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Abstract

Soil conservation planning often requires estimates of soil erosion at a catchment or regional scale. Predictive models such as
Universal Soil Loss Equation (USLE) and its subsequent Revised Universal Soil Loss Equation (RUSLE) are useful tools to
generate the quantitative estimates necessary for designing sound conservation measures. However, large-scale soil erosion model-
factor parameterization and quantification is difficult due to the costs, labor and time involved. Among the soil erosion parameters,
the vegetative cover or C factor has been one of the most difficult to estimate over broad geographic areas. The C factor represents
the effects of vegetation canopy and ground covers in reducing soil loss. Traditional methods for the extraction of vegetation
information from remote sensing data such as classification techniques and vegetation indices were found to be inaccurate. Thus,
this study presents a new approach based on Spectral Mixture Analysis (SMA) of Landsat ETM data to map the C factor for use in
the modeling of soil erosion. A desirable feature of SMA is that it estimates the fractional abundance of ground cover and bare soils
simultaneously, which is appropriate for soil erosion analysis. Hence, we estimated the C factor by utilizing the results of SMA on
a pixel-by-pixel basis. We specifically used a linear SMA (LSMA) model and performed a minimum noise fraction (MNF)
transformation and pixel purity index (PPI) on Landsat ETM image to derive the proportion of ground cover (vegetation and non-
photosynthetic materials) and bare soil within a pixel. The end-members were selected based on the purest pixels found using PPI
with reference to very high-resolution QuickBird image and actual field data. Results showed that the C factor value estimated
using LSMA correlated strongly with the values measured in the field. The correlation coefficient (r) obtained was 0.94. A
comparative analysis between NDVI- and LSMA-derived C factors also proved that the latter produced a more detailed spatial
variability, as well as generated more accurate erosion estimates when used as input to RUSLE model. The QuickBird image
coupled with field data was used in the validation of results.
© 2007 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V. All rights reserved.
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1. Introduction

Vegetation cover is one of the most crucial factors in
reducing soil erosion. In general, as the protective
canopy of land cover increases, soil erosion decreases
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(Elwell and Stocking, 1976). Vegetation reduces soil
erosion by: protecting the soil against the action of
falling raindrops, increasing the degree of infiltration of
water into the soil, reducing the speed of the surface run-
off, binding the soil mechanically, maintaining the
roughness of the soil surface, and improving the
physical; chemical and biological properties of the soil
(Baver, 1956).
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In soil erosion models such as the Universal Soil Loss
Equation (USLE) (Wischmeier and Smith, 1978) and its
subsequent Revised Universal Soil Loss Equation
(RUSLE) (Renard et al., 1997), the effect of vegetation
is accounted for in the vegetation cover factor or C factor.
In both models, the average soil erosion per year is
computed from the product of six factors, namely: rainfall
erosivity (R), soil erodibility (K), slope length (L), slope
steepness (S), vegetation cover (C), and support practice
factor (P). From the standpoint of soil conservation
planning, the vegetation cover factor is the most essential
because the land-use changes that are meant to reduce soil
erosion are represented by this factor.

The C factor has been one of the most difficult USLE
or RUSLE coefficients to estimate over broad geographic
areas. Traditionally, spatial estimates of vegetation cover,
or C factor, have been done by simply assigning C factor
values from literature or field data into a classified land
cover map (cover classification method) (Folly et al.,
1996; Juergens and Fander, 1993; Morgan, 1995). This
method, however, resulted in C factor estimates that are
constant for relatively large areas, and do not adequately
reflect the variation in vegetation that exists within large
geographic areas (Wang et al., 2002). Errors in classifi-
cation are also introduced in theC factor map. To increase
the spatial variability and decrease the influence of
classification errors, direct linear regression has been
performed between image bands or ratios and C values
determined in the field (Cihlar, 1987; Stephens andCihlar,
1982). Gertner et al. (2002) and Wang et al. (2002, 2003)
used joint sequential co-simulation with Landsat TM
images for mapping the C factor from point values.
However, this method is costly and obtaining the
appropriate number of sampling points for interpolation
is rather difficult.

Vegetation indices such as Normalized Difference
Vegetation Index (NDVI) have also been explored for
mapping the C factor by relating it directly to USLE and
RUSLE-C factor by regression analysis. However,
satellite image-driven vegetation indices were found to
have low correlation with the C factor (De Jong, 1994;
Tweddales et al., 2000). De Jong (1994) explained that
the low correlation is due to the sensitivity of vegetation
to vitality, as the condition of the vegetation is not
always related to its soil protective function. Despite
these issues, the NDVI is one of the commonly used
methods to determine the C factor using remote sensing
for soil erosion assessment over regional or large
geographic area (e.g. Cartagena, 2004; De Jong et al.,
1999; Hazarika and Honda, 2001; Lin et al., 2002, 2006;
Lu et al., 2003; Najmoddini, 2003; Symeonakis and
Drake, 2004; Van der Knijff et al., 2002).
Other than the USLE and RUSLE, the C factor is
also applied to other erosion models such as the Morgan
and Finney method (Morgan et al., 1984), ANSWERS
(Beasley et al., 1980), WEPP (NSERL, 1995),
SEMMED (De Jong and Riezebos, 1997) and PCARES
(Paningbatan, 2001). Thus, it is important to improve
the ways in which the C factor is estimated using remote
sensing. A reliable vegetation cover factor estimate is
essential for accurate identification and estimation of
soil erosion, which in turn, is needed for sound
conservation planning.

