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Comparison between several feature extraction/classification methods
for mapping complicated agricultural land use patches using airborne

hyperspectral data

S. LU, K. OKI, Y. SHIMIZU and K. OMASA*

Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1

Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan

(Received 12 July 2005; in final form 19 April 2006 )

Airborne hyperspectral remote sensing was applied to agricultural land in the

Miura Peninsula, near the metropolis of Tokyo in Japan. The study area is

characterized by complicated land use patches, which is the general characteristic

of most agricultural lands in Japan. Several feature extraction/classification

methods were examined in classifying the land use and plant species. The results

showed that decision boundary feature extraction (DBFE) was better than

principal component analysis (PCA) as the feature extraction method. Moreover,

the pre-classification process using NDVI that separates the whole study area

into vegetated area and non-vegetated areas also improved the classification

accuracy. After the pre-procedures, the land use and plant species were finally

mapped by maximum likelihood classification (MLC) or extraction and

classification of homogeneous objects (ECHO). The best kappa (overall

accuracy) of classification was 0.914 (92.4%) and 0.924 (93.3%) for MLC and

ECHO, respectively. The best accuracies of each category for the image were

79.5% to 100% for plant species (watermelon, pumpkin, marigold, grass and

tree), 88.7% to 100% for soil types, 97.8% for concrete, and 99.4% for vinyl-

mulches. Although, built-up area has low estimation accuracy, this did not affect

the overall classification accuracy because it covers only a very small area.

1. Introduction

Accurate estimation of agricultural resources that include various types of crops

and soils is one of most important tasks in ecological agricultural management.

The analysis of remotely sensed data based on spectral differentiation of

agricultural surfaces has been developed for the estimation of agricultural resources

because it is more cost and time-effective than the conventional field investigation

(Dehaan and Taylor 2003). Moreover, the development and the increasing use of

airborne imaging spectrometers with high spectral and spatial resolutions have

raised the expectation that greater discrimination of vegetation species can be

obtained than that of what has been achieved with broad-band sensors in the past

(Lewis 2001). The ability of hyperspectral data to discriminate almost similar

surfaces even in crop species level offers a good potential to use it as a tool for

precision agriculture.
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Some hyperspectral data classification efforts have been carried out for

discriminating different land cover types such as wetlands (Kumar et al. 2001),

urban area (Jackson and Landgrebe 2002) and agricultural area (Ortiz et al. 1997,

Kneubuehler et al. 1998, Jimenez et al. 1999, Bannari et al. 2003). However, thus far,

only very few studies have investigated the potential of hyperspectral image for

characterization of such complicated agricultural surfaces such as Japanese

agricultural land (Oki et al. in press). Japanese agricultural lands are characterized

by complicated class components and patterns, and usually divided into many

various patches planted with different kinds of crops. The farm buildings, roads,

vinyl-mulches and different types of soils intensify the complication of the

landscape, which makes it more difficult to classify the agricultural lands. In

addition, it is often hard to find large enough numbers of training samples to satisfy

the requirements of the conventional statistical classification because the areas of the

patches of cultivated fields are commonly small.

The objective of this study is to find a feasible classification method for the

Japanese agricultural lands. To reduce the dependency of classifiers on a large

amount of training samples, the hyperspectral imagery was processed by feature

extractions prior to classification. Furthermore, in order to avoid the inter-effect

between the man-made land covers and the green covers, we also tried to pre-classify

the whole image into vegetated and non-vegetated areas by normalized difference

vegetation index (NDVI) before feature extraction was conducted.

2. Study area and data

2.1 Study area

The Miura peninsula is located in the south of Tokyo Bay and near the metropolis

of Tokyo. Its climate is relatively warm with an oceanic characteristic. The mean

annual temperature is 15.4uC and the annual precipitation is about 1530 mm. The

peninsula is famous for its radish and cabbage in winter and watermelon in summer.

Sometimes grass such as marigold is planted to improve the soil condition during

the separation of two seasons for vegetables production. The soil that can be found

in the area basically consisted of ando and light ando soil, which are of volcanic

origin. Some places show the mixture of ando and light ando soil. The landscape in

Miura Peninsula also includes man-made facilities such as concrete roads and built

up areas. Some patches of agricultural land are covered with vinyl-mulches. The

study area was part of Miura Peninsula (see figure 1), in which most of the above

characteristics of land cover were involved.

