). Our estimated EF values were found to be
slightly higher when air temperature was included in the model
(Ts�Ta Terra-day and Aqua-day). That which EF estimation ap-
proach could be used more accurately to estimate SM would how-
ever depend on the correlations between estimated and field
measured soil moisture.

The accuracy of SM estimation from EF values as retrieved from
satellite data depends on the accuracy of EF estimation from the
scatter plots as well as the performance of the equation used to
convert EF to SM. Previous studies have obtained satisfactory re-
sults correlating measured ground EF to estimated EF values pro-
viding a good alternative for large areas with limited field data
(Jiang and Islam, 2001; Venturini et al., 2004; Wang et al., 2006).
The accuracy of EF estimation in turn depends on accurate deter-
Fig. 7. Changes in vegetation fra
mination of wet and dry edges used to calculate EF for each pixel.
We selected a relatively larger area than the area with field soil
moisture data to establish wet and dry edges more accurately. This
makes it easier to find pixels with extreme SM values to be in-
cluded in the scatter plot especially following rainfall. In addition,
the threshold used for identifying bare soil pixels could be set more
accurately in a larger area. On the other hand, by incorporating air
temperature in the model using NARR Ta data we tried to minimize
errors caused by selecting too large an area with possible topogra-
phy variations. However, these simplified models for the estima-
tion of EF from satellite data are based on a number of
assumptions making them sensitive to different sources of error
as described by other authors (Jiang and Islam, 2001; Sandholt
et al., 2002).

The model to be used for converting EF data to SM values will
also have an important role in the accuracy of SM estimation.
The Komatsu (2003) model was found to be unsuitable for the esti-
mation of SM from MODIS derived EF after initial analysis.
ction over the study period.



102 P. Rahimzadeh-Bajgiran et al. / ISPRS Journal of Photogrammetry and Remote Sensing 83 (2013) 94–103
Although this model includes more variables than the Lee and
Pielke’s model taking into account wind speed as well, the main
reason for its unsuitability for our data can be attributed to the fact
that it is based on soil thickness of only 1 mm. Komatsu (2003)
indicated that at higher soil thicknesses the relationship ap-
proaches that of the cosine curve but no model parameters were
developed by the author for deeper soils appropriate for our pur-
pose. The Lee and Pielke (1992) model showed better results pro-
viding reasonable estimations for intermediate soil moistures but
failed to accurately work for low and high SM values resulting in
relatively large average RMSEs. Although the true value of hfc can
affect the SM estimation using this model, the accuracy of estima-
tions could also be improved by having a greater number of field
SM measurements covering extreme values.

DOY 2008-148 and 2008-137 were found to present higher cor-
relations between estimated and field measured SM in all
approaches. Both DOY 2008-148 and 2008-137 represent the situ-
ation in early growing season in which vegetation fraction is low
and EF is more related to soil than vegetation. DOY 2008-232 in
which the highest vegetation fraction is observed, exhibited the
lowest coefficients of determination, although the relationship is
statistically significant. DOY 2008-260 shows a situation in which
vegetation fraction is relatively high but on the decline resulting
in improvements in correlations between estimated and measured
SM as compared with DOY 2008-232. As the relationship between
EF and SM is dependent on the depth of SM, which is in turn re-
lated to the root depth of the vegetation, empirical models to con-
vert EF data to SM values generally work better for bare soil and
shallowly rooted plant covers (Davies and Allen, 1973).

Though not considerably different, the best correlations be-
tween field SM and estimated SM data in this research (observed
as higher coefficients of determination and more or less similar
RMSE values) were obtained when the Ts�Ta Aqua-day and Ter-
ra-day approaches were used in all studied days. This indicates
that incorporating NARR Ta data into the model both for Terra-
day and Aqua-day approaches resulted in better EF estimations
thereby providing improved accuracy of SM estimations from EF.
One other important advantage of using Ts�Ta approaches over
DTs is that the former only needs one satellite observation which
is a considerable advantage as having two cloud free images over
the same area in 24 h can be not very easy in our study area, which
was normally cloudy at nights during the study period. The lower
R2 values obtained for the DTs approach may also be caused by the
cloud contamination of Ts as there is a higher possibility to have a
thin cloud cover when using both day and night surface tempera-
ture images (see Fig. 4c).
6. Conclusion

In this research, we tried to use the relationship between evap-
orative fraction and soil moisture to estimate soil moisture from
remote sensing data in Canadian Prairies. Three different ap-
proaches to estimate EF based on Jiang and Islam (2001) model
and two models to estimate soil moisture from EF were evaluated.
It was found that SM can be estimated from remotely sensed EF
data over the study area. The concept of incorporating air temper-
ature using NARR data into the spatial variation of surface temper-
ature and vegetation fraction was found to improve soil moisture
estimation accuracy based on evaporative fraction. Evaluation of
models used to estimate soil moisture from EF revealed that at
least for the satellite data used in this study, the equation pre-
sented by Lee and Pielke (1992) better predicts soil moisture vari-
ations based on EF. Among the EF estimation approaches, the
Ts�Ta MODIS Aqua-day approach provided more satisfactory re-
sults with strong statistically significant correlations between
estimated and observed soil moisture data. The accuracy of the
predictions was considerably better for intermediate soil moisture
values promising the applicability of the method for estimating soil
moisture in Canadian Prairies as well as exhibiting the need for fur-
ther development of the model to account for extreme conditions.
However, further work is required to improve the accuracy of the
model used to convert EF values to soil moisture for any given
set of SM and satellite derived EF thereby improving the overall
accuracy of soil moisture estimation. Having obtained statistically
significant relationships between soil moisture data derived from
MODIS optical/thermal infrared imagery and observed values, the
next step would be incorporating the present methodology into
downscaling algorithms for passive microwave SM data to benefit
from the higher accuracy available from passive estimates but the
higher spatial resolution available from the methods described
here.
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