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a b s t r a c t

The dominant grasses in a wetland are of critical concern for the wetland’s ecological integrity, because
these species provide the habitats formany small plants and animals. In this study, we used hyperspectral
imagery to map the distributions of two dominant tall grasses (Miscanthus sacchariflorus (Maxim.) Benth
and Phragmites australis (Cav.) Trin. ex Stend) in theWatarasewetland, in central Japan. Stepwisemultiple
linear regression analysis was applied to the hyperspectral data to predict the shoot density and biomass
of the two grasses. The independent data sets included original reflectance, band ratios, significant
components identified by principal components analysis (PCA), and significant components identified
by decision boundary feature extraction (DBFE). The coefficient of determination (R2) and the root-mean-
square error (RMSE) of model calibration and validationwere used to evaluate themodels. The significant
DBFE components showed better ability at predicting shoot density of the two grasses than the other
variables in the validating areas. The RMSE values were 7.40/m2 for M. sacchariflorus and 13.09/m2 for
P. australis, which amounted to errors of around 10.0% and 12.6%, respectively, of the maximum shoot
density measured during our surveys. All variables showed similar performance at predicting biomass,
but the results were less accurate than those for shoot density. Considering the performance of the DBFE
components for both shoot density and biomass prediction, we suggest that these are the best indicators
for estimating the abundance of the two grasses.

© 2009 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by
Elsevier B.V. All rights reserved.
1. Introduction

The importance of wetlands functions and their values have
been increasingly recognized. Far from being useless, disease-
ridden places, wetlands provide values that no other ecosystem
can, including improvement of water quality, flood protection,
shoreline erosion control, opportunities for recreation and aes-
thetic appreciation, and the provision of natural products for our
use (Toyra et al., 2001).Wetlands are also valued because they pro-
vide a unique habitat for a wide variety of plants, fish, wildlife, and
invertebrates, including many threatened or endangered species
(Chiras, 2006). Thus, monitoring of the vegetation that occupies
wetland habitats is very important if we are to learn how to protect
these wetlands.
TheWatarase wetland is the largest lowland wetland in central

Japan. It is dominated by two tall grasses:Miscanthus sacchariflorus
(Maxim.) Benth and Phragmites australis (Cav.) Trin. ex Stend. These
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two grasses, which have a very similar morphology, are important
to the ecological integrity of the wetland because they provide
habitats for many small plants and animals (Washitani, 2001). For
example, some endangered plant species in the Watarase wetland
are associated with specific habitats where one of the dominant
grass species predominates or where both are mixed more evenly.
Therefore, discriminating between the two grasses may help
wetland managers to determine the potential habitat areas for the
endangered plant species. Knowledge of the spatial distribution
and dynamics of the dominant grasses can be achieved through
field monitoring, but access limitations and the requirement
for time-consuming surveys may make the cost of such direct
monitoring prohibitive.
Researchers have recently considered performing such sur-

veys by taking advantage of remote-sensing techniques, which
are expected to overcome the disadvantages of direct surveys.
Remotely sensed imagery has frequently been used in wet-
land mapping (Ackleson and Klemas, 1987; Jensen et al., 1984).
However, these studies have mainly concerned the use of mul-
tispectral imagery, and few have adopted hyperspectral remote
sensing techniques (Hirano et al., 2003). Unfortunately, wetland
vegetation can be confused with different land cover classes when
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multispectral imagery is used because of the problem of overlap-
ping spectral signatures (Ozesmi and Bauer, 2002). At the level of
species differentiation, such as differentiation of the two very sim-
ilar dominant grasses in the Watarase wetland, mapping of veg-
etation properties requires the detection of subtle differences in
canopy density, leaf and canopy structure, and biochemical prop-
erties. Therefore, imaging spectrometers (hyperspectral sensors)
are particularly well-suited for this task because of the type and
amount of spectral information they collect (Rosso et al., 2005).
Some hyperspectral data-analysis algorithms have been devel-