2.2 Hyperspectral data and ground truth survey

AISA (airborne imaging spectroradiometer for application) is an airborne

hyperspectral system developed by Specim and is composed of the hyperspectral

sensor head, data acquisition computer and miniature GPS/INS sensor. In addition

to the sensor systems, Specim provides software, CaliGeo, for radiometric

calibration and geo-rectification of hyperspectral data. AISA imagery has a width

of 1000 pixels per scan line and it provides wide view in one swath.

The image used in this study was acquired in 21 July 2002 by AISA hyperspectral

sensor with 29.9u swath angle. The scanner is carried by an aeroplane, which flew

from south to north and records equally at all points across the swath. The data has

70 contiguous spectral bands with wavelength ranging from 400 to 970 nm. The

964 S. Lu et al.



D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

ity
 o

f T
ok

yo
/T

O
K

Y
O

 D
A

IG
A

K
U

] A
t: 

07
:5

2 
29

 F
eb

ru
ar

y 
20

08
 

pixel ground resolution is about 2 m62 m. The values of the pixel data are 10 000

times of land surface reflectance which has been radiometrically calibrated by the

FODIS sensor. The data is quantized as 16-bit.

Training sites for each class were determined by ground truth survey. The ground

truth data were divided into training and test data sets. The location of training and

test areas are shown in figure 2. The output classes for the vegetated region were

watermelon, pumpkin, marigold, maize, grass and tree. Non-vegetated classes were

identified as ando soil, light ando soil, mixture of ando soil and light ando soil, built-

up, vinyl-mulches and concrete. In addition, since we found only a small number of

maize samples during the ground investigation, all of them were used as training

samples; hence there were no test samples used to investigate the performance for

maize category.

Although different land covers can be delineated from the false colour

composite image of the study area, detailed classification is still difficult to

perform. The differences in the continuous spectral signatures are expected to be

helpful in the classification. Figure 3 shows the spectral signatures of the different

classes. The vegetated classes and non-vegetated classes are easily discriminated

due to the sharp difference of shapes. But the discrimination within the vegetated

and non-vegetated classes was difficult. Hence, some feature extraction methods

were used to find the minute differences within the vegetated area and non-

vegetated area.

Figure 1. Location map of the study area.

Comparison between several feature extraction/classification methods 965
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Figure 2. Location map of training and test areas (the green colour represents the training
sites, and the blue colour represents test sites).

Figure 3. Spectral signature of different classes. The solid lines are the mean spectra of the
classes, and the dotted lines are the standard deviations of each class.

966 S. Lu et al.
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3. Analysis of AISA data

The procedure of analysis using the AISA data is illustrated in figure 4. Two feature

extraction methods were applied to the original hyperspectral data. The results of

PCA or DBFE were inputted to the Maximum Likelihood Classification (MLC) or

Extraction and Classification of Homogenous Objects (ECHO) (Kettig and

Landgrebe 1976) classifiers. The above procedures produced four feature extrac-

tion/classification methods, i.e. PCA-MLC, PCA-ECHO, DBFE-MLC and DBFE-

ECHO. The land cover was mapped using the four methods, and the evaluation was

carried out to find the best classification method for discriminating the agricultural

lands of the Miura Peninsula. All of the feature extractions and classifications were

processed by Multispec, developed by David Landgrebe and Larry Biehl at the

School of Electrical and Computer Engineering, Purdue University.

The original data were also pre-classified using NDVI into vegetated and non-

vegetated images by applying a threshold of 0.3. The objective was to see if there

would be an effect in the classification accuracy. The four classification methods

were then successively applied into the separated images. The resulting land cover

maps of the vegetated and non-vegetated areas were then composed to generate

the land cover map of the whole study area. The classification accuracies obtained

from these procedures were compared with those without pre-classification

procedure.

Figure 4. Flowchart of study procedure for agricultural land cover mapping. PCA, principal
component analysis; DBFE, decision boundary feature extraction; MLC, maximum
likelihood classification; ECHO, extraction and classification of homogeneous objects;
NDVI, normalized difference vegetation index.

Comparison between several feature extraction/classification methods 967
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3.1 Feature extraction methods

The availability of a large number of spectral features in hyperspectral data should

make it possible to discriminate more ground cover classes with greater accuracy

than would be possible using the data from earlier multispectral sensors.

