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Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan

(Received 22 February 2007; in final form 10 December 2007 )

This study was undertaken to assess the accuracy of linear spectral unmixing

(LSU) in estimating fractional abundance of land cover components and to

examine its applicability in delineating potential erosion areas in tropical

watershed. Five image end-members (mixed vegetation, grass, Acacia auriculi-

formis, bare soil and water/shadow) were selected and used in different

combinations in unmixing Landsat Enhanced Thematic Mapper (ETM) into

fraction images. The accuracy assessment was conducted by comparing the land

cover abundance estimates derived from unmixing with the land cover

abundance measured from field-validated classified QuickBird imagery. Good

agreement was obtained using a four-end-member combination in which shadow

was eliminated. The results suggest that LSU could be implemented for soil

erosion detection. In general, soil erosion increases when vegetation cover

decreases; hence, we used the fraction images to derive a bare soil/vegetation

cover ratio and used that as a simple indicator to map high potential erosion

areas. Comparison with field assessment of actual erosion levels in the study area

showed that the technique is effective in identifying areas on which erosion

control efforts should be concentrated.

1. Introduction

Soil erosion is one of the most serious environmental problems in many parts of the

world. In the Philippines, for instance, it is widely agreed that unless the rate of soil
erosion is dramatically reduced, the country will continue to face severe degradation

of water and soil resources. Erosion rates in the Philippines range from about

1 t ha21 year21 in undisturbed forests to around 300–400 t ha21 year21 in overgrazed

or frequently burned grasslands, while the sediment discharges of rivers whose

catchments are subject to uncontrolled manipulations exceed 30 t ha21 year21

(David 1988). To undertake corrective measures and prevent further degradation

of many watersheds, timely information on the extent and spatial distribution of

erosion areas is of paramount importance. This information is necessary for cost-
effective soil conservation planning.

Remote sensing has been used to identify and map erosion areas. These processes
are usually accomplished by visual interpretation (Bocco et al. 1991, Kumar et al.

1996, Dwivedi et al. 1997, Fulajtar 2001) or by automatic extraction using

unsupervised (Servenay and Prat 2003) and supervised (Bocco and Valenzuela 1988,

Metternicht and Zinck 1998, Floras and Sgouras 1999) digital information
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extraction. However, classification results of these techniques are very general and

do not recognize or identify small areas, particularly if the resolution of the remote

sensing data is low. The reflectance recorded within an image pixel may be a mixture

of several surface components that cannot be detected by simple classification.

Consequently, a subpixel classification technique known as Spectral Mixture

Analysis (SMA) has attracted increasing interest in soil erosion identification. SMA

estimates fractional abundance of land cover components using end-members,

which represent the spectral characteristics of land cover types. The Linear Spectral

Unmixing (LSU) model (Adams et al. 1986, Smith et al. 1990, Sabol et al. 1992,

Settle and Drake 1993, Van der Meer 1995, Small 2001, 2003, Wu and Murray 2003)

is by far the most common type of SMA, and is widely used because of its simplicity

and interpretability. It has been applied in mapping land degradation in semi-arid

environments (Metternicht and Fermont 1998, Haboudane et al. 2002). However,

despite its increasing widespread use, most LSU analyses do not validate the end-

member fraction estimates they produce and relied only on the mathematical

validity of the model. Attempts to validate the results of LSU are usually hindered

by the difficulty of obtaining accurate measures of the abundance of land cover as

projected into the image plane (Smith et al. 1990). Elmore et al. (2000) proposed a

methodology based on point frame transect measurement of individual plants in a

semi-arid environment but the procedure is very labour intensive and not

appropriate for a tropical environment. In light of the current availability of so-

called very high-resolution (VHR) images from IKONOS and QuickBird, better

validation of fractional abundance estimates can be made. The high spatial

resolution of the QuickBird sensor, in particular, allows it to image individual land

cover components. Accordingly, if the fraction abundance estimates determined by

SMA were similar to the fraction of surface components measured by QuickBird,

the resulting agreement would provide better estimates on accuracy.

The objectives of this study were to assess the accuracy of LSU as applied to

Landsat Enhanced Thematic Mapper (ETM) images, and to determine its

applicability in mapping high potential erosion areas in tropical environment. The

first part of the paper explains the analysis of spectral unmixing and its validation

using field-validated classified QuickBird imagery. So far, there are no widely

known studies that have made use of SMA in soil erosion mapping under tropical

environments. Thus, the second part of the paper describes a methodology using the

fraction images derived from spectral unmixing.

