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a  b  s  t  r  a  c  t

We  tested  whether  short-term  exposure  to realistic  ozone  pollution  (≤150  ppb,  1 h) and  soil  water  stress
(soil  water  content  ≤15%)  slow  stomatal  dynamics  in an  ozone-sensitive  cultivar  of snapbean.  Both  ozone
exposure  and  water  stress  caused  stomata  to be  sluggish  in  the degree  of  closure  after  leaf  severing,  while
ozone  also  delayed  the time  the  closing  signal  was  perceived.  Ozone-induced  aberrations  lasted  up to
ccepted 1 December 2011

eywords:
ropospheric ozone
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tomatal sluggishness

the night  and  caused  incomplete  closure  of stomata.  No  synergic  effect  was  observed  in  the dynamic
measurements.  In  contrast,  at steady-state,  water  stress  protected  the  plants  from  the  negative  ozone
effects  on  stomatal  conductance.  Ambient  ozone  peaks  may  thus  cause  sluggish  stomatal  response  and
increase  leaf  water  loss  both  under  well  watered  and  drought  conditions.

© 2011 Elsevier B.V. All rights reserved.

napbean

. Introduction

Tropospheric ozone (O3) is an important secondary pollutant
esulting from emission of volatile organic compounds and nitro-
en oxides, and is also recognized as a significant greenhouse gas
Bytnerowicz et al., 2007; Serengil et al., 2011). Ozone is seriously
hytotoxic and causes negative effect on plants (e.g., NIES, 1980,
984; Omasa et al., 2002; Paoletti, 2007). Stomatal O3 uptake is
rucial for assessing the adverse effect of O3 on plants (Omasa
t al., 1979; UNECE, 2004; Paoletti and Manning, 2007; Grulke et al.,
007a; Cieslik et al., 2009). However, our understanding about sto-
atal responses to O3 is still imperfect (Paoletti and Grulke, 2005).

revious studies reported that O3 generally induces both stoma-
al closure (Wittig et al., 2007, 2009) and sluggishness of stomatal
esponse to change of environmental factors (Paoletti and Grulke,
005, 2010). Because plants live in a fluctuating environment, both
teady-state stomatal conductance and stomatal dynamics play
n important role in regulating leaf gas exchange. Ozone-induced
luggishness of stomata has been reported in response to change
n photosynthetic photon flux density (PPFD) (Reich and Lassoie,
984; Reiling and Davison, 1995; Paoletti, 2005; Grulke et al.,
007a; Paoletti and Grulke, 2010), vapor pressure deficit (VPD)

Grulke et al., 2007b)  and severe water stress imposed by severing

 leaf (Paoletti, 2005; Paoletti et al., 2009; Mills et al., 2009). Such
berrations may  increase nighttime transpiration, as reported for

∗ Corresponding author. Tel.: +39 55 5225 591; fax: +39 55 5225 666.
E-mail address: e.paoletti@ipp.cnr.it (E. Paoletti).

098-8472/$ – see front matter ©  2011 Elsevier B.V. All rights reserved.
oi:10.1016/j.envexpbot.2011.12.004
several tree species exposed to daytime O3 exposure in controlled
(Skärby et al., 1987; Matyssek et al., 1995; Wieser and Havranek,
1995; Günthardt-Goerg et al., 1997; Grulke et al., 2007c) and ambi-
ent conditions (Grulke et al., 2004). Ozone is known to induce
up-regulation of ethylene emission, which has been suggested to be
responsible for a reduction in stomatal sensitivity to abscisic acid
(ABA) and thus to closure (Wilkinson and Davies, 2010). Several
stressors, including water deficit, are known to stimulate ethylene
production by plants (Morgan and Drew, 1997).

Climate change is expected to increase O3 levels and alter
precipitation regimes, regionally increasing the probability of
drought (Ciais et al., 2005). Drought has the capacity to limit O3
injury through stomatal closure (Tingey and Hogsett, 1985), while
O3-induced impairment of stomatal response may  increase suscep-
tibility to drought (Nali et al., 2004).

Our main objective was  to test whether short-term exposure to
realistic O3 pollution and soil water stress, singly and in combina-
tion, may  slow stomatal dynamics in an ozone-sensitive cultivar of
snapbean (Phaseolus vulgaris, S156).