Unfortunately, many of the available bands of hyperspectral data are highly

correlated and provide redundant information as most of the land surface shared

similar spectral characteristics in continuous bands. Furthermore, when the

dimensionality of data and the complexity of the decision rule increase, the

Hughes effect become more serious (Shahshahani and Landgrebe 1994) and degrade

the performance of classification. Thus, in order to realize the potential of the high

dimensional data, it is desirable to select the optimum subset of channels for analysis

to avoid the Hughes phenomena and parameter estimation problems, as well as to

reduce computational requirements.

3.1.1 Principal components analysis (PCA). PCA is normally applied to reduce the

dimensionality in the data, and compress as much as possible the information in the

original bands into fewer bands. The ‘new’ bands that result from this statistical

procedure are called components. This process relies on the fact that most of the

variance in the image can be represented by the first few components. We can then

project the original image pixel vectors along with those few eigenvectors, reducing

the image dimensionality while retaining the vast majority of the image information.

The first three components with accumulative eigenvalues of more than 99% were

used in this study for three of the images we classified (the original images, the

vegetated area images and non-vegetated area images after pre-classification).

3.1.2 Decision boundary feature extraction (DBFE). Lee and Landgrebe (1993)

proposed a method for feature extraction based on decision boundaries for the

Bayesian based classifier. In this method, a classifier is first learned for a two-class

problem in the input space. The input space for a hyperspectral data is an ordered

vector of real number of spectral bands.

Decision boundary is a locus of points in which a posteriori probabilities are the

same according to Bayes Rule. To prevent deviation of false decision boundary, the

process first eliminates the outliers for each class by chi-square threshold. Secondly, a

chi-square threshold test of the second class using the mean and covariance of the first

class is applied to retain the samples of the second class near to the samples of the first

class. The third step is to find the nearest sample of the first class to the sample of the

second class retained in the second step. Fourth, find the point where the straight line

connecting the pair of samples found in the third step meets the decision boundary.

Fifth, find the unit normal vector to the decision boundary at the point found in the

fourth step. By repeating the third step to the fifth step, for every point belonging to

the first class, the normal vectors with the number same as the points in that class will

be calculated. Then, an effective decision boundary feature matrix from the first class

of the pair will be estimated. Correspondingly, the effective decision boundary feature

matrices of the second class of the pair will be calculated. The sum of the two matrices

will be calculated as the estimate of the final effective decision boundary feature

matrix. Eigenvectors of the decision boundary feature matrix yield the direction of

projection for the two-class problem. The C-class problem where C is the number of

the classes is then solved using a sum of the decision boundary feature matrices.

In the study of Lee and Landgrebe (1993) the selection of the optimum features is

suggested. The eigenvalues can be added until the accumulation of the eigenvalues

968 S. Lu et al.



D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

ity
 o

f T
ok

yo
/T

O
K

Y
O

 D
A

IG
A

K
U

] A
t: 

07
:5

2 
29

 F
eb

ru
ar

y 
20

08
 

exceeds 95% of the total sum, and the number of the eigenvalues can be set as the

rank of the decision boundary feature matrix. To get higher accuracy, 20 features

with accumulative eigenvalues of more than 97% were selected for the whole area

image, and 15 features with accumulative eigenvalues around 100% were selected for

both the separated vegetated and non-vegetated images. The parameters used in the

feature extraction process were the default values in the software of MultiSpec.

3.2 Classification method

3.2.1 Maximum likelihood classification (MLC). MLC is one of the most

commonly used image classification algorithms. The classifier relies on the statistics

of a Gaussian probability density function model for each class. When n is the

number of bands, X is the image data of n bands, Lk(X) which is the likelihood of X

belonging to class k is given by,

Lk Xð Þ~ 1

2pð Þ
n
2
PP

k

�
�

�
�

1
2

exp {
1

2
X{mkð Þ

XX{1

k

X{mkð Þt
( )

where mk is the mean vector of class k;
P

k, the variance-covariance matrix of class

k;
P

kj j, the determinant of
P

k.