2. Study area and data used

2.1 Description of study area

The selected study area is the Lamesa watershed located in the northernmost part of

Metro Manila, Philippines, between 14u43910 to 14u489460 N latitudes and 121u4910

to 121u109370 E longitudes (figure 1). The area covers about 7000 hectares and

consists mainly of evergreen forests and grasslands. However, because of its

proximity to an urban population, encroachment has made most of the area subject

to high rates of land-use conversion. The recurring establishment and subsequent

abandonment of agricultural lands that are often less than the size of a Landsat pixel

(900 m2) has left many of the areas highly erodible. Some observable features are

tracks of logged-over section, dirt roads, cultivated areas and patches of bare soils.

A pixel of Landsat ETM could therefore be a mixture of these land cover features.

4152 A. M. de Asis et al.
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For the purpose of soil conservation, monitoring and delineation of these areas are

important for soil erosion assessment. Soil conservation is of significant concern

because the watershed supports an important water resource of Metro Manila.

The topography of the Lamesa watershed is characterized by gently undulating

terrain. The highest elevation is 248 m and the lowest is 64 m above sea level. Its

climate is dominated by distinct rainy and dry seasons. It is relatively dry from
December to April and wet from May to November with maximum monthly

precipitation ranging from 488 to 1469 mm. Mean annual precipitation in the area is

2069 mm.

2.2 Satellite data

Two satellite images were used in this study, the Landsat 7 ETM + (Landsat ETM)

and QuickBird multispectral images, both acquired during the dry season in April
2004. The Landsat ETM (path 116/row 50) data were acquired on 24 April 2004

with the systematic correction (Level 1G) product (radiometrically corrected and

geometrically corrected). The Landsat ETM has a temporal revisit time of 16 days

and a spatial resolution of 30 m with six visible/near-infrared bands: band 1 (blue),

0.45–0.52 mm; band 2 (green), 0.52–0.60 mm; band 3 (red), 0.63–0.69; band 4 (near-

infrared), 0.76–0.90 mm; band 5 (mid-infrared), 1.55–1.75 mm; and band 7 (mid

infrared), 2.08–2.35 mm. It also has one thermal (band 6, 10.40–12.50 mm) and a

panchromatic band (band 8, 0.52–0.90 mm). In this study, the digital number (DN)
of the image bands 1–5 and 7 recorded in 8 bits were converted to exoatmospheric

(top-of-atmosphere) reflectance units as described in the Landsat 7 User’s Handbook

Figure 1. Geographic location of the study area. The dotted line represents the area with
available QuickBird imagery, while the white dots show the relative locations of sampling
sites.

Applicability of spectral unmixing in mapping soil erosion 4153
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(http://landsathandbook.gsfc.nasa.gov/handbook.html). These image bands were

used in the analysis.

To assess the accuracy of the subpixel analysis used in this study, a QuickBird

image with four multispectral bands [blue (0.45–0.52 mm), green (0.52–0.60 mm), red

(0.63–0.69 mm) and near-infrared (0.76–0.90 mm)] was used. The image was acquired

on 25 April 2004, under clear sky conditions. The sun elevation at the time of

capture was 67.2u with a close-to-nadir view angle of 14.8u. The imagery was

referenced to the World Geodetic System 1984 (WGS84) datum and the Universal

Transverse Mercator (UTM) coordinate system by the satellite data providers with

an estimated published average absolute positional error of 23 m and a root mean

square error (RMSE) of 14 m. To improve the positional accuracy, the imagery was

orthorectified using the rational polynomial coefficients (RPCs), an additional set of

ground control points (GCPs) collected with submetre accuracy differential global

positioning system (DGPS) Magellan ProMark X-CM GPS receivers and a 4-m

resolution digital elevation model (DEM) of the study area. The point accuracy of

the orthorectified image with respect to GPS measurements was reduced to 2.20 m

RMSE. Image DNs of QuickBird were also converted to exoatmospheric reflectance

units using parameters provided by Digital Globe and following the procedure

described in the Landsat 7 User’s Handbook.

2.3 Image-to-image registration

After orthorectifying the QuickBird image, an image-to-image registration was

performed between QuickBird and Landsat ETM, where the former was used as the

reference image. Spatial registration was performed using manual control point

extraction. In the process, 103 GCPs were collected on road intersections, edges and

confluence of rivers. Terrain contour matching (Eugenio and Marquez 2003) was

also performed to select accurate GCPs. The image was warped using a second-

degree polynomial with nearest neighbourhood resampling. The resulting RMS

error was equal to 0.21 pixel.

2.4 Field data

Fieldwork was conducted 1 month after the images were taken on 20, 21, 23 and 24

May 2004. The fieldwork basically involved the collection of ground truth data for

the validation of the satellite images and establishment of validation/sampling sites.

Prior to the field survey, both satellite images were interpreted and examined to

obtain an overall view of the area. Sampling sites were systematically identified from

both images and spatially registered using differentially corrected GPS.