2. Materials and methods

Seeds of the ozone sensitive cultivar S156 of snapbean devel-
oped at the Raleigh USDA-ARS (Burkey and Eason, 2002; Flowers
et al., 2007; Booker et al., 2009), were planted in 17-cm (1.7–1)

pots, filled with sand:peat:soil = 1:1:1 (v:v:v). Seed were planted
over several days so that same-age (4-week old) plants were used
in the experiment. All plants were grown in a room with con-
trolled environmental conditions (air temperature of 20 ◦C, PPFD

dx.doi.org/10.1016/j.envexpbot.2011.12.004
http://www.sciencedirect.com/science/journal/00988472
http://www.elsevier.com/locate/envexpbot
mailto:e.paoletti@ipp.cnr.it
dx.doi.org/10.1016/j.envexpbot.2011.12.004
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Fig. 2. Time courses of stomatal conductance (gs) after severing a leaf at time 0.
Graph A shows an example of calculation of WWR  magnitude and duration, and of
the degree of gs decrease (�gs). At first, gs showed a transient increase called ‘wrong-
way  response’ (WWR)  and a subsequent decrease with increasing leaf water stress.
Graph B shows the time course of average gs (±SE) under well-watered condition
otential (±S.D., n = 2–3) after irrigation until field capacity. Different letters indicate
ignificant differences among mean values (Tukey HSD test, P < 0.05).

f 500 �mol  m−2 s−1, and relative humidity of 55%). Well-watered
lants were supplied with water every day and in particular imme-
iately before the ozone exposure, while water-stressed plants
eceived no irrigation for 10 days before O3 fumigation. Soil water
ontent was more than 30% in well-watered plants and 6–15%
n water-stressed plants, corresponding to a predawn leaf water
otential of −0.32 MPa  and −0.53 MPa, respectively (Fig. 1). Water
ontent was measured in 18 pots with an ECH2O EC-5 soil mois-
ure sensor (Decagon Devices, Pullman WA,  USA) at root level. Leaf
ater potential was measured at dawn in a selection of 2–3 plants
er day by means of an SKPM 1400 chamber pressure (Skye, Powys,
K).

The fully expanded central leaf of the second trifoliate leaf was
elected as a target leaf. After 1-h exposure to 1000 �mol  m−2 s−1

ight, steady state leaf gas exchange was measured with a portable
nfra-red gas-analyzer (CIRAS-2 PP Systems, Herts, UK), equipped

ith a 2.5 cm2 leaf cuvette which controlled leaf temperature
20 ◦C), leaf-to-air vapour pressure deficit (0.9 kPa), saturating light
1800 �mol  m−2 s−1) and CO2 concentration (365 ppm). Ozone
xposure to one of four levels (±SD), i.e. low (48 ± 6.7 ppb), mid-
le (87 ± 9.4 ppb), high (150 ± 10.9 ppb), and control (0 ppb, no O3),
as then carried out for 60 further min  by a web fumigation sys-

em (Velikova et al., 2005; Pinelli and Tricoli, 2008). Ozone was
dded by an O3 generator (Model Heliozon, Milano, Italy) to the
umigating air for the target leaf through a teflon tube. The concen-
ration around the leaf was recorded with an ozone monitor (Mod.
05, 2B Technologies, Boulder CO, USA), and adjusted through mass
ow controllers (Mod. GFC171S A alborg). At 30 min  after the end
f O3 exposure, steady-state stomatal conductance (gs) was  mea-
ured again. When gs reached equilibrium under constant light at
800 �mol  m−2 s−1, the methodology described by Paoletti (2005)
as applied to assess dynamic variations of gs after cutting the leaf
etiole (Fig. 2). Data were logged at 1 min  intervals in the 45 min
fter severing. In the experiment, two phases of gs response were
bserved (Fig. 2). At first, gs increased for Iwanoff effect. This tran-
ient increase called as the transient ‘wrong-way response’ (WWR)
s due to a difference in turgor pressure between guard cell and
pidermal cells (Omasa and Maruyama, 1990; Powles et al., 2006).
ubsequently, stomatal conductance decreased with increasing
eaf water stress. WWR  duration and magnitude of WWR  and gs

ecrease at 45 min  (�gs) were recorded.
After O3 exposure and steady-state measurements, 22 plants

ere placed in the dark for 10 h. Nocturnal steady-state gs was
easured with leaf temperature of 20 ◦C, leaf-to-air vapour pres-

ure deficit of 0.9 kPa, no exposure to light and CO concentration
2
f 365 ppm.