oped and applied to vegetation discrimination and biochemistry
estimation. For example, unmixing of the hyperspectral data is a
good means to estimate the distribution of vegetation (Dehaan
et al., 2007). Adams et al. (1986) used spectral-mixture analysis to
discriminate species at the sub-pixel level, and found that it was
possible to determine the relative percentages of various classes
in a single pixel. Previously, we tried to estimate the abundance of
the two dominant tall grasses in the Watarase wetland by using a
partial-unmixing, matched-filtering method, but it was difficult to
obtain pure pixels as targets for each grass, which is a necessary
step in the matched-filtering process. We found that the selection
of P. australis endmemberswas harder than that ofM. sacchariflorus
endmember (Lu et al., 2006).
Some researchers have shown that statistical methods can be

used to effectively process hyperspectral data without the limi-
tations imposed by the unmixing procedure. For example, Galvão
et al. (2005) applied multiple-discriminant analysis to surface re-
flectance values, reflectance ratios, and several spectral indices,
and were able to discriminate five important Brazilian sugarcane
cultivars. Kokaly and Clark (1999) developed amethod for estimat-
ing the biochemical properties of plant material using hyperspec-
tral spectroscopy. They used stepwisemultiple linear regression to
select wavelengths from the overall absorption features that were
most strongly correlated with the chemistry of the samples. By ap-
plying the derived linear equations to the validation data, the au-
thors were able to successfully estimate the nitrogen, lignin, and
cellulose concentrations in different plant species. These studies
have focused on the discrimination of plant species or their bio-
chemical characteristics, but have seldom been used to obtain bio-
physical information such as shoot density or biomass of wetland
vegetation.
In the present study, our goal was to propose a feasible method

for estimating the abundance and distribution of M. sacchariflorus
and P. australis in the Watarase wetland using stepwise regression
models to analyze data obtained by hyperspectral imagery. We
chose four sets of independent variables for use in the stepwise
regression analysis to predict plant shoot density and biomass:
the original reflectance values, the band ratios, the components
of principal components analysis (PCA), and decision boundary
feature extraction (DBFE). The selection of key original reflectance
values and band ratios has been successfully used to estimate
the chlorophyll concentration of plants (Chappelle et al., 1992),
to classify vegetation (Galvão et al., 2005), and to map the
distribution of white micas (van Ruitenbeek et al., 2006). PCA (Jia
and Richards, 1999) and DBFE (Lee and Landgrebe, 1993) have also
been commonly used to extract the spectral features from imaging
data and to reduce the number of data dimensions required for
classification of image pixels. Here, we tested the ability of all
four approaches to identify the best set of independent variables
for mapping the abundance of the two grasses in the Watarase
wetland.

2. Materials and methods

2.1. Study area

TheWatarase wetland is the largest lowland wetland in central
Japan (Fig. 1). The wetland was formed between 1910 and 1926
by damming three rivers to control flooding of downstream areas
with contaminated water from a copper mine along the upper
reaches of the rivers. Precipitation at the Koga meteorological
station, near the Watarase wetland, averaged 1197 mm annually
from1977 to 2004. The study area has a relatively hot-wet summer
and cold-dry winter because it is located in an inland part of Japan.
More than 650 species of wetland plants grow in the wetland
(Ohwada and Ogura, 1996), of which 59 are endangered species
that are listed in the national Red List (Ministry of the Environment
of Japan, 2007).
M. sacchariflorus and P. australis start growing in March of

each year after the wetland undergoes controlled burning by its
managers. After the burning, both grasses reach their maximum
height (around 4 m) in July and August. During the growth period,
P. australis develops faster than M. sacchariflorus. The largest
difference in plant form between the species occurs at the end of
May. This difference in the phenology of the grassesmakes the end
of May a good time to capture hyperspectral imagery and use it to
differentiate between them. The grasses flower from September to
October and bear seeds in November and December.