The pixel is assigned to the class with the highest probability. In the case where the

variance-covariance matrix of all classes are equal each other, the MLC is the same

as the minimum distance classifier using Euclidian distance, while in the case where

the determinants are equal each other, the MLC become the same as the minimum

distance classifier using Mahalanobis distances. MLC considers not only the mean,

or average values in assigning classification but also the variability of brightness

values in each class.

3.2.2 Extraction and classification of homogeneous objects (ECHO). ECHO is a

spatial-spectral classifier, i.e. one that incorporates not only spectral variations but

spatial ones as well into the decision-making process (Kettig and Landgrebe 1976).

ECHO classifies a digital image into fields of spectrally similar pixels before the

pixels are assigned to categories. Classification is then conducted using the fields,

rather than individual pixels, as the features to be classified (Campbell 1990).

The algorithm first divides the image into small groups consisting of four pixels.

For each group, the members are tested for homogeneity by a distance to the centre

of the average value of the group. The value of 2%, which represents the portion of

the tail of the Gaussian density function, was used to reject the groups, which are

not homogenous. Second, an individual group is compared to an adjacent ‘field’,

which is simply a group of one or more connected groups that have previously been

merged. If the two samples appear statistically similar by some appropriate

criterion, then they too are merged. Otherwise the cell is compared to another

adjacent field or becomes a new field itself (Kettig and Landgrebe 1976). For the

classification step, a maximum likelihood classifier was applied based on the fields

resulted from the scene segmentation process.

3.3 Separating the whole image into vegetated and non-vegetated area by NDVI

Hyperspectral data not only give general information of land classes such as the

vegetation and soil, but also provide more details in the species of vegetation or soil

types. When we aimed to distinguish the species of crops or types of soils in a

Comparison between several feature extraction/classification methods 969
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single-step without the NDVI procedure, the little difference between the subclasses

seems to be obscured by the difference between the main classes such as vegetated and

non-vegetated regions. Thus, we separated the vegetated regions from non-vegetated

regions using NDVI, which reflects living biomass in each pixel. The NDVI value was

computed using the band 35 (683 nm) and band 47 (783 nm) representing red and

near-infrared band. This procedure was expected to prevent confusion among

categories in classification process. The pixels with the NDVI value larger than 0.3

was assigned as vegetated pixels, while pixels smaller than 0.3 was defined as non-

vegetated pixels. This threshold value showed that vegetated areas and non-vegetated

areas can be accurately delineated as validated by collected ground information. The

subclasses were then discriminated within the separated vegetated image and non-

vegetated image by the above feature extraction/classification methods.

4. Results and discussion

4.1 Classification for the whole image without pre-classification by NDVI

The confusion matrices for the four methods without pre-classification by NDVI are

listed in table 1. The accuracy and kappa statistics on the test data sets are shown in

table 2, while the classification result is shown in figure 5. The overall accuracy is

defined as the overall proportion of correctly classified pixels in the sample used to

construct the confusion matrix. The correct number is the sum of the diagonal

entries. Dividing this value by the total number of pixels examined gives the

proportion that has been correctly classified. Kappa statistic is an index, which

compares the agreement against that which might be expected by chance. Kappa can

be thought of as the chance-corrected proportional agreement, and possible values

range from + 1 (perfect agreement) via 0 (no agreement above that expected by

chance) to 21 (complete disagreement). In view of both kappa statistic and overall

accuracy, the classification without separating by NDVI results to the following:

DBFE-ECHO and DBFE-MLC, PCA-ECHO and PCA-MLC ranked from best to

worst. For the same classifier, the DBFE input showed a better result than PCA. On

the other hand, in the PCA inputs, ECHO presented little difference with MLC.

The classification accuracy of DBFE input was much better than PCA in

watermelon, grass, mixture of ando and light ando soil, concrete and vinyl mulches,

with an exception for built-up areas. The low estimation accuracy for built-up areas

is probably due to the diverse materials of different buildings. However, this did not

affect the performance of classification because the built-up category only covers a

very small area. Since both ECHO and MLC classifiers performed well using the

DBFE data as inputs, it was assumed that the transformation of DBFE can be used

successfully for the classification of hyperspectral imagery. ECHO and MLC

classifiers using the DBFE input performed the same with 0.832 (85.0%) kappa

(overall accuracy). But some improvement should be made for the estimation of tree

and the class of mixture of ando and light ando soil. Considering the performance of

classifiers, although the DBFE inputs had the same results by each classifier, ECHO

which considered the contexture yielded slightly better results for the entire data set

than the pixel-based MLC using the same PCA input.