Fifty-three sampling sites measuring 30 m630 m each were established in the

study area (see figure 1). Through visual estimation, each sampling site was

characterized in terms of its cover type and vegetation density. Actual ground cover

abundance (e.g. mixed vegetation, grass, Acacia auriculiformis, bare soil) was

determined from QuickBird in relation to ground observations. Actual soil erosion

at each sampling site was also assessed. Four levels of soil erosion were defined

according to the apparent soil erosion indicators such as vegetation amount,

presence of rills or gullies, exposed subsoil and exposure of tree roots. The soil

erosion levels were: erosion level 4 (severe erosion); erosion level 3 (high erosion);

erosion level 2 (moderate erosion); and erosion level 1 (no erosion). Areas with

erosion level 4 are characterized by severe erosion with very sparse vegetation,

4154 A. M. de Asis et al.
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exposed subsoil and the presence of deep channels and gullies. Areas that were
mostly abandoned cultivated lands and staggered bare soil having visible rills/small

channels and loss of topsoil were classified as erosion level 3. Grass-covered areas

with newly growing trees (i.e. mostly Acacia auriculiformis) where soil erosion was

not considerable were classified as erosion level 2. Finally, densely vegetated areas

where no soil erosion could be observed were categorized as erosion level 1.

3. Methods

3.1 High-resolution image classification

Figure 2 illustrates the method of analysis performed in this study. After

georeferencing the two images, the QuickBird image was classified using

unsupervised classification based on the Iterative Self Organizing Data Analysis

Technique (ISODATA) algorithm. Twenty distinct categories were initially set;

these were then aggregated and labelled as five categories: mixed vegetation, grasses,

Acacia auriculiformis, bare soil, and water. The classified map was verified in the

field and necessary corrections in misclassified areas were subsequently made. This
means that the pixels belonging to the unidentified categories were extracted and

reclassified. The newly classified pixels were then added back to the original image.

To assess the accuracy of the classification, an error analysis was conducted

comparing the classified image to an accurate ground truth map.

3.2 Linear spectral unmixing

Linear spectral unmixing has often been implemented to deal with the problem of

mixed pixels, and although theoretically imperfect because of the omission of the

Figure 2. Flowchart of study procedure.

Applicability of spectral unmixing in mapping soil erosion 4155
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effect of multiple scattering between cover types (Roberts et al. 1993, Myneni et al.

1995), the errors associated with the linear assumptions have been found to be

relatively minor (Kerdiles and Grondona 1995). An important assumption of LSU

is that the spectral signature of a given pixel is the linear proportion-weighted

combination of the end-member spectra (Smith et al. 1990). Mathematically, the

LSU model is expressed as:

Ri~
Xn

j~1

fjrijzei and
Xn

j~1

fj~1; 0ƒfjƒ1 ð1Þ

where i is the number of spectral bands used; j51, …, n is the number of end-

members; Ri is the spectral reflectance of the mixed pixel in band i; fj is the fraction

of the pixel area covered by the end-member j; rij denotes the reflectance of the end-

member j in band I; and ei is the residual error in band i. In addition, for constrained

spectral unmixing, two constrains were maintained in the solution of fj values: the

fractions across all end-members sum to one; and each end-member fraction is in the

range 0 to 1. Input for the model is the spectral reflectance (Ri) and the pure spectra

of components in the pixel (rij). Substituting these known parameters into the

equation will give the areal proportion for end-members. A unique solution is

possible as long as the number of end-members is equal to the number of spectral

bands plus one. The residual error e is the difference between the measured and

modelled spectrum in each band. Residuals over all bands for each pixel in the image

can be averaged to give an RMSE, which is useful in assessing the validity of selected

end-members. For example, a high RMSE or high band residuals and negative or

unrealistic fractions indicate a poor fit of the model and reveal inappropriate end-

member selections.

It is well recognized that Landsat ETM data are hampered by the low spectral

dimensionality and by low spatial resolution, which limits the selection of a few pure

non-mixed pixels (Van der Meer and de Jong 2000). In a standard application of

SMA, a fixed number of representative end-members, usually between two and five,

are selected. However, this procedure is limited because the selected end-member

spectra may not effectively model all elements in the image, or a pixel may be

modelled by end-members that do not correspond to the materials located in its field

of view. Both cases result in decreased accuracy of the estimated fractions (Sabol

et al. 1992).

Several techniques have been used to select end-members from multispectral

images (e.g. Adams et al. 1995, Tompkins et al. 1997, Painter et al. 1998, Oki et al.