In this paper, we present a new technique based on
linear Spectral Mixture Analysis (LSMA) in assessing
vegetation and soil status, and compare its potential for
deriving and mapping C factor values with the
commonly used NDVI method. LSMA is a sub-pixel
classification technique, which assumes that the spec-
trum measured by a sensor is a linear combination of the
spectra of components within the instantaneous field of
view (Gilabert et al., 2000; Roberts et al., 1993). A
desirable feature of the LSMA model is that it can
estimate the fractional abundance of green vegetation
and soils simultaneously, which is appropriate for
purposes that require both information at the same
instant such as in the case of erosion analysis (Paringit
and Nadaoka, 2003). The LSMAwas also found useful
in estimating the percentage of ground cover such as
crop residues, which also play a major role in
controlling soil erosion (Arsenault and Bonn, 2005;
Biard and Baret, 1997). Hence, in this study, we
attempted to estimate the C factor as a function of the
fractional abundance of bare soil and ground cover (both
green vegetation and non-photosynthetic materials) in a
given pixel of a Landsat ETM. A comparative analysis
of soil erosion (using the RUSLE model) between
NDVI- and LSMA-derived C factors as inputs to the
soil erosion model was also conducted to determine its
validity for the estimation of soil erosion.

2. Methods

2.1. Study area

The study area is the Lamesa watershed located in the
northernmost part of Metro Manila, Philippines between
14.70 to 14.77 N latitude and 120.98 to 121.12 E
longitude (Fig. 1). This is a watershed reservation
covering an area of about 2700 ha and consists mainly of
evergreen secondary forests and grasslands. The area
experienced high deforestation rates in the past, which
resulted in the conversion of a large natural forest into
grassland. Cultivated lands and abandoned slash and



Fig. 1. Geographic location of the Lamesa watershed. The dots show the relative locations of 53 sampling sites in the study area.
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burn areas can also be found in patches. These areas are
characterized by very little vegetation cover, which
usually dries up during the dry season. Fortunately,
various efforts are now being undertaken to rehabilitate
and preserve the watershed. Soil conservation is of
significant concern because this area supports a
critically important water resource for Metro Manila.

The topography of the Lamesa watershed is charac-
terized by gently undulating terrain. Elevations vary
from 64 m to 248 m above mean sea level. Its climate is
dominated by distinct rainy and dry seasons. The study
area is relatively dry from December to April and wet
from May to November with maximum monthly
precipitation ranging from 488 mm to 1469 mm.
Mean annual precipitation is 2069 mm. It is hot from
March to May, with temperature usually reaching to
around 35 °C. Average temperatures rarely drop below
27 °C.

2.2. Satellite data and image pre-processing

A Landsat ETM+scene (path 116, row 50) taken on
April 24, 2004 was acquired and analyzed by this study.
Landsat ETM data was used because it is inexpensive,
with high monitoring frequency and covers large areas
appropriate for developing soil conservation planning
for a large geographic area. The Landsat ETM has a
temporal revisit time of 16 days and a spatial resolution
of 30 m with six visible/near infrared bands and one
thermal band. In this study, the digital number (DN) of
ETM bands 1–5 and 7 recorded in 8 bits were converted
to exo-atmospheric reflectance units as described in the
Landsat 7 Users Handbook (http://ltpwww.gsfc.nasa.
gov/IAS/ handbook/handbook_toc.html). This involved
a conversion from DN to radiance, which took
advantage of the LMIN and LMAX (spectral radiances
for each band at digital numbers 0 or 1 and 255) values
provided in the image metafile and then converting the
radiance values to reflectance using:

qk ¼
pdLkdd2

ESUNkdsinðhÞ ð1Þ

where; L and ρ are spectral radiance and reflectance,
respectively. The subscript λ refers to spectral band λ,
ESUNλ is the solar irradiance, θ is sun elevation and d is
sun–earth distance. The most current exo-atmospheric
solar irradiance values for the Landsat ETM were used
in the radiance to reflectance conversion. The conver-
sion from DN to reflectance value can substantially
improve the quality of image (Huang et al., 2002). The
image was then geometrically rectified using ground
control points to accurately link it to ground reference
data. The control points were taken from topographic
maps, which were further validated using coordinates
measured with a Differential Global Positioning System
(DGPS) to ensure matching of ground data (i.e.
sampling sites) with the image. A nearest neighborhood
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algorithm was used in the image resampling, which
yielded a root mean square error of 0.37 pixels. The
Landsat scene was geo-referenced to Universal Trans-
verse Mercator Projection (WGS 84) and was reduced to
size covering only the study area as shown in Fig. 1.

Another image used in the study was a QuickBird
multispectral image taken on April 25, 2004. The
QuickBird image has four discrete non-overlapping
bands with resolution of 2.44 m and is recorded in
11 bits. Because of its high resolution, it is possible to
identify the location of erosion areas. Hence, coupled
with field data, this image was used to validate the
results of erosion modeling.

2.3. Field data collection

Fieldwork was conducted on several occasions
during the same month the images were taken. The
fieldwork basically involved the measurement of
different parameters for the C factor estimation.
Normally, the C factor is evaluated from long-term
experiments where soil loss is measured from field
plots. However, in the absence of long-term experimen-
tal data, it is possible to estimate the C factor by using
sub-factors, as advocated by Wischmeier and Smith
(1978) who identified three major sub-factors instru-
mental to the vegetation's effectiveness in limiting soil
erosion. These are: (1) canopy cover, (2) ground cover,
and (3) below ground surface effects (i.e. effects of
roots). Dissmeyer and Foster (1981) modified and made
additional sub-factors to adapt it to forest conditions.
These include the percentage of ground cover (amount
of soil surface covered by materials such as litter, dried
leaves, branches, logs, rocks or gravel), percentage of
bare soil, percentage of canopy cover, soil reconsolida-
tion, organic matter content, fine roots, residual binding
effect and onsite storage of water. In this study, we used
the Dissmeyer and Foster (1981) method to determine
the C factor in the field.