2.2. AISA Eagle imagery

The images used in this study were acquired by the Eagle
Airborne Imaging Spectroradiometer for Application (AISA) hyper-
spectral system. The AISA consists of a compact hyperspectral sen-
sor head, aminiature GPS/INS sensor, a data-acquisition computer,
the RSCube software, and a power supply. The instrument collected
images at nadir in 68 contiguous spectral bands, sampled at ap-
proximately 9-nm intervals in the range from 398 to 984 nm. The
nominal flight altitude is around 1400 m above the ground, result-
ing in a pixel size of 1.5 × 1.5-m. The sensor was flown over the
eastern part of the Watarase wetland (see Fig. 1). Radiance was
calculated as the upwelling radiant energy received at the sensor,
and the apparent reflectance was defined as the ratio between up-
welling and downwelling radiant energy. The downwelling radi-
ant energy from the sun was measured by the onboard fiber optic
downwelling irradiance sensor (FODIS). Images were recorded as
the apparent reflectance measured at the instrument height.
The flight over the Watarase wetland was carried out on 26

May 2005, when the two dominant grasses were showing their
peak differences in plant form. In this study, we used two mosaic-
processed strips of images in areas where the dominant grasses
weremost abundantly distributed. Each strip of data had a nominal
cross-track swath width of about 1 km and a down-track image
length of about 6 km. Because the two strips overlapped in some
areas, the total area covered was about 8 km2. The areas outside
the moist grassland were subtracted before the analysis.

2.3. Field data acquisition

Detailed field information on the dominant grasses was ob-
tained from the end of May to the middle of June 2005. Thirty-
eight 5× 5-m plots were established to determine the abundance
of M. sacchariflorus and P. australis. In each plot, three 1 × 1-m
subplots were randomly chosen to measure different parameters.
The means from the three subplots were used to represent each
5 × 5-m plot. The locations of the four corners of each plot were
recorded on a Trimble Pathfinder ProXR GPS device. The four cor-
ner points were then plotted on the georeferenced AISA images.
The estimated positional error was less than 1 pixel.
We measured shoot densities by counting all shoots in each of

the three subplots and shoot heights by measuring all the shoots
counted in each plot. The shoot heights were used to estimate the
aboveground biomass. Because the shoot heights were incorrectly
measured in three plots during the fieldwork, we had only 35
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Fig. 1. Location of the study area.
samples available for calculating biomass. After measuring the
shoot height, we cut 50 shoots at the roots from each grass species.
The shoots were then brought to the laboratory to measure the
individual aboveground dry weight after oven-drying for 3 days at
80 ◦C.
The regression equations used to calculate the biomass are

shown as Eq. (1) forM. sacchariflorus and Eq. (2) for P. australis:

Dry weight (M. sacchariflorus)

= 0.0005h2 − 0.0024h− 2.0437 (R2 = 0.85) (1)
Dry weight (P. australis)

= 0.0007h2 − 0.1021h+ 7.1806 (R2 = 0.93) (2)

where h indicates themean shoot height (cm) of the plants in a plot
for a given species. We calculated the dry weight per shoot in each
plot by using the average shoot height in the regression equation.
This weight was multiplied by number of plants in 1 m2 to obtain
the biomass per unit area (g/m2).

2.4. Relating plant abundance to spectral reflectance and transformed
reflectance

We randomly selected half of the samples (the training sam-
ples) from the field survey plots, and used them to develop a re-
gression model for the estimation of plant abundance, and used
the other half (the validation samples) to validate the models. The
mean and variance of the two data sets were not significantly
different, which made it possible to evaluate the predictive per-
formance of the models. The number of training samples used in
constructing the shoot density and biomassmodels was 19 and 17,
respectively.
We used stepwise multiple linear regression to predict the

shoot density and biomass as a function of the reflectance value
or other transformed reflectance parameters. We used the F-test
to include (P < 0.05) and to remove (P ≥ 0.1) variables in
the forward and backward steps. We chose four sets of inde-
pendent variables for this analysis. The first set comprises the
original reflectance data, but the other three were parameters sets
created by transforming that data. The first transformed set repre-
sented the ratios between the hyperspectral band data. We calcu-
lated all the ratios between each pair of bands, and obtained 4556
(68 × 68 − 68) ratios for the 68 bands. The total number was too
large to analyze statistically, since the number of dependent vari-
ableswas fewer than 20 in this analysis. Instead, we first calculated
the coefficients of correlation between the band ratios and plant
abundance, then selected the 200 ratios with the largest correla-
tion coefficients as the independent variables. The second trans-
formed set comprised the components of the PCA. PCA relies on
the fact that most of the variance in the image can be represented
by the first few components. We selected up to six components
for which the cumulative variance was greater than 99% as the in-
dependent variables. The third set comprised the components of
the DBFE. DBFE extracts the features that can be used most effec-
tively to classify image pixels into categories. We selected up to 18
DBFE components for which the cumulative variance was greater
than 99% as the independent variables. We used the PCA and DBFE
feature-extraction methods to qualitatively classify the species of
the two similar tall grasses and to quantitatively estimate their
shoot density and biomass.
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Table 1
Statistical description of the two grass species in the Watarase wetland.