2002, Small 2003, Wu and Murray 2003), including the use of principal component

analysis (Maselli 1998), two-dimensional feature space plots (Peterson and Stow

2003) and identification of pure pixels with reference to field data (Shoshany and

Svoray 2002). In this study, a combination of automatic and supervised end-member

selection was performed on the Landsat ETM image. The minimum noise fraction

(MNF) algorithm was applied to the reflectance image in which the MNF-

transformed data were used as input to determine the most spectrally pure pixels

(i.e. candidate end-members) in the image. MNF consists of essentially two cascaded

principal component transformations that first compute the estimated noise

covariance matrix to decorrelate and rescale the noise in the data and then perform

a standard principal component transform of the noise whitened data (Garcia and

Ustin 2001). In the MNF transform, the noise is separated from the data by using

only the coherent portions, thus improving the spectral processing results. Previous

4156 A. M. de Asis et al.
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studies have shown that the use of the MNF transform can improve the quality of
fraction images (Van der Meer and de Jong 2000) through decorrelation. Thus the

MNF transform was used in this study. The pixel purity index (PPI) was used to find

the most spectrally pure pixels in the image (Boardman et al. 1995). The PPI

stipulates how many times the pixel is extreme in the simplex. The most spectrally

pure pixels typically correspond to spectrally unique materials. Hence, the pixels

with the highest PPI values were selected as candidate end-members as they are

linearly independent in most dimensions. The final end-members were then selected

by referring to QuickBird image data and actual field surveys (e.g. bare soils are
mostly associated with dirt roads and cultivated areas, vegetations with

homogeneous canopy). This was facilitated by using DGPS. One advantage of

implementing MNF-PPI is that it separates purer pixels from more mixed ones, thus

reducing the number of pixels to be analysed, which makes separation and

identification of end-members more easily.

Five end-members were identified: mixed vegetation, grass, Acacia auriculiformis,

bare soil, and water/shadow. The average reflectance of the selected representative
pixels (average of 6–20 pixels) with high PPI values that corresponded to selected

end-members were used in the unmixing process. The scatter plot of the mean

reflectance values of the end-members is shown in figure 3.

The mixed vegetation areas are characterized by a mixture of different forest tree

species, including mahogany (Swietenia macrophylla), narra (Pterocarpus indicus)

and acacia (Acacia mangium), and very dense shrubs, herbs and bamboos that are

found mostly along valleys and creeks. In the false colour composite (FCC) of the

QuickBird image shown in figure 4, these are represented by a bright red colour,
indicating the abundance of green vegetation. This is where most of the pixels with

high PPI values for green vegetations were identified and therefore selected as end-

members. The grass areas consist of both tall and creeping grasses and can be seen in

the QuickBird image as a very light red colour. Acacia auriculiformis is represented

as dark red in the FCC of QuickBird. This area is characterized by plantation trees

of Acacia auriculiformis, as the name implies. Acacia Auriculiformis and grasses were

Figure 3. Spectral plot of selected end-members.

Applicability of spectral unmixing in mapping soil erosion 4157
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selected as separate categories instead of combining them with mixed vegetation

because the spectral reflectances of these are significantly different (figure 3). The

bare soil end-member represents roads and cultivated lands. The image was taken

during the last month of the dry season, and therefore had almost 100% exposed

soil. The final end-member, shadow, accounts for variations in illumination caused

by topography and surface textures, particularly of tree canopy. The shade end-

member was selected from the water body because it is assumed that both have

similar spectral characteristics (Bryant 1996). However, because shadow is not a

physical component, it was removed by normalization (Smith et al. 1990, Hill et al.

1994, Adams et al. 1995). The fraction shadow/water (Fshadow) was removed by

rescaling each fraction image (except the shade fraction) with the normalization

factor

f ~1= 1{Fshadowð Þ ð2Þ

so that they sum again to one. This process removes shadow components from the

image.

LSU was then performed on the Landsat ETM image using the different end-

member spectra and end-member combinations. The unmixing was constrained to

ensure that the fraction of any end-member lies between 0 and 1, and the sum of

fractions for each pixel is equal to 1. The output of unmixing consisted of a

proportion map of each selected end-member and an RMSE.

Initial residual analysis of each spectral band showed a high error for areas that

were composed of Acacia auriculiformis, justifying the addition of an Acacia

auriculiformis end-member.

3.3 Validation using very high-resolution image and field data

We used the classified QuickBird image to validate the accuracy of LSU. To make

direct comparison, the QuickBird image was resampled to a pixel size of 2.5 m and

Figure 4. Sampling site and the process of registering the actual land cover into QuickBird
imagery. Each sampling site has an area of about 900 m2.

4158 A. M. de Asis et al.
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integrated to Landsat ETM resolution (30 m). Our goal was to match each pixel of

Landsat ETM to its corresponding area in the QuickBird image (refer to figure 5).

We assumed that the pixel size of 2.5 m represents the pure cover component (end-

member); thus the total number of these pure pixels in a 30630 m area gives the

actual proportion of that end-member. As we have also field validated the classified

QuickBird, we observed that the 2.5 m resolution is adequate to image the relevant

land cover components and detect the presence of fairly small bare soil areas. The

field validation also made it possible to assess the image-to-image registration.