Prior to the fieldwork, a detailed examination of
False Color Composite of a Landsat ETM image and a
topographic map of the study area was conducted to get
an overall view and to systematically identify and select
sampling areas for the C factor evaluation. A DGPS was
used to locate and define the sampling areas. Using the
DGPS, the Landsat ETM pixels that correspond to a
60×60-meter area on the ground were identified
(covering 4 pixels of Landsat ETM). The DGPS
consisted of two hand-held Magellan ProMark X-CM
GPS receivers: one base receiver sited at a known
position, and a rover receiver used in the field. The two
receivers were set to collect data simultaneously, and
common errors such as atmospheric disturbances have
been eliminated. The distance error of the DGPS is less
than 2 m.

A total of fifty-three (53) sampling sites were located
and established in the study area (refer to Fig. 1). At
each site, the percentage of canopy cover, ground cover,
and bare soil were estimated using the line-point
intercept sampling method (Morrison et al., 1993).
Measurements were taken along 60 m long transects
placed across the study plot. Pin flags were lowered at
60 cm intervals along the entire length of the transect. At
each point, the types of cover were recorded and the
percentages of each variable were calculated. The
overstory canopy of trees at least 3 m tall were estimated
using a densiometer method (Ganey and Block, 1994).
Other data evaluated at each sampling site were the
percentage of fine roots in bare soil areas, the presence
of steps, onsite water storage, and organic matter
content. Soil samples were collected to determine the
organic matter content of the soil. The C factor was then
estimated for each site by using the field data following
the approach described by Dissmeyer and Foster (1981).

2.4. Linear Spectral Mixture Analysis

Pixels containing mixed spectral information about
the objects under study are commonly found in remo-
tely sensed data. This is due to the limitations of the
spatial resolution of the satellite instruments (such as
TM, ETM+, HRVof SPOT, etc.) and the heterogeneity
of features on the ground. The mixture spectra are
generated when the pixel covers more than one land
cover class.

Spectral Mixture Analysis (SMA) has often been
implemented to deal with the problem of mixed pixels.
The linear spectral unmixing model (Adams et al., 1986;
Settle and Drake, 1993; Van der Meer, 1995) is by far
the most common type of SMA, and although
theoretically imperfect due to the omission of the effect
of multiple scattering between cover types (Roberts
et al., 1993; Myneni et al., 1995), the errors associated
with the linear assumptions have been found to be
relatively minor (Kerdiles and Grondona, 1995). Linear
SMA models have also been proven to be reasonably
effective in estimating end-member fractions (Adams
et al., 1986; Elmore et al., 2000; Small, 2003; Smith
et al., 1990) and widely used due to their simplicity,
reasonable effectiveness and interpretability (Xiao and
Moody, 2005).

An important assumption of the LSMA is that the
spectral signature of a given pixel is the linear,
proportion-weighted combination of the end-member



Fig. 2. Spectral curves of selected end-members.

313A.M. de Asis, K. Omasa / ISPRS Journal of Photogrammetry & Remote Sensing 62 (2007) 309–324
spectra (Smith et al., 1990). An end-member is a pure
surface material or land cover type that is assumed to
have a unique spectral signature (referred to as the end-
member signature). Mathematically, the general form of
the LSMA is:

Ri ¼
Xn

j¼1

Fj � REij þ ei and

Xn

j¼1

Fj ¼ 1; 0VFjV1

ð2Þ

where i is the number of spectral bands used, j=1,…, n
(number of end-members), Ri is the spectral reflectance of
the mixed pixel in band i, Fj is the fraction of the pixel
area covered by the end-member j, REij denotes the
reflectance of the end-member j in band i, and εi is the
residual error in band i. The residual error ε is the
difference between the measured andmodeled reflectance
in each band. Residuals over all bands for each pixel in the
image can be averaged to give a root mean square error
(RMSE), which is useful in assessing the validity of
selected end-members. A small RMSE for instance, is an
indication that end-members were properly selected and
the number of selected end-members is sufficient.

In addition, two constraints were maintained in the
solution of Fj values. These are: the fractions across all
end-members sum to one, and each end-member frac-
tion is in the range 0 to 1. Input for the model is the
spectral reflectance (Ri) and the pure spectra of com-
ponents in the pixel (REij). Using this known parameter
in the equation will give the areal proportion for end-
members. A unique solution is possible as long as the
number of end-members is equal to the number of
spectral bands used plus one.