Mean Maximum Std. deviation

Miscanthus sacchariflorus Shoot density (/m2)
(N = 38)

20.52 74.30 22.61

Biomass (g/m2)
(N = 35)

219.32 1204.02 321.70

Phragmites australis Shoot density (/m2)
(N = 38)

24.18 103.70 24.39

Biomass (g/m2)
(N = 35)

267.55 1219.39 326.48

Among the four sets of variables, the original reflectance, band
ratios, and PCA have been commonly used inmany remote-sensing
data analysis studies (Byrne et al., 1980; De Jong et al., 2003;
Doxaran et al., 2002). DBFE, however, was originally a feature-
extraction method proposed for use in classification by Lee and
Landgrebe (1993). The theory behind DBFE requires the compu-
tation of the decision boundaries among the classes by means of
a training set. It can be demonstrated that the rank of the so-
called decision boundary characteristicmatrix is also theminimum
data dimension required to obtain the same classification results as
with the original hyperspectral data in the training data set. Corre-
spondingly, the eigenvectors with non-null eigenvalues extracted
from the samematrix represent the directions of projections of the
original data that satisfy the aforementioned condition. The DBFE
method has been proved to be very effective in classifying similar
crops in agricultural land (Lu et al., 2007). To process the DBFE, a
pure training set for each grass is necessary. We selected the plots
with the largest shoot density as the training area for each grass.

3. Results and discussion

3.1. Measured shoot density and biomass

Table 1 summarizes the statistical characteristics of the shoot
density and biomass of each species based on the field survey. P.
australis grew more densely than M. sacchariflorus. However, the
plot with the maximum biomass did not necessarily correspond
to the plot with the maximum shoot density, because the biomass
reported here is an estimate based on the shoot height. The similar
maximum biomasses of both grasses suggest the existence of
a productivity limit in the Watarase wetland, regardless of the
vegetation species.

3.2. Spectral reflectance and transformed reflectance parameters
selected by stepwise multiple linear regression

Table 2 shows the wavelengths or components that were se-
lected to formulate the regression models for shoot density and
biomass by means of stepwise multiple linear regression. Four
wavelengths were selected in the regression model ofM. sacchari-
florus shoot density using the original reflectance values. Twoof the
four wavelengths selected were near 550 nm, which is related to
the vegetation’s green color, and onewas near red range of 700 nm.
On the other hand, only two wavelengths were required to esti-
mate the shoot density of P. australis, one in the green range (524
nm) and the other in the red range (684 nm). Three wavelengths
were selected in the regressionmodel forM. sacchariflorus biomass
using the original reflectance values. Two of these were near the
visible wavelengths of the green band, and the third was at the
edge of the visible spectrum (719 nm). In the P. australis biomass
estimation, a single wavelength (920 nm, in the near-infrared) was
selected.
In the regression model that used the band ratios as indepen-

dent variables, only one ratio (630 nm/692 nm) was selected to es-
timate the shoot density ofM. sacchariflorus. In contrast, four band
ratios (692 nm/559 nm, 621 nm/541 nm, 639 nm/559 nm, and 603
nm/550 nm) were required in the regression model for estimat-
ing the shoot density of P. australis. Most of the wavelengths used
for the four ratios are concentrated in the green and red bands. For
the biomass of M. sacchariflorus, two ratios (550 nm/710 nm and
710 nm/533 nm) were selected, suggesting that ratios that incor-
porated the 710-nm wavelength were sensitive to the biomass of
M. sacchariflorus. For the biomass of P. australis, only one ratio (737
nm/550 nm) was selected.
Among the first six components of the PCA, the first, third,

fifth, and sixth were significant in estimating the shoot density
and biomass of the two species. The sixth component was selected
for estimating the shoot density of both species. This suggests that
the sixth component is a significant index of their distribution and
abundance. The third componentwas also selected as an important
factor in the regression models to estimate the abundance of M.
sacchariflorus. Only the sixth component was selected for shoot
density of P. australis, and only the first component was selected
for biomass.
Among the 18 components of the DBFE, three were required in

every regression model to estimate the shoot density and biomass
of the two grasses. The second and eleventh components were
selected for the regression models for both shoot density and
biomass of M. sacchariflorus. For P. australis, different components
were selected for the two regression models.
It should be noted that it is difficult to conceptually relate each