Visual comparison of the interactively overlaid images showed no evidence for

systematic misregistration.

The LSU-RMSE was then computed for each land cover component. The

classified QuickBird image was regarded here as the true coverage. Hence, the LSU-

RMSE for all pixels that covers the whole overlapping area was computed as

follows:

LSU�RMSE~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i~1

a1{aqð Þ2
r �

n

ð3Þ

where i is the number of land cover components; al is the fractional abundance of

land cover components (end-members) in each pixel of the Landsat ETM image

determined by unmixing; aq is the ‘true fraction’ of the land cover component of

the same type for the same pixel in the Landsat ETM image, measured from the

QuickBird image; and n is the total number of Landsat ETM pixels used in the

study.

There is, however, some uncertainty with the use of a very high resolution image

to validate the results of the LSU. It should be noted that 100% orthorectification

accuracy and image-to-image registration, even with the aid of differentially

corrected GPS of any image, is practically impossible. We tried to co-register a

30630 m against a 2.562.5 m resolution image and the smallest possible RMSE

Figure 5. An illustrative example for validating the accuracy of LSU. The number of
QuickBird pixels representing a given end-member within the 30630 m (Landsat ETM
resolution) gives the actual proportion of that end-member.

Applicability of spectral unmixing in mapping soil erosion 4159
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that we obtained was 0.21 Landsat ETM pixel. Although care was taken in the

image-to-image registration process so as to minimize the RMSE, a small

misregistration may be a significant source of error. As an example, an RMSE of

0.21 could translate to about 50 pixels locational errors per pixel of the Landsat

ETM.

Therefore, to account for the uncertainty in the image registration, the LSU

fractions were also compared with the actual land cover fractions measured from a

classified QuickBird image at each sampling site location. In this method, we first

identified a 30630 m area on the ground and marked its location on the QuickBird

image (figure 4). This process makes it possible to further check the accuracy of the

QuickBird classification and the validity of the 2.5 m pixel size to represent pure

cover (end-member). The fractions of each land cover component were then

determined from the classified QuickBird and compared to the LSU fractions. To

account for the location error, as discussed earlier, the LSU fractions of each land

cover component were taken from the average on the 262 pixel window.

Comparison between the QuickBird and Landsat data was performed using linear

regression.

3.4 Delineation of potential erosion areas

Having determined the accuracy of the LSU, its applicability in delineating potential

erosion areas was then evaluated. Two water-related factors that cause soil erosion

are rainfall and run-off. Dense vegetation prevents these factors from breaking up

soil particles and carrying them downslope. The above-ground cover absorbs the

energy of falling raindrops, running water and wind, so that less is directed at the

soil. The below-ground components, comprising the root system and plant residues,

contribute to the mechanical strength of the soil and increase the surface roughness

that slows down the surface run-off. Thus, as long as vegetation cover is unbroken,

erosion is less likely despite the erosivity of the rainfall, slope steepness and soil

instability. Without cover, the rainfall impact would detach soil particles and they

would be carried out by running water. A review of studies on the relationship

between soil erosion and vegetation abundance in a tropical environment indicated a

significant increase in soil erosion with decreasing vegetation cover. For instance,

Kellman (1969), using small plots to measure soil erosion under various vegetative

covers in the Philippines, reported an exponential increase in annual soil loss with

decreasing vegetative abundance. Similar trends were reported by Veracion (1980),

Fauler and Heady (1981) and Laflen and Colvin (1981). Their general observation

was that the greater the amount of vegetative cover, the lesser the soil erosion,

whereas the more exposed soil or bare soil, the higher the soil erosion. Based on this

concept, we used the fractional abundance of bare soil and vegetation abundance (as

determined from the linear SMA) to define a bare soil/vegetation cover ratio as an

indicator of susceptibility to soil erosion. The erosion index (Ei) is defined as

follows:

Ei~
Fbs

1zFmvzFgzFa
ð4Þ

where Fbs, Fmv, Fg and Fa are the fractions of bare soil, mixed vegetation, grass and

Acacia auriculiformis, respectively. The equation assumes that soil erosion occurs

only when there are exposed soils that are subject to soil detachment by raindrop

impact and surface run-off. Additionally, it was assumed that in densely vegetated
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areas, which could be either forest or grassland, soil erosion could be apparently

equal to zero. One significant result from major soil erosion studies conducted in the

Philippines indicated that a good grass cover is nearly as good as dense forest and

just as good as, or even better than, secondary forest cover in protecting the soil

from erosion (Kellman 1969, Bayotlang 1986, David 1988). Thus Fmv, Fg and Fa can

be combined with Fveg in the equation to represent all types of vegetation. The

addition of 1.0 in the denominator limits the Ei value between 0 to 1, with higher

values indicating more bare soil (high susceptibility to erosion) and low values

corresponding to high vegetation (no soil erosion). An Ei map was generated using

equation (4). The resulting map was interpreted and reclassified based on the

observed actual soil erosion in each sampling site.