4.2 Classification with pre-classification by NDVI

In order to improve the discrimination of some categories such as tree or mixture of

ando and light ando soil which were poorly estimated in the previous method, we

970 S. Lu et al.
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Table 1. Confusion matrices for four methods without pre-classification by NDVI. The left-hand side (y axis) is labelled with the categories on the
verification sites; the upper edge (x axis) is labelled with the same categories; these refer to those on the verification sites to be evaluated. The class of ‘mixture

soil’ in the confusion matrix is the class of ‘mixture of ando and light ando soil’ and the ‘light-ando’ is the class of light ando soil.
(a) The confusion matrix for PCA-MLC.

Class

name

Class

number

Accuracy*

(%)

Number 0 1 2 3 4 5 6 7 8 9 10 11 12

Samples Background

Mixture

soil

Ando-

soil

Built-

up Concrete

Vinyl-

mulches

Light-

ando Grass Marigold Maize Tree Watermelon Pumpkin

Mixture soil 1 9.5 399 0 38 0 346 0 15 0 0 0 0 0 0 0

Ando-soil 2 100 329 0 0 329 0 0 0 0 0 0 0 0 0 0

Built-up 3 80.6 36 5 0 0 29 0 2 0 0 0 0 0 0 0

Concrete 4 75.7 313 0 0 0 0 237 70 0 0 0 6 0 0 0

Vinyl

mulches

5 34.6 315 0 0 0 23 183 109 0 0 0 0 0 0 0

Light-ando 6 100 144 0 0 0 0 0 0 144 0 0 0 0 0 0

Grass 7 87.1 443 0 0 0 0 0 0 0 386 5 0 0 23 29

Marigold 8 97.6 83 0 0 0 0 0 0 0 0 81 0 0 2 0

Maize 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Tree 10 65.8 503 0 0 0 0 0 0 0 141 0 7 331 0 24

Watermelon 11 66.3 288 0 0 0 0 0 0 0 0 0 0 0 191 97

Pumpkin 12 88.7 71 0 0 0 0 0 0 0 0 0 8 0 0 63

Total 2924 5 38 329 398 420 196 144 527 86 21 331 216 213

reliability accuracy (%){ 100 100 7.3 56.4 55.6 100 73.2 94.2 0 100 88.4 29.6

Overall accuracy (1938/2924)566.3%.
Kappa statistic50.626.
*(100, percent omission error) also called producer’s accuracy.
{(100, percent commission error) also called user’s accuracy.
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(b) The confusion matrix for PCA-ECHO.

Class

name

Class

number

Accuracy*

(%)

Number 0 1 2 3 4 5 6 7 8 9 10 11 12

Samples Background

Mixture

soil

Ando-

soil

Built-

up Concrete

Vinyl-

mulches

Light-

ando Grass Marigold Maize Tree Watermelon Pumpkin

Mixture soil 1 9.5 399 0 38 0 346 0 15 0 0 0 0 0 0 0

Ando-soil 2 100 329 0 0 329 0 0 0 0 0 0 0 0 0 0

Built-up 3 80.6 36 5 0 0 29 0 2 0 0 0 0 0 0 0

Concrete 4 86.3 313 0 0 0 0 270 37 0 0 0 6 0 0 0

Vinyl

mulches

5 34.6 315 0 0 0 23 183 109 0 0 0 0 0 0 0

Light-ando 6 100 144 0 0 0 0 0 0 144 0 0 0 0 0 0

Grass 7 86.5 443 0 0 0 0 0 0 0 383 5 4 0 23 28

Marigold 8 97.6 83 0 0 0 0 0 0 0 0 81 0 0 2 0

Maize 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Tree 10 77.5 503 0 0 0 0 0 0 0 88 0 6 390 0 19

Watermelon 11 66.3 288 0 0 0 0 0 0 0 0 0 0 0 191 97

Pumpkin 12 100 71 0 0 0 0 0 0 0 0 0 0 0 0 71

Total 2924 5 38 329 398 453 163 144 471 86 16 390 216 215

reliability accuracy (%){ 100 100 7.3 59.6 66.9 100 81.3 94.2 0 100 88.4 33

Overall accuracy (2035/2924)569.6%.
Kappa statistic50.663.
*(100, percent omission error) also called producer’s accuracy.
{(100, percent commission error) also called user’s accuracy.
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(c) The confusion matrix for DBFE-MLC.