PCA or DBFE component to areas with a specific characteristic,
because the hyperspectral imagery was transformed to create
the feature space. Therefore, the variables induced from the
reflectance transformation in the PCA and DBFE analyses have the
disadvantage of being unintuitive and difficult to interpret.

3.3. Estimating plants abundance in the training samples

Table 3 shows the adjusted R2 and the root-mean-square error
(RMSE) values for the shoot density and biomass of each species
estimated from each set of independent variables, and the ratio
of RMSE to the maximum value of each parameter determined in
the field survey. With a few exceptions, the correlations obtained
by means of DBFE were generally higher, and the RMSE values
were generally lower. Figs. 2 and 3 show the scatter plots of the
relationship between the regression estimates based on the DBFE
components for the shoot density and biomass of both species.
Table 2
Reflectance values and transformed reflectance values correlatedwith the abundance of the two species that were selected using stepwise linear regression from the training
samples. (For PCA and DBFE, ‘‘C’’ represents the component number.)

Original reflectance Band ratio Principal components
analysis (PCA)

Decision boundary feature
extraction (DBFE)

Miscanthus sacchariflorus Shoot density 701, 568, 533, and 447 nm 630 nm/692 nm C6, C3, C5 C2, C9, C11
Biomass 719, 541, and 585 nm 550 nm/710 nm, 710 nm/533 nm C3, C6 C3, C11, C2

Phragmites australis Shoot density 684 and 524 nm 692 nm/559 nm, 621 nm/541 nm,
639 nm/559 nm, 603 nm/550 nm

C6 C1, C4, C15

Biomass 920 nm 737 nm/550 nm C1 C14, C18, C2
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Table 3
Results of using stepwise multiple linear regression to estimate plant abundance from the training samples. (The values in brackets represent the ratios of the root-mean-
square error (RMSE) to the corresponding maximum shoot density or biomass from the field survey.)

Original reflectance Band ratio Principal components
analysis (PCA)

Decision boundary
feature extraction (DBFE)

R2 RMSE R2 RMSE R2 RMSE R2 RMSE

Miscanthus sacchariflorus Shoot density (/m2)
(N = 19)

0.97 3.74 [5.0%] 0.83 9.13 [12.3%] 0.81 9.21 [12.4%] 0.90 6.84 [9.2%]

Biomass (g/m2)
(N = 17)

0.83 80.56 [6.7%] 0.96 39.23 [3.3%] 0.83 79.89 [6.6%] 0.86 75.06 [6.2%]

Phragmites australis Shoot density (/m2)
(N = 19)

0.59 15.56 [15.0%] 0.95 13.41 [12.9%] 0.43 18.38 [17.7%] 0.81 9.85 [9.5%]

Biomass (g/m2)
(N = 17)

0.64 186.62 [15.3%] 0.69 165.46 [13.6%] 0.63 188.16 [15.4%] 0.70 150.46 [12.3%]
Miscanthus sacchariflorus Phragmites australis

Fig. 2. Relationships between estimated and measured shoot density (using the training samples and the DBFE components) for Miscanthus sacchariflorus and Phragmites
australis.
Phragmites australis

Fig. 3. Relationships between estimated andmeasured biomass (using the training samples and the DBFE components) forMiscanthus sacchariflorus and Phragmites australis.
The patterns of shoot density estimates differed between the
species. For M. sacchariflorus, the original reflectance values pro-
duced the highest correlation coefficient (adjusted R2 = 0.97)
and the lowest RMSE (3.74/m2, representing a 5.0% error com-
pared with the maximum shoot density in the field survey). The
band ratiomethodhad the highest correlation coefficient (adjusted
R2 = 0.95) for estimating the shoot density of P. australis, but the
RMSE was high (13.41/m2, representing a 12.9% error), because
one point was estimated particularly poorly. The lowest RMSE for
P. australis shoot density (9.85/m2, representing a 9.5% error) was
obtained from the DBFE components.
Similarly, the biomass estimates differed between the species.