4. Results

The classified QuickBird image is shown in figure 6. The classification resulted in the

following coverage: mixed vegetation, 17.1%; grass, 22.0%; Acacia auriculiformis,

53.4%; bare soil, 5.0%; and water/shadow, 2.5%. An overall accuracy of 98.8% and a

kappa coefficient of 0.98 were obtained in the image classification (table 1).

Excluding water/shadow, mixed vegetation had the highest classification accuracy

with 99.7%, followed by bare soil with 99.2% accuracy. and Acacia auriculiformis

and grass had 98.9% and 97.8% classification accuracy, respectively.

The accuracy of the LSU is summarized in table 2, which shows the LSU-RMSE

for each land cover under four (mixed vegetation, grass, bare soil and water/shadow)

and five (mixed vegetation, grass, Acacia auriculiformis, bare soil and water/shadow)

end-member combinations. Also shown in the table is the total percentage coverage

Figure 6. Classified QuickBird image using the ISODATA classification algorithm.
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of each category as determined from the classified QuickBird image and from the

different fraction images. Adding another end-member, Acacia auriculiformis, did

improve the general fit as indicated by its relatively low LSU-RMSE. Moreover, the

removal of shadow generated more accurate aerial estimates of the land cover

component, matching more closely the measured area from QuickBird (table 2). The

lowest LSU-RMSE was obtained in bare soil (8.7%), followed by mixed vegetation

(10.0%). The Acacia auriculiformis and grass had LSU-RMSEs of 16.5% and 19.6%,

respectively.

Figure 7 shows the normalized fraction images of mixed vegetation, grass, Acacia

auriculiformis and bare soil, and the resulting RMSE image derived from the

unmixed Landsat ETM. The high abundance of each end-member is indicated by

bright pixels and the low abundance by darker pixels. Visual examination of the

QuickBird image and the fraction images shows good correspondence for mixed

vegetation, Acacia auriculiformis and bare soil. The spatial distribution of these

three end-members generally agrees with the distribution in the QuickBird image.

For example, the mixed vegetation is clearly distinguishable along creeks and the

mid-upper and lower portions of the image. Acacia auriculiformis, which covers

more than half of the study area, is clearly identifiable and highly concentrated in

the south-western portion of the area. The bare soils are also distinctly clear (in the

Table 1. Error matrix for the classified QuickBird image using ground truth data (%).

Mixed vegetation Grass
Acacia

auriculiformis Bare soil Water/shadow

Mixed vegetation 99.7 0.0 0.4 0.0 0.0
Grass 0.2 97.8 0.7 0.8 0.0
Acacia auriculiformis 0.1 1.8 98.9 0.0 0.0
Bare soil 0.0 0.4 0.0 99.2 0.0
Water/shadow 0.0 0.0 0.0 0.0 100
Total 100 100 100 100 100

Overall accuracy: 98.8%.
Kappa coefficient: 0.98.

Table 2. Linear spectral unmixing root mean square error (LSU-RMSE) from the
comparison between the fractional abundance of land cover component derived from the

LSU and measured from the QuickBird image.

Land cover

Four-end-member Five-end-member
With shadow
normalization

Cover (%)
LSU-

RMSE (%)

Cover (%)
LSU-

RMSE (%)

Cover (%)
LSU-

RMSE (%)ETM QB ETM QB ETM QB

Mixed
vegetation

48.8 70.5 33.0 12.3 17.1 13.0 19.3 17.1 10.0

Grass 45.8 22.0 20.3 31.1 22.0 20.1 29.5 22.0 19.6
Acacia
auriculiformis

– – – 39.1 53.4 24.8 45.1 53.4 16.5

Bare soil 1.4 5.0 18.5 7.5 5.0 10.5 6.1 5.0 8.7
Water/
shadow

15.8 2.5 13.7 10.0 2.5 8.8 – (2.5) –
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Figure 7. Normalized fraction and RMSE for the Landsat ETM four-end-member (mixed
vegetation, grass, Acacia auriculiformis and bare soil) linear mixture model. The lighter the
colour, the higher the proportion of end-member (and error) within the pixel.
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bare soil fraction), appearing in isolated areas, whereas the grass end-member has

no specific location and is scattered throughout the image. The RMSE image,

representing the error between the original, mixed spectrum and the best-fit

spectrum computed from the resulting end-member abundances, shows low spatial

correlation (no recognizable pattern). The spatial distribution of the RMSEs shows

that relatively higher values (RMSE50.09–0.13 reflectance units) can be noted in

areas of bare soils and grassland, and lower values in vegetation areas (mixed

vegetation and Acacia auriculiformis). The high RMSE values in bare soil areas may

be due to the fact that the representative pixels are to some extent combined with

non-photosynthetic materials such as stones and litter. However, the overall average

RMSE for the whole image is still small (50.06), thus it can be deduced that the

selected end-members were valid and sufficient. The low RMSE value, however,

does not guarantee that the fraction estimates are accurate. Field validation is

necessary to determine the accuracy of the end-member estimates.