Data were checked for normal distribution and homogene-
ty of variance (Levene’s test). Percents were arcsine square root
(soil water content > 30%) and water-stressed condition (soil water content = 6–15%)
in  control (0 ppb O3) and ozone-exposed (150 ppb O3) leaves.

transformed prior to analysis. Effects of soil water status and O3
exposure were tested using two-way analysis of variance (ANOVA).
Results were considered significant at p < 0.05. Differences among
means were tested by Tukey’s HSD test. Statistical analysis was
performed with STATISTICA software (6.0, StatSoft Inc., Tulsa, OK,
USA), according to Statsoft (2001).

3. Results

3.1. Steady-state and dynamic stomatal responses

Ozone exposure induced a decline of steady-state gs under well-
watered conditions (Fig. 3). gs was  73% in the low O3 treatment
and 25% in the high O3 treatment compared to the control plants.
A reduced soil water availability significantly reduced gs relative to
well-watered plants and resulted in no effect of O3 on gs.

After severing a leaf, two  phases of gs response were observed
(Fig. 2): a transient increase as WWR  and then a linear decrease.
Ozone exposure increased WWR  duration from 11.9 ± 2.7 min in
the control plants to 17.1 ± 3.2 min  in the high O3 treatment, while
the effect of water stress was  not significant (Fig. 4A). Magnitude
of WWR  was not affected by both O3 and soil water availabil-
ity (Fig. 4B). Ozone reduced the degree of stomatal closure over
time (�gs) in both soil water conditions (Fig. 4C). Also soil water

deficit reduced �gs relative to the optimal soil water availabil-
ity. In well-watered plants, the high O3 treatment resulted in
smaller stomatal closure than in control leaves (48% vs. 75%). In
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Fig. 3. Effect of 1-h exposure to four levels of O3 (control: 0 ppb; low: 45 ppb; mid-
dle:  90 ppb; high: 150 ppb) and soil water availability (well-watered 30% water
content; water-stressed: 6–15% water content) on steady-state stomatal conduc-
tance (gs). Data are means (N = 5–8) ± SE. * denotes significance at 5% levels; **
denotes significance at the 1% levels; n.s. indicates no significance. Different letters
indicate significant differences among bars (Tukey HSD test, P < 0.05).

Fig. 4. Effects of 1-h O3 exposure (Control: 0 ppb; low: 45 ppb; middle: 90 ppb;
high: 150 ppb) and soil water availability (well-watered 30% water content; water-
stressed: 6–15% water content) on dynamic gs response after severing a leaf (A:
duration of transient increase in gs after severing; B: magnitude of transient increase
in gs after severing; C: degree of gs decrease at 45 min  after severing). Data are means
(N  = 3–4) ± SE. * denotes significance at the 5% levels; n.s. indicates no significance.

Fig. 5. Effects of 1-h O3 exposure (Control: 0 ppb; low: 45 ppb; middle: 90 ppb;
high: 150 ppb) and soil water availability (well-watered 30% water content; water-

stressed: 6–15% water content) on nocturnal steady-state stomatal conductance (gs)
relative to the pre-exposure daytime value. Data are means (N = 2–4) ± SE. * denotes
significance at the 5% levels; n.s. indicates no significance.

water-stressed plants, high O3 and control treatment resulted in
41% and 61% stomatal closure, respectively.

3.2. Nocturnal stomatal conductance

Fig. 5 shows nocturnal steady-state gs relative to daytime pre-
exposure gs. Ozone exposure caused an increase of nocturnal gs. A
reduced soil water availability did not affect nocturnal gs. Nocturnal
gs increased in well-watered plants from 7% in the control plants
to 23% in the high O3 treatment.