The best method for estimating the biomass of M. sacchariflorus
was the band ratio method. It had the highest adjusted R2 (0.96),
and an RMSE of 39.23 g/m2 (3.3% of the maximum biomass in
the field survey). For P. australis, the best method was the DBFE
approach, with an adjusted R2 of 0.70 and an RMSE of 150.46 g/m2
(12.3% error).
The results demonstrate that no one approach produced the

smallest RMSE for both biophysical parameters or both species.
However, it is important to note that choosing the best set of
variables should not be based on validation using the training
samples that were used to construct the regression models. A
more convincing validation would be provided by using different
validation samples that were not used to construct the regression
models. Therefore, we repeated our validation of the regression
models using the validation samples.
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Miscanthus sacchariflorus Phragmites australis
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Fig. 4. Distribution of shoot density ofMiscanthus sacchariflorus and Phragmites australis.
Table 4
Root-mean-square errors (RMSE) of the stepwise multiple linear regression equations used to predict the validation samples. (The values in brackets represent the ratios of
the RMSE to the corresponding maximum shoot density or biomass from the field survey.)

Original reflectance Band ratio Principal components
analysis (PCA)

Decision boundary feature
extraction (DBFE)

Miscanthus sacchariflorus Shoot density (/m2) (N = 19) 21.84 [29.4%] 13.32 [17.9%] 16.77 [22.6%] 7.40 [10.0%]
Biomass (g/m2) (N = 18) 196.46 [16.3%] 137.33 [11.4%] 158.97 [13.2%] 143.70 [11.9%]

Phragmites australis Shoot density (/m2) (N = 19) 18.88 [18.2%] 18.06 [17.4%] 15.04 [14.5%] 13.09 [12.6%]
Biomass (g/m2) (N = 18) 200.94 [16.5%] 222.25 [18.2%] 200.90 [16.5%] 204.80 [16.8%]
3.4. Evaluating the predictive ability of regression models

We re-evaluated the predictive ability of the models using
the validation data from the survey plots (19 samples for shoot
density and 18 for biomass). Table 4 presents the resulting RMSE
values and the corresponding error percentages as a function of the
maximum values from the field survey.
The RMSE values for the validation samples were generally
higher than those for the training samples. In predicting the plant
shoot density, the DBFE components showed the best predictive
ability for both grasses. The RMSE for M. sacchariflorus was
7.40 /m2, which represents a 10.0% error relative to the maximum
surveyed shoot density. The RMSE for P. australis was 13.09 /m2,
which represents a 12.6% error. Interestingly, the RMSE values
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Miscanthus sacchariflorus Phragmites australis
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Fig. 5. Distribution of biomass ofMiscanthus sacchariflorus and Phragmites australis.
for the regression models derived from the DBFE components for
the training samples (Table 3) increased less for the validation
samples (Table 4) than those for themodels derived from the other
three variable sets. The good predictive ability using the DBFE
components suggests that these components may provide the
most accurate estimates of the shoot density of the two species in
theWatarasewetland. This good performance results from the fact
that the DBFE componentswere extracted fromhyperspectral data
which specially distinguish the two species. It is encouraging that
the information included in the DBFE components also enabled
quantitative estimation of vegetation biophysical parameters, not
only a qualitative classification discussed in the past studies
(Benediktsson and Sveinsson, 1997; Lu et al., 2007)
In predicting the biomass of the two species, the models de-

rived from the four sets of variables showed similar results. For
M. sacchariflorus, the RMSE ranged from 137.33 to 196.46 g/m2,
and the corresponding percentages of the maximum biomass in
the field surveys ranged from 11.4% to 16.3%. On the other hand,
the RMSE for P. australis ranged from 200.90 to 222.25 g/m2, with
corresponding percentages of 16.5% to 18.2%. For biomass estima-
tion, the DBFE approach generally produced results at least as good
as those obtained using the other sets of variables. Considering that
the DBFE components performed better than the other methods
for estimating shoot density and equally good results for biomass
prediction, we selected them as the best indicators to estimate the
abundance of both grasses.
The errors as a proportion of themaximumbiomasswere larger