Figure 8 presents a direct comparison between actual land cover fractions

(measured from classified QuickBird) and LSU fractions. The results showed a

significant correlation. This is especially true for mixed vegetation and Acacia

auriculiformis, with correlation coefficients of 0.93 and 0.92, respectively. The

correlation coefficient for grass is 0.88, and 0.86 for bare soil.

Figure 8. Comparison between ground cover abundance (measured from QuickBird) and
LSU fraction.
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The geographic locations of some of the areas noted with severe erosion during

the fieldwork are indicated in the classified QuickBird image as dots shown in

figure 6. Severe soil erosion is clearly visible because of the presence of deep

channels/gullies and the exposure of subsurface soil. By contrast, no erosion was

noted in the mixed vegetation area. Figure 9 shows the erosion index (Ei) map

derived from equation (4) using the normalized LSU fraction as input. Comparing

this with the QuickBird image and ground data shows that the whiter pixels strongly

correlate to the cultivated fields and bare soil areas, which were noted for severe

erosion. The darker pixels, by contrast, match up with the mixed vegetation in the

QuickBird image having no erosion observed.

A plot of soil erosion level at each sampling site (determined during the field

work) and the estimated Ei value taken from the Ei map is shown in figure 10. An

examination of the figure reveals some important relationships. For instance, by

reclassifying the Ei map (figure 9) based on the erosion level (i.e. labelling those

pixels with values ranging from 0.00 to 0.06 to erosion level 1), the densely mixed

vegetation areas or those with no soil erosion were delineated. Likewise, by

reclassifying pixels ranging from 0.06 to 0.40 to soil erosion level 2, moderate

erosion areas were identified. Further classifying the Ei map indicates that it is

possible to identify those areas noted with severe erosion (Ei value50.80–1.0) and

high erosion (Ei value50.40–0.80). Figure 11 shows the soil erosion level for the

Figure 9. Erosion index map derived using equation (4). The values range from 0 (darker
pixels) to 1 (lighter pixels). Lighter pixels indicate high erosion and darker pixels indicate low
soil erosion.
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whole Lamesa watershed after the derivation of the Ei map using equation (4) and

classification as described above. It shows that about 106 ha are severely eroded and

about 498 ha are highly eroded (figure 11).

Figure 10. Soil erosion level at each sampling site and erosion index (Ei) values. The Ei

values at each sampling site were determined from the Ei map. Soil erosion levels 4, 3, 2 and 1
correspond to severe erosion, high erosion, moderate erosion and no erosion, respectively.

Figure 11. Soil erosion map (reclassified Ei) for the whole study area. The four levels of soil
erosion categorized based on field assessment of erosion level were: severe erosion (soil
erosion level 4, Ei value50.80–1.0), high erosion (soil erosion level 3, Ei value50.40–0.80),
moderate erosion (soil erosion level 2, Ei value50.06–0.40) and no erosion (soil erosion level
1, Ei value50.0–0.06).
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5. Discussion

The tests for accuracy and applicability of LSU in mapping potential erosion areas

in a tropical watershed were undertaken using high-resolution QuickBird image and

ground truth data. In most of the previous studies on spectral unmixing,

the commonly used method is through evaluation of the mathematical validity of

the model using the RMSE, the root mean square of the difference between the

observed and modelled reflectance of a given pixel. Although the RMSE method is

simple and straightforward, it does not guarantee that the end-member abundance

will agree with the actual land cover abundance (Small 2003). Other methods using

ground reference data, such as those proposed by Elmore et al. (2000), are very

labour intensive and cannot be regarded as producing an absolute reference against

which the accuracy of land cover estimates could be judged. This is because of the

difficulty of accurately linking field measurements to individual image pixels

(Kuemmerle et al. 2006). Even with the use of the GPS, it is still difficult to identify

the location of the four corners of a pixel and determine the percentage distribution

of different land cover types within that pixel. In addition, the time gap between

field measurements and the acquisition of the satellite image may incur further

errors in validation because of the difference in environmental conditions during

ground data collection and satellite acquisition (Myint 2006).