The selection of suitable end-members is the most
critical step in the development of high quality fraction
images. There are different methods for selecting end-
members from the image (e.g. Boardman et al., 1995;
Oki et al., 2002; Small, 2003; Tompkins et al., 1997; Wu
and Murray, 2003) including the use of two-dimensional
feature space plots (Peterson and Stow, 2003) and the
identification of pure pixels with reference to field data
(Shoshany and Svoray, 2002). In this study, a combi-
nation of automatic and supervised end-member selec-
tions was performed on the Landsat ETM image. The
minimum noise fraction (MNF) algorithm was applied
to the reflectance image in which the MNF-transformed
data were used as input to determine the most spectrally
pure pixels (i.e. candidate end-members) in the image.
The MNF is essentially a two cascaded principal com-
ponent transformation that first computes the estimated
noise covariance matrix to decorrelate and rescale the
noise in the data and then performs a standard principal
component transform of the noise-whitened data (Garcia
and Ustin, 2001). In the MNF transform, the noise is
separated from the data by using only the coherent
portions, thus improving spectral processing results.
Previous studies have shown that the use of the MNF
transform can improve the quality of fraction images
(Van der Meer and De Jong, 2000) through decorrela-
tion. Thus, the MNF transform was used in this study.
The pixel purity index (PPI) was then used to find the
most spectrally pure pixels in the image (Boardman
et al., 1995). The PPI stipulates how many times the
pixel is extreme in the simplex. The most spectrally pure
pixels typically correspond to spectrally unique materi-
als. Hence, the pixels with the highest PPI values were
selected as candidate end-members as they are linearly
independent in most dimensions. The final end-
members were then selected by referring to the Quick-
Bird image and the results of field survey (e.g. bare
soils are mostly associated with dirt roads and cultivated
areas, vegetation with homogenous canopy). This was
facilitated by using the DGPS. One advantage of
implementing the MNF-PPI is that it separates purer
pixels from more mixed ones, thus reducing the number
of pixels to be analyzed and making the separation
and identification of end-members easier. Average
reflectance of selected representative pixels (average
of 6–20 pixels) with high PPI values that correspond
to selected end-members were used in the LSMA. The
scatter plot of the mean reflectance values of the end-
members is shown in Fig. 2.

Four distinct end-members were identified in this
study: vegetation, bare soil, non-photosynthetic materials
(NPM) and water/shadow. The vegetation consists of
different forest tree species such as mahogany (Swietenia
macrophylla), narra (Pterocarpus indicus), acacia (Acacia
mangium), etc. and very dense shrubs, herbs, grasses and
bamboos. The bare soil end-member was taken from
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readings in dirt roads and cultivated areas. The image was
taken during the dry season, and therefore most of these
areas had almost 100% exposed soil. There is only one
major soil type found within the study area; “Novaliches
soil”which is characterized by a reddish brown color. The
soil surface cover such as dried leaves, branches, logs,
rocks or gravel, along with litter represent the NPM. The
candidate end-members for the NPMwere extracted from
open areas and abandoned cultivated lands. The final end-
member, shadow, accounts for variations in illumination
caused by topography and surface textures, particularly
tree canopy. The shadow end-memberwas selected from a
water body since it is assumed that both have similar
spectral characteristics (Bryant, 1996).

The unmixing was constrained to ensure that the
fraction of any end-member lies between 0 and 1, and
the sum of fractions for each pixel is equal to 1 (Adams
et al., 1986; Smith et al., 1990). The output of spectral
unmixing consisted of the fraction image of each
selected end-member (vegetation, bare soil, NPM and
shadow/water) and a root mean square error (RMSE).
The fraction images (except for shadow/water) were
then used in determining the C factor values. Because
shadow is not a physical component, it was removed by
normalization (Adams et al., 1995; Hill et al., 1994;
Smith et al., 1990). The fraction shadow/water (Fshadow)
was removed by rescaling the three land cover fractions
(vegetation, bare soil and NPM) with the normalization
factor,

f ¼ 1=ð1� FshadowÞ ð3Þ

so that they again sum to one. This process removes
only the water/shadow fraction from the image.

We then compared the percentage of vegetation (both
for tree canopies and grasses), bare soil and the NPM
estimated by the LSMAwith the ground data. This was
done to determine how well the LSMA estimated the
selected end-members in the study area. The correlation
was made using the average fraction of pixel values
within the 2×2 pixel window and the measured data in
the field.

2.5. C factor estimation

2.5.1. Linear SMA-derived C factor
Two water-related factors that cause soil erosion are

rainfall and run-off. Dense forests and grasses prevent
soil particles from being broken and carried downslope.
Aside from vegetative cover, ground cover such as litter,
slash, logs and surface rocks protect soil from the
erosive forces of raindrop impact and run-off. Without
cover, the rainfall impact would detach soil particles that
would then be carried by running water. Kellman
(1969), using small plots to measure soil erosion under
various ground covers in the Philippines, reported an
exponential increase in annual soil loss with decreasing
ground cover. Laflen and Colvin (1981) also concluded
that the greater the amount of ground cover, the lesser
the soil erosion, whereas the more exposed soil or bare
soil the higher the soil erosion. Utilizing this concept,
we made use of the fractional abundance of bare soil and
ground cover (as determined from the LSMA) to define
the C factor on a pixel-by-pixel basis as follows:

C ¼ Fbs

1þ Fveg þ FNPM
ð4Þ

where, Fbs, Fveg, and FNPM are the fractions of bare soil,
vegetation and non-photosynthetic materials, respec-
tively. The equation assumed that soil erosion only
occurs when there are exposed soils that are subject to
soil detachment by raindrop impact and surface run-off.
Additionally, it was assumed that in densely vegetated
areas, which could either be forest or grassland, the C
value can be equal to zero. One significant result from
major soil erosion studies conducted in the Philippines
indicated that a good grass cover is nearly as good as
dense forest and just as good as or even better than
secondary forest cover in protecting the soil from
erosion (Bayotlang, 1986; David, 1988; Kellman,
1969). Thus, Fveg in Eq. (4) could represent a
grassland's or forest's vegetation. The addition of 1.0
in the denominator limits the C values from 0 to 1 with
higher values indicating more exposed soil, and lower
values corresponding to a high abundance of vegetation
or ground cover. Using the above equation, a C factor
map was generated and then compared with the C
values measured in the field.