than the errors as a proportion ofmaximum shoot density, thus the
hyperspectral imagery appears to be more effective for estimating
shoot density than biomass in the study area.
Figs. 4 and 5 show the distributions of the shoot density and

biomass of the two grasses predicted using the DBFE components.
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M. sacchariflorus
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Fig. 6. The relative dominance of the two grasses based on their respective shoot densities.
Either M. sacchariflorus or P. australis occupied most of the study
area. Fig. 6 shows the relative dominance derived from the
shoot density map for the two species. The dominance values
were calculated by dividing the total shoot density in each
pixel by the corresponding M. sacchariflorus shoot density. The
northwestern area was dominated by M. sacchariflorus, and the
southern area by P. australis. The two grasseswere relatively evenly
distributed in the northeast. The ability of the DBFE approach to
distinguish between the two species suggests that this method has
considerable potential for revealing the distribution of endangered
species that are associated with the two study species.
4. Conclusions

This paper describes a methodology for estimating the abun-
dance and distribution of two morphologically similar species, M.
sacchariflorus and P. australis, in the Watarase wetland by identi-
fying the most useful variables among several sets of independent
variables derived from hyperspectral reflectance data, and by cor-
relating them with shoot density and biomass by means of step-
wise multiple linear regression. The original reflectance and the
transformed reflectance parameters based on band ratios, PCA, and
DBFE were used as the independent variables. The results suggest
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that the regression based on the DBFE components had the best
ability at estimating the shoot density of both species, and predic-
tive ability comparable to that of the other methods for estimating
the biomass of both species. The models based on the DBFE com-
ponents performed well because the DBFE components included
information that specifically distinguished between the two simi-
lar grasses. However, further study will be needed to interpret the
physicalmeaning of the components selected by theDBFE analysis.
The results also suggest the possibility of developing generally

applicable models that could be used to simply and rapidly
estimate and map the abundance and distribution of these grasses
in the Watarase wetland on the basis of hyperspectral imagery,
thereby facilitating studies of the wetland’s ecological integrity.

Acknowledgements

We thank two anonymous reviewers for their valuable com-
ments on earlier versions of this manuscript.

References

Ackleson, S.G., Klemas, V., 1987. Remote sensing of submerged aquatic vegetation
in Lower Chesapeake Bay: A comparison of LandsatMSS to TM imagery. Remote
Sensing of Environment 22 (2), 235–248.

Adams, J.B., Smith, M.O., Johnson, P.E., 1986. Spectral mixture modeling: A new
analysis of rock and soil types at the Viking Lander 1 site. Journal of Geophysical
Research 91 (B8), 8098–8112.

Benediktsson, J.A., Sveinsson, J.R., 1997. Feature extraction for multisource data
classification with artificial neural networks. International Journal of Remote
Sensing 18 (4), 727–740.

Byrne, G.F., Crapper, P.F., Mayo, K.K., 1980. Monitoring land-cover change by
principal component analysis of multitemporal Landsat data. Remote Sensing
of Environment 10 (3), 175–184.

Chappelle, E.W., Kim, M.S., McMurtrey, J.E., 1992. Ratio analysis of reflectance
spectra (RARS): An algorithm for the remote estimation of the concentrations
of chlorophyll a, chlorophyll b, and carotenoids in soybean leaves. Remote
Sensing of Environment 39 (3), 239–247.

Chiras, D.D., 2006. Environmental Science, seventh ed. Jones and Bartlett Publishers,
Sudbury.

Dehaan, R., Louis, J., Wilson, A., Hall, A., Rumbachs, R., 2007. Discrimination of black-
berry (Rubus fruticosus sp. agg.) using hyperspectral imagery in Kosciuszko
National Park, NSW, Australia. ISPRS Journal of Photogrammetry and Remote
Sensing 62 (1), 13–24.
De Jong, S.M., Pebesma, E.J., Lacaze, B., 2003. Above-ground biomass assessment of
Mediterranean forests using airborne imaging spectrometry: The DAIS Peyne
experiment. International Journal of Remote Sensing 24 (7), 1505–1520.