Using QuickBird as a substitute for ground measurements appears to be a

valuable option for complementing ground-based methods. The very high spatial

resolution of QuickBird permits the identification of different land covers, which

makes it possible to compare the abundance estimates of different land covers on a

wider scale. The almost simultaneous acquisition of QuickBird and Landsat ETM

images, as conducted in this study, means that there are no substantial changes in

the environmental conditions in the area that could contribute to the temporal error

or inaccuracy of comparison. Great care, however, must be taken in using a very

high-resolution image to validate the results of unmixing on a pixel-by-pixel basis

because of geometric registration errors; a small mismatch in the registration can

lead to significant errors. Currently, there are limits to geolocation accuracy for

existing fine and coarse spatial resolution satellites because of different view angles

and terrain variations, and because fine and coarse image sensors orbit different

platforms.

Previous studies (Metternicht and Fermont 1998, Koch 2000, Haboudane et al.

2002) on the application of the spectral unmixing technique have shown its potential

in the identification and mapping of degraded areas due to soil erosion. Most of

these researches were applied in semi-arid environments where the reflective

differences between the green vegetation, soil background, and shadow are unique

and distinguishable. The remotely sensed data in these regions are largely influenced

by soils and rocks (de Jong et al. 1999, Haboudane et al. 2002). Homogeneous green

vegetation is rarely dominating and its cover is usually sparse. Hence, the analysis of

soil erosion is usually based on the description of spectra as dictated by soil

properties such as level of organic matter, iron oxides, clay minerals and carbonates

(Hill et al. 1994, Metternicht and Fermont 1998, Koch 2000, Haboudane et al.

2002).

In tropical areas, however, the dominant covers found are various types of

vegetation. Unlike in arid and semi-arid environments, large bare soil areas are

uncommon and tend to be in patches (whose size is usually less than the dimensions

of a pixel) randomly distributed over the watershed. The challenge in a tropical
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environment is to be able to identify these bare soil areas and discriminate the

various levels of vegetation abundance as these are the important indicators from

which soil erosion susceptibility can be derived. Various approaches have been

proposed to detect potential erosion areas, including direct visual interpretation,

image classification and spectral indices, but because these methods rely on the pixel

as the smallest quantity, the true abundance of the surface materials is not

represented. The use of LSU is seen to be more appropriate because of its ability to

identify bare soil areas and estimate vegetation abundance, which are not possible

using simple image classification.

The soil erosion (Ei) map obtained in this study is useful for evaluating soil

erosion susceptibility of an area for soil conservation planning. For example, if a

pixel representing an area has an Ei value of 0.8, this would suggest that the area has

a higher susceptibility to soil erosion than an area with an Ei value of, for example,

0.4. Vrielig (2006) indicated that, for conservation prioritization, erosion rates are

often not required but are merely indications of the spatial distribution of soil

erosion.

In this study, the data used were obtained during the dry season (the summer of

2004). Having multidate remote sensing data to represent both dry and wet seasons

may provide a general characterization of the area for the whole year. However, for

the purpose of determining the susceptibility to erosion, the use of one image is

sufficient. For example, this study used the Landsat ETM image taken in April, the

last month of the dry season, because it gives the optimal condition by which

susceptible erosion areas, especially bare soil areas, can be detected. Most of the

grasses have dried up and soils are exposed. This has important implications

considering that high erosion rates are likely to occur in barely vegetated areas once

the rainy season comes. The method as described in this study thus offers a simple

solution for detecting and monitoring areas susceptible to soil erosion.

6. Conclusions

The use of the spectral unmixing technique applied to Landsat ETM data offers an

opportunity for better assessment of land conditions related to soil erosion in

tropical watersheds. This study has shown that with proper use of the technique,

especially on the selection of end-members, good quality fraction images can be

obtained and subsequently used for detecting potential erosion areas. The

incorporation of other ancillary data such as DEM in the results of the unmixing

can provide quantitative information on the rate of soil erosion. However, for the

purpose of this study, a qualitative evaluation is sufficient to determine the spatial

distribution of crucial areas that need the utmost attention. Nevertheless, it is worth

mentioning that the results can be used further as input for soil erosion modelling.

Application of these methods in other areas should be conducted to determine

whether the same classification scheme could be used in delineating the same erosion

classes described in this study.

In the Philippines, where economic considerations are important, using a cheaper

image for watershed management purposes is indispensable. Many large watershed

areas are now threatened because of social and technical factors. Appropriate

technologies that are useful and economical are needed to prevent further

degradation of these watersheds. The high-resolution images such as those of

QuickBird can be very useful but the high cost of these images dictates that it is not

appropriate for application in large watersheds for most developing countries, such

4168 A. M. de Asis et al.
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as the Philippines. The use of an inexpensive image such as Landsat ETM along with

the method presented in this paper is thus seen as a good alternative.
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