2.5.2. NDVI-derived C factor
The most common procedure for estimating C factor

using the NDVI (Rouse et al., 1974) involves the use of
regression equation model derived from the correlation
analysis between the C factor values measured in the
field and a satellite-derived NDVI (De Jong et al., 1999;
De Jong and Riezebos, 1997). The NDVI expresses the
difference between reflectance in the red and near-
infrared (nir) bands. For a Landsat ETM, the NDVI was
therefore computed utilizing band 3 (red) and band 4
(nir) as follows:

NDVI ¼ Band4� Band3
Band4þ Band3

ð5Þ
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Accordingly, a regression correlation analysis was
conducted between the measured C factor taken from
the 53 sampling sites and the NDVI value derived from
the Landsat ETM. The average NDVI of the 2×2 pixel
that matches the location of each sampling point was
used. The regression equation was then employed in
mapping the C factor.

2.6. Modeling soil erosion

A comparative analysis of soil erosion using the
NDVI- and LSMA-derived C factor as input to soil
erosion modeling was conducted employing the RUSLE
model (Renard et al., 1997). The RUSLE model was
chosen because of its adaptability in estimating sheet
and rill erosion in tropical watersheds (Millward and
Mersey, 1999). The RUSLE is an updated version that
retains the original structure of the USLE. Its main
advantage is that, although developed to predict soil loss
under temperate conditions, its use in other regions is
possible by the determination of its factors from local
data (Lu et al., 2003; Lufafa et al., 2003; Millward and
Mersey, 1999). Additional advantages include data
requirements that are attainable under the limitations
common in developing countries, and its compatibility
with Geographic Information Systems (GIS) that allow
for the prediction of erosion potential on a cell-by-cell
basis (Millward and Mersey, 1999). The RUSLE is
given as:

A ¼ R� K � LS � C � P ð6Þ

A is the average annual soil loss predicted (t ha−1 y−1).
R is rainfall run-off erosivity factor (MJ mm ha−1

h−1 y−1). This factor is measured as the product (EI) of
total storm energy (E) and the maximum 30-minute
intensity (I30) for all storms over a long time (Renard
et al., 1997). The EI parameter quantifies the effects
of raindrop impact and reflects the amount and rate of
run-off likely to be associated with the rain (Wischmeier
and Smith, 1978). The soil erodibility factor, K (t ha
h MJ−1 ha−1 mm−1) reflects the ease with which the
soil is detached by a splash during rainfall and/or by
surface flow. This factor is related to the integrated
effect of rainfall, run-off, and infiltration and accounts
for the influence of soil properties on soil loss during
storm events on sloping areas. The LS accounts for the
effect of slope length (L) and slope gradient (S) on
erosion. The C is the cover factor, which measures the
effects of all interrelated cover and management
variables (Renard et al., 1997). Values of C can vary
from 0 for forest areas with 100% ground cover to 1 for
bare soil areas (Pierce et al., 1986). The P is the support
practice factor. Values for the P factor range from about
0.2 for reverse-slope bench terraces to 1 where there are
no erosion control practices (Wischmeier and Smith,
1978).

The modeling of soil erosion was conducted using a
raster-based approach where a square cell of 30 m was
chosen to match with the spatial resolution of the
Landsat ETM image. Except for the C factor which was
derived using the LSMA and NDVI, all other factors
(RKLSP) were determined using the procedure de-
scribed in AH 703 (Renard et al., 1997) and to the works
of Millward and Mersey (1999). Grids of rainfall, soil,
elevation, and land cover were created using ArcInfo
software. The rainfall erosivity factor for each cell was
determined from the daily rainfall records in the area in
which individual storm EI30 values were calculated
according to the RUSLE methodology (Renard et al.,
1997). A period of 22 years from 1980 to 2002 was used
in this study. The spatial distribution of erodibility factor
(K) was obtained by the interpolation of point estimates
of the K factor measured in each sampling site. The soil
erodibility K factor was determined using inherent soil
properties following the procedure proposed by David
(1988) for Philippine soils, which uses the percentage of
silt, sand, and organic matter content, and the clay ratio.
A digital elevation model (DEM) of the study area was
generated using a linear triangular irregular network
implemented in the ArcInfo software package. The LS
factors were then derived using the DEM. Since there is
presently no soil conservation support practices being
utilized in the study area, the P factor was assigned to be
equal to 1.

2.7. Soil erosion model validation

The most common method of validating the results of
erosion models is through erosion surveys in which a
visual estimation of erosion risk is conducted based on
observed features (e.g. Cohen et al., 2005; Dwivedi
et al., 1997; Metternicht and Zinck, 1998; Millward and
Mersey, 1999). Previously, erosion measurements were
seldom used because of the time and labor required to
obtain sufficient data. In this study, we took advantage
of the availability of very-high resolution remote
sensing imagery to validate the output of the RUSLE
model. Using a combination of a topographic map and
the QuickBird image, eroded areas were located and
verified in the field by precisely locating them using the
DGPS. Areas representing nil, slight, moderate, high
and severe soil erosion were selected and delineated in
the QuickBird image. The soil erosion status was
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defined according to the apparent soil erosion indicators
such as the amount of vegetation, the presence of rills or
gullies, whether the subsoil is exposed, the thickness of
topsoil and the exposure of tree roots. For example,
severe erosion was observed in areas with very sparse
grass cover, exposed subsoil and where deep channels
and gullies are evident. Highly eroded areas were
determined by comparison with measurements from
cultivated lands with exposed soil having visible rills/
small channels and loss of topsoil greater than 25 cm.
Grass-covered areas, with newly growing trees (i.e.
mostly Acacia auriculiformis), a moderate loss of
topsoil (less than 25 cm) and a slight exposure of tree
roots were delineated as areas of moderate erosion.
Slight erosion was noted in areas with no apparent soil
erosion and where the loss of topsoil was insignificant.
Lastly, densely vegetated forest and grass were
categorized as areas with no erosion. It was assumed
that due to the thickness of the vegetation cover, no soil
erosion is occurring in these areas. A map of the study
area depicting the five levels of soil erosion was then
drawn and overlaid in the erosion map derived using the
RUSLE model. The overall accuracy and kappa
coefficient (Kappa) were then computed and are
presented in Tables 2 and 3. The kappa coefficient
was computed as follows:

Kappa ¼
N
X

k

xkk �
X

k

xkRxRk

N2 �
X

k

xkRxRk
ð7Þ

where: N is the total number of pixels in all the ground
truth (reference) soil erosion classes, xkk denotes the
confusion matrix diagonals, xkΣ×Σk is the product of the
ground truth pixels in a class and the sum of the clas-
sified pixels in that class summed over all classes. Both
the overall accuracy and kappa coefficient were deter-
mined using the image processing software ENVI 4.0
(RSI, 2004).
3. Results

Fig. 3 shows the fraction images derived using the
LSMA for vegetation, bare soil, NPM and water/shadow
end-members. A high abundance of each end-member is
indicated by bright pixels and a low abundance by the
darker pixels. The fraction images show that vegetation
dominates the study area. High bare soil areas can be
clearly identified which, with reference to the field data,
correspond to cultivated areas and dirt roads. The
fractions of non-photosynthetic materials appear to be
more scattered with a relatively high abundance in open
areas (abandoned cultivated lands), most of which are
dried grasses. In the water/shadow fraction image, it
could be observed that brighter pixels are located in
areas with a high fraction of vegetation (i.e. forested
areas), while darker pixels are found in open areas such
as those observed in grasslands and abandoned agricul-
tural areas. The RMSE image, representing the error
between the original, mixed spectrum and the best-fit
spectrum computed from the resulting end-member
abundances shows a low spatial correlation (no recog-
nizable pattern). The spatial distribution of the RMSE
shows that relatively higher values (RMSE=0.007–
0.013 reflectance units) can be noted in areas of bare
soils and the NPM, while low values are observed in
vegetated areas. The high RMSE values in the bare soil
and NPM areas maybe due to the mixing or confusion of
reflectance between these two end-members. However,
the overall average RMSE for the whole image is still
small (=0.021), thus it can be deduced that the selected
end-members were valid and sufficient. The low RMSE
value, however, does not guarantee that the fraction
estimates are accurate. Hence, field validation was
conducted to determine the accuracy of end-member
estimates.

Fig. 4 shows the scatter plot correlations between
the percentage of vegetation, bare soil and NPM
determined with the LSMA and the field data from the
53 sampling sites. Both fractions of vegetation and bare
soil demonstrated excellent correlations with r values
of 0.91 and 0.89, respectively. However, a low
correlation was obtained between the fraction of the
NPM and the data measured in the field (r=0.50). The
low correlation can be due to the confusion of reflec-
tance among different NPM materials (not truly pure
end-member). The NPM includes not only the dried
leaves and branches that have fallen to the ground, but
also other materials such as rocks or gravel and crop
residues in abandoned cultivated areas. The problem is
more complex because dead grasses, leaves and bran-
ches vary with the aging of these residues and pro-
gressively tend to be confused with other materials,
such as soil when full decomposition is achieved. The
separation and estimation of each of these materials
may be important factors in improving the accuracy of
the LSMA for use in estimating the total NPM, but
the measurement and validation is impractical and
not within the scope of the present study. Another
reason is due to the difficulty of correlating the mea-
sured NPM with the fraction derived from the LSMA.
Some measured NPM, such as decomposing leaves
and branches, are taken from underneath tree canopies,



Fig. 3. Fraction and RMSE images derived from Linear Spectral Mixture Analysis of Landsat ETM. The whiter the color, the higher the proportion of
end-member (and error) within the pixel.
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and may not be well represented in the selected end-
member.

The correlation between the field-measured C factor
values and the NDVI was very poor (r=0.52); hence a
quadratic function was fitted through the data. However,
the fits only slightly improved the correlation with a
resulting value of r=0.64 (Fig. 5a). This result is
consistent with the results obtained by De Jong (1994)
and Tweddales et al. (2000) using the correlations
between the NDVI from a Landsat TM and the C factor.
In contrast, the correlation between the LSMA-derived
C factor and the field measured C factor was very
good with r=0.94 (Fig. 5b).

The C factor maps derived using the LSMA and
NDVI are shown in Fig. 6. The C factor values are
shown in 14 different classes, whereby classes ranged



Fig. 4. Scatter plot of the LSMA-estimated fractions for vegetation, bare soil and non-photosynthetic material (NPM) against field data. Shown also
are the regression equations and the correlation coefficients.