4. Discussion

Increasing O3 exposure under optimal water availability pro-
gressively decreased steady-state gs. Although the mechanisms
that regulate stomatal responses to acute and chronic O3 expo-
sure may  differ, the unifying result is a reduction of steady-state gs,
in both crops and trees, under different experimental conditions
(e.g., Grulke et al., 2007a; Wittig et al., 2007). Dynamic measure-
ments of gs in Arabidopsis, in contrast, showed a rapid decrease
triggered by acute exposure (Vahisalu et al., 2010) and followed by
reopening to overshooting values (Moldau et al., 2011). Soil water
stress is usually considered to reduce O3 injury because it reduces
gs and thus O3 entering into a leaf (Tingey and Hogsett, 1985). The
result of our steady-state measurements supports this conclusion.
Simulated water deficit resulted in no effect of O3 on gs (Fig. 3).
During the dry summer of 2003 in Central Europe, no difference
in steady-state gs was  reported for beech trees exposed to ambi-
ent and twice-ambient O3 in free air (Löw et al., 2006). Figures
obtained from steady-state observations have been used to model
plant responses to O3 in a changing climate (e.g., Ollinger et al.,
2002).

Measurements of dynamic stomatal responses revealed that
exposure to increasing O3 concentrations made stomata sluggish
i.e. progressively increased the duration of WWR  and reduced the
degree of stomatal closure over time (Fig. 4A and C). After leaf
severing, duration of WWR  and following linear reduction in gs

are related to induction and execution of guard cell osmoregula-
tion, respectively (Powles et al., 2006). Omasa (1990) reported that
stomatal response was affected by the O3-induced effects such as

slight increase in permeability of epidermal cell membranes and
alteration of the osmotic pressure modulating a balance in turgor
between the guard and subsidiary cells. Ozone may also delay sto-
matal responses by stimulating ethylene production and reducing
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tomatal sensitivity to ABA (Wilkinson and Davies, 2010), or tem-
orarily desensitizing the guard cells by blocking the K+ channels
Vahisalu et al., 2010).

We also demonstrated, for the first time that also a mild soil
ater stress is able to cause stomatal sluggishness by reducing the
egree of stomatal closure, while no effect was recorded on the time
he closing signal is perceived. Following Powles et al. (2006),  this
esponse suggests that water stress affects execution rather than
nduction of guard cell osmoregulation. In contrast with steady-
tate gs, water deficit did not provide any protection from O3 effects
n stomatal dynamics.

The effect of water stress on stomatal sluggishness, however,
asted shorter than the effect of ozone exposure. The imperfect sto-

atal closure at night, in fact, with higher nocturnal steady-state
s after short-term O3 exposure in well-watered plants, may  be
onsidered as a long-lasting effect of the aberrations induced by
zone. Enhanced nocturnal gs induced by O3 has been reported for
everal plant species (Skärby et al., 1987; Matyssek et al., 1995;

ieser and Havranek, 1995; Grulke et al., 2004, 2007c).  Ozone-
nduced incomplete closure of stomata at night may  translate into
osing control of water efflux at dark (Skärby et al., 1987; Grulke
t al., 2007c).  Increase in nocturnal gs may  also enhance O3 uptake
t night. Günthardt-Goerg et al. (1997) reported that considerable
3 uptake at night induced leaf injury in Betula pendula, Pop-
lus × euramericana,  and Alnus glutinosa. Matyssek et al. (1995)
eported that birch species exposed to O3 at night showed great
eductions in growth.

Ozone peaks may  exceed 0.1 ppm h in suburban and rural areas
f California in the United States (Heath et al., 2009), southern
urope (Paoletti, 2006) and East Asia such as Japan (Takigawa et al.,
007). The present study revealed that realistic short-term O3 expo-
ure (≤150 ppb) induced stomatal sluggishness with or without
rought stress. Although the effect is lighter than for ozone, also
oil water deficit can induce stomatal sluggishness. Climate change
rings about the risk of drought and flooding (Bytnerowicz et al.,
007). Ozone- and drought-induced loss of stomatal function may
nhance both leaf water loss and O3 uptake. Current modeling
fforts of O3 effects on plants have been developed using steady-
tate parameters (Emberson et al., 2000; Grünhage et al., 2001) and
he O3-induced losing control of dynamic stomatal response was
gnored. The results presented here suggest to reconsider the role
f O3 pollution on leaf gas exchange and highlight complex interac-
ions between ozone and drought. Further improvement about our
nderstanding of stomatal response to O3 and drought will con-
ribute to assess climate change impacts on plant water balance
nd susceptibility to stress.
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