Doxaran, D., Froidefond, J.-M., Castaing, P., 2002. A reflectance band ratio used
to estimate suspended matter concentrations in sediment-dominated coastal
waters. International Journal of Remote Sensing 23 (23), 5079–5085.

Galvão, L.S., Formaggio, A.R., Tisot, D.A., 2005. Discrimination of sugarcane va-
rieties in Southeastern Brazil with EO-1 Hyperion data. Remote Sensing of
Environment 94 (4), 523–534.

Hirano, A., Madden, M., Welch, R., 2003. Hyperspectral image data for mapping
wetland vegetation. Wetlands 23 (2), 436–448.

Jensen, J.R., Christensen, E.J., Sharitz, R., 1984. Nontidal wetland mapping in
South Carolina using airborne multispectral scanner data. Remote Sensing of
Environment 16 (1), 1–12.

Jia, X., Richards, J.A., 1999. Segmented principal components transformation for
efficient hyperspectral remote sensing image display and classification. IEEE
Transactions on Geoscience and Remote Sensing 37 (1), 538–542.

Kokaly, R.F., Clark, R.N., 1999. Spectroscopic determination of leaf biochemistry
using band-depth analysis of absorption features and stepwise multiple linear
regression. Remote Sensing of Environment 67 (3), 267–287.

Lee, C., Landgrebe, D.A., 1993. Feature extraction based on decision boundaries.
IEEE Transactions on Machine Intelligence 15 (4), 388–400.

Lu, S., Funakoshi, S., Shimizu, Y., Ishii, J., De Asis, A.M., Washitani, I., Omasa, K.,
2006. Estimation of plant abundance and distribution of Miscanthus sacchari-
florus and Phragmites australis using matched filtering of hyperspectral image.
Eco-Engineering 18 (2), 65–70.

Lu, S., Oki, K., Shimizu, Y., Omasa, K., 2007. Comparison between several feature
extraction/classification methods for mapping complicated agricultural land
use patches using airborne hyperspectral data. International Journal of Remote
Sensing 28 (5), 963–984.

Ministry of the Environment of Japan, 2007. Red list of vascular plants (in Japanese).
http://www.env.go.jp/press/file_view.php?serial=10251&hou_id=8886 (acces-
sed on 23.06.09).

Ohwada,M., Ogura,H., 1996. A floristic studyofWatarase retarding basin. Bulletin of
the Tochigi Prefectural Museum 13, 31–108 (in Japanese with English abstract).

Ozesmi, S.L., Bauer, M.E., 2002. Satellite remote sensing of wetlands. Wetlands
Ecology and Management 10 (5), 381–402.

Rosso, P.H., Ustin, S.L., Hastings, A., 2005. Mapping marshland vegetation of San
Francisco Bay, California, using hyperspectral data. International Journal of
Remote Sensing 26 (23), 5169–5191.

Toyra, J., Pietroniro, A., Martz, L.W., 2001. Multisensor hydrologic assessment of a
freshwater wetland. Remote Sensing of Environment 75 (2), 162–173.

van Ruitenbeek, F.J.A., Debba, P., van der Meer, F.D., Cudahy, T., van der Meijde,
M., Hale, M., 2006. Mapping white micas and their absorption wavelengths
using hyperspectral band ratios. Remote Sensing of Environment 102 (3–4),
211–222.

Washitani, I., 2001. Plant conservation ecology for management and restoration of
riparian habitats of lowland Japan. Population Ecology 43 (3), 189–195.

http://www.env.go.jp/press/file_view.php%3Fserial%3D10251%26hou_id%3D8886

	Estimation of abundance and distribution of two moist tall grasses in the Watarase wetland, Japan, using hyperspectral imagery
	Introduction
	Materials and methods
	Study area
	AISA Eagle imagery
	Field data acquisition
	Relating plant abundance to spectral reflectance and transformed reflectance

	Results and discussion
	Measured shoot density and biomass
	Spectral reflectance and transformed reflectance parameters selected by stepwise multiple linear regression
	Estimating plants abundance in the training samples
	Evaluating the predictive ability of regression models

	Conclusions
	Acknowledgements
	References