318 A.M. de Asis, K. Omasa / ISPRS Journal of Photogrammetry & Remote Sensing 62 (2007) 309–324
from 0 (forest) to 1 (bare soil). Notice that a clear
distinction can be seen from Fig. 6a for the C factor
values ranging from 0.0 to 0.001, which represent
forested areas. The relative distribution of the C factor
values shows that a greater portion of the study area has
C factor values ranging from 0.05 to 0.4. In terms of
land cover distribution, the classification seems satis-
factory since the study area is mostly dominated by
secondary growth forests and grasslands. The map also
shows relatively high spatial variability that represents
different cover conditions in the study area. Moreover,
by comparing the field-measured C factor values with
the tabular C factor values for a Philippine watershed
developed by David (1988), the results can be consi-
dered good estimates.

The NDVI-derived C factor map, on the other hand,
appears to be more homogeneous with most of C factor
values concentrating between 0.10 and 0.40 (Fig. 6b).
The highest number of pixels corresponds to C factor
values from 0.2 to 0.3, which implies that all vegetation
have been mostly classified into this category. It failed
to distinguish the C factor for forest from other vege-
tation types.

3.1. Comparison and accuracy of soil erosion estimates

The quantitative output of predicted potential soil
erosion using the RUSLEmodel was categorized into five
classes, similar to the ordinal classes of soil erosion
determined in the soil erosion survey (Table 1). The
average natural or geologic erosion in undisturbed water-
shed in tropical regions is approximately 1.0 t ha−1 y−1,
hence nil erosion was defined to be within this limit.
Slight erosion was set to correspond to accepted soil loss



Fig. 5. Scatter plot of C factor measured in the field against (a) NDVI
and (b) LSMA-derived C factor.

Fig. 6. C factor map derived using (a) LSMA and (b) NDVI method.

Table 1
Soil erosion class and the area and proportion of each category using
LSMA- and NDVI-derived C factors as input to RUSLE model

Soil
erosion
class

Numerical range LSMA NDVI
(t ha−1 y−1) (ha)

(%)

(ha)

(%)

Nil 0 to 1 157.68 7 386.73 18
Slight 1 to 12 864.54 41 710.55 33
Moderate 12 to 35 623.97 30 350.82 16
High 35 to 60 339.21 16 278.37 13
Severe N60 128.43 6 413.64 19
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tolerance limit of 8 to 12 t ha−1 y−1 in the Philippines
(David, 1988). The other soil erosion classes: moder-
ate=12 to 35 t ha−1 y−1, high=35 to 60 t ha−1 y−1 and
severe greater than 60 t ha−1 y−1 were made based on the
reported erosion rates in most soil erosion studies
conducted in the Philippines. This categorization is
consistent with the RUSLEmodel's role as a conservation
management tool, where relative comparisons among
land areas aremore critical than assessing the absolute soil
loss in a particular cell (Millward and Mersey, 1999).
Comparison of the computed spatial distribution of
erosion levels from both LSMA- and NDVI-derived C
factor as inputs to the RUSLE model is shown in Fig. 7.
The results of soil erosion modeling showed a significant
difference in identifying the eroded areas, especially in
areas with nil and severe soil erosion rates.

A comparison of areas in zones having nil, slight,
moderate, high and severe soil erosion levels identified
by using both methods is shown in Table 1. Using the
LSMA-derived C factor, the estimated area with nil soil
erosion is about 7% and 6% for severe erosion. This is
much different from the estimated area with nil (18%)
and severe erosion (19%) using the NDVI-derived C
factor. The comparison shows that soil erosion values
tend to move from high to severe erosion and slight to
nil erosion when NDVI-derived C factor was used. This
implies that the use of the NDVI-derived C factor may
lead to an overestimation of extent of areas that require
precautionary measures. On the other hand, field
verification proved that locations with severe, high



Fig. 7. RUSLE output: (a) using LSMA-derived C factor and (b) using
NDVI-derived C factor as input.

Table 3
Error matrix for soil erosion using NDVI-derived C factor against
reference ground data

Soil
erosion
class

Reference data

Nil Slight Moderate High Severe Total

Nil 33 10 3 6 0 52
Slight 6 20 9 8 1 44
Moderate 1 13 8 8 0 30
High 0 16 8 7 3 34
Severe 0 14 11 28 38 91
Total 40 73 39 57 42 251

Overall accuracy: 42.23.
Kappa coefficient: 0.28.
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and nil erosion classes were well estimated using the
LSMA-derived C factor. Table 2 indicates that using
LSMA-derived C factor, an overall accuracy of 70.92%
and Kappa coefficient of 0.63 could be achieved in
Table 2
Error matrix for soil erosion using LSMA-derived C factor against
reference ground data

Soil
erosion
class

Reference data

Nil Slight Moderate High Severe Total

Nil 35 2 0 1 0 38
Slight 5 50 15 1 0 71
Moderate 0 20 23 10 1 54
High 0 1 1 43 14 59
Severe 0 0 0 2 27 29
Total 40 73 39 57 42 251

Overall accuracy: 70.92.
Kappa coefficient: 0.63.
identifying the different erosion classes. This is much
higher compared to the overall accuracy of 42.23% and
Kappa coefficient of 0.28 using the NDVI-derived C
factor (Table 3).

4. Discussion

The good correlation between the LSMA-derived C
factor and the values measured in the field can be
attributed to the simultaneous estimates of vegetation
canopy and ground cover provided by the linear SMA.
Since the C factor represents the protection from erosion
afforded by vegetation canopy and ground cover, good
estimates of these parameters are likely to produce
suitable C factor values. One major advantage of the
LSMA method is that the fraction images are directly
related to the physical amount of land cover (i.e.
vegetation) showing high correlations (Smith et al.,
1990; Elmore et al., 2000; McGwire et al., 2000). It
uncouples information from external factors such as soil
brightness and color thus minimizing their influence.
Hence, in terms of determining vegetation abundance,
the LSMA is more accurate than the NDVI (Elmore
et al., 2000). Furthermore, unlike the NDVI, which
utilizes only the visible and near infrared band, the
LSMA makes use of the full spectral reflectance. The
LSMA can thus be used to determine not only green
vegetation, but also non-photosynthetic materials,
which contribute to the total ground cover protection
against soil erosion.

While the NDVI is a simple and reliable measure of
vegetation greenness, it does not precisely reflect the
quantitative amount of protective cover against soil
erosion. As documented previously, the main problems
are the effect of soil reflectance (Huete et al., 1985) and
the sensitivity to the vitality of the vegetation (De Jong,
1994). Vegetation under stress shows an increased
reflection in the red wavelengths and a decrease in the
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near infrared reflection resulting in a small NDVI value.
This means that for areas having a dense cover of
vegetation under stress, the NDVI will be low and,
consequently, the C factor value will be high. The image
used in this study was taken during the dry season,
hence, it can be assumed that parts of the vegetation
cover were under (water) stress. Moreover, vegetation in
the senescent stage will have a much lower NDVI even
if the vegetation cover types do not change. For soil
erosion processes, the condition of vegetation cover is of
minor importance. Vegetation under stress will protect
the soil as well as vigorous vegetation (De Jong, 1994).
In addition, the NDVI has limited capabilities to quantify
the total ground cover, which includes all non-photosyn-
thetic materials that are important in the determination of
the C factor. Due to the absence of contrast in the
reflectance between the red and the near infrared
wavelengths in dry vegetation, the NDVI is not well
adapted to the detection of the NPM. Thus, different
indices for the detection of residue cover and/or senescent
vegetation were developed such as: Brightness Index (BI)
(Major et al., 1990), Cellulose Absorption Index (CAI)
(Daughtry et al., 1996), Normalized Difference Index
(NDI) (McNairn and Protz, 1993), Soil Adjusted Corn
Residue Index (SACRI) (Biard et al., 1995), Modified
Soil Adjusted Corn Residue Index (MSACRI) (Bannari
et al., 1995), and Crop Residue Index Multiband (CRIM)
(Biard and Baret, 1997). In this study, however, we
proposed a different approach based on Spectral Mixture
Analysis of Landsat ETM data to determine a fraction of
the NPM.

The simplicity of deriving the NDVI from satellite
images as a direct means of obtaining vegetation
greenness for large areas is a primary reason for its
wide use in the C factor determination for soil erosion
assessment. Another reason could be the lack of other
unsophisticated techniques to evaluate the C factor for
regional or large-scale areas. The LSMA is simple to
implement using remote sensing data and, thus, offers a
better alternative. The results of the LSMA can be
directly related to C factor values, unlike the NDVI
which first needs to be correlated with field data. It is
important to note, however, that the strength of the
LSMA method in determining the C factor depends on
the accuracy of end-member selection. While the LSMA
results are repeatable for a given set of end-members, if
the end-members are incorrect in a physical sense, then
the fractional abundances, and consequently the C
factor, will be incorrect. Nevertheless, there is available
many proven methodologies and algorithms (software)
that can be used to obtain appropriate end-members.
This means that obtaining the necessary fractions for
soil erosion analysis should not be difficult and
complicated, especially for soil conservationist and
watershed managers who are the primary intended users
of this study, but have no advanced knowledge in
satellite image processing.

One limitation of the LSMA-derived C factor though,
is the assumption that its value is 0 under densely
vegetated and good ground cover areas. This assump-
tion implies that the overall soil erosion estimates would
be underestimated in those areas. It was reported that
even undisturbed forests having full, complex canopies
and litter coverage still have slight erosion rates that
range from 0.07 to 0.11 t ha−1 y−1 (Patric, 1976).
However, taking into account that the original intent of
the USLE and RUSLE was to define long-term erosion
risk (Renard et al., 1997) and that the current concerns
are to identify areas that need immediate rehabilitation
for soil conservation purposes, the absolute values of
soil erosion are not important for heavily vegetated
areas.

In this study, the data used was taken during the dry
season (summer of 2004). However, it should be taken
into account that the C factor values might be different
for the wet season (rainy season) in the study area.
Hence, the average C factor for the different season
must be used in the USLE or RUSLE model. The C
values must be allocated according to the seasonal wet
and dry season in the area. A multi-temporal evaluation
of C factor is therefore needed to provide the average C
factor to be used as input in the soil erosion model.
Wischmeier and Smith (1978) suggested that the C
factor for a year should be a weighted average based on
the rainfall erosivity. For a year, a weighted C factor can
be approximated by multiplying the C values by the
seasonal R values, summing the products (CR) and
dividing by the annual R. This was not considered in the
present study and will be conducted in the future.

5. Conclusions

This study evaluated the suitability of the LSMA
method to assess vegetation and ground cover to derive
up-to-date C factors. This study found that the C factor
value could be determined as a function of fractional
abundance of exposed soil and ground cover derived
from the LSMA. The method offers a reliable estimate
of the C factor on a pixel-by-pixel basis, which is useful
for spatial modeling of soil erosion using the RUSLE
model. It should be pointed out, however, that the
estimated soil erosion quantities might not be accurate
as this is expressed only as the average soil erosion
per year. Nevertheless, the results gave qualitative
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indications of increasing soil loss with decreasing cover
and accurately identified erosion areas better than the
commonly used method, which is based on the NDVI.
This is a significant result for watershed prioritization
and soil conservation planning.
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