Class

name

Class

number

Accuracy*

(%)

Number 0 1 2 3 4 5 6 7 8 9 10 11 12

Samples Background

Mixture

soil

Ando-

soil

Built-

up Concrete

Vinyl-

mulches

Light-

ando Grass Marigold Maize Tree Watermelon Pumpkin

Mixture soil 1 51.6 399 0 206 0 192 0 0 1 0 0 0 0 0 0

Ando-soil 2 100 329 0 0 329 0 0 0 0 0 0 0 0 0 0

Built-up 3 33.3 36 12 0 0 12 2 10 0 0 0 0 0 0 0

Concrete 4 95.5 313 0 0 0 1 229 5 0 0 0 4 0 0 4

Vinyl

mulches

5 98.4 315 4 0 0 1 0 310 0 0 0 0 0 0 0

Light-ando 6 100 144 0 0 0 0 0 0 144 0 0 0 0 0 0

Grass 7 95.5 443 2 0 0 0 0 0 0 423 0 1 0 4 13

Marigold 8 96.6 83 0 0 0 0 0 0 0 0 80 0 0 3 0

Maize 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Tree 10 67.2 503 1 0 0 0 0 0 0 84 0 35 338 0 45

Watermelon 11 95.1 288 0 0 0 0 0 0 0 0 0 0 0 274 14

Pumpkin 12 100 71 0 0 0 0 0 0 0 0 0 8 0 0 71

Total 2924 19 206 329 206 301 325 145 507 80 40 338 281 147

reliability accuracy (%){ 100 100 5.8 99.3 95.4 99.3 83.4 100 0 100 97.5 48.3

Overall accuracy (2486/2924)585.0%.
Kappa statistic50.832.
*(100, percent omission error) also called producer’s accuracy.
{(100, percent commission error) also called user’s accuracy.
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(d) The confusion matrix for DBFE-ECHO.

Class

name

Class

number

Accuracy*

(%)

Number 0 1 2 3 4 5 6 7 8 9 10 11 12

Samples Background

Mixture

soil

Ando-

soil

Built-

up Concrete

Vinyl-

mulches

Light-

ando Grass Marigold Maize Tree Watermelon Pumpkin

Mixture soil 1 51.6 399 0 206 0 192 0 0 1 0 0 0 0 0 0

Ando-soil 2 100 329 0 0 329 0 0 0 0 0 0 0 0 0 0

Built-up 3 33.3 36 12 0 0 12 2 10 0 0 0 0 0 0 0

Concrete 4 95.5 313 0 0 0 1 229 5 0 0 0 4 0 0 4

Vinyl

mulches

5 98.4 315 4 0 0 1 0 310 0 0 0 0 0 0 0

Light-ando 6 100 144 0 0 0 0 0 0 144 0 0 0 0 0 0

Grass 7 95.5 443 2 0 0 0 0 0 0 423 0 1 0 4 13

Marigold 8 96.6 83 0 0 0 0 0 0 0 0 80 0 0 3 0

Maize 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Tree 10 67.2 503 1 0 0 0 0 0 0 84 0 35 338 0 45

Watermelon 11 95.1 288 0 0 0 0 0 0 0 0 0 0 0 274 14

Pumpkin 12 100 71 0 0 0 0 0 0 0 0 0 8 0 0 71

Total 2924 19 206 329 206 301 325 145 507 80 40 338 281 147

reliability accuracy (%){ 100 100 5.8 99.3 95.4 99.3 83.4 100 0 100 97.5 48.3

Overall accuracy (2486/2924)585.0%.
Kappa statistic50.832.
*(100, percent omission error) also called producer’s accuracy.
{(100, percent commission error) also called user’s accuracy.
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Table 2. Classification accuracies of agricultural land image unseparated by NDVI.

Class

Accuracy*

PCA-MLC PCA-ECHO DBFE-MLC DBFE-ECHO

Vegetated areas Watermelon 66.3% 66.3% 95.1% 95.1%
Pumpkin 88.7 100 100 100
Marigold 97.6 97.6 96.4 96.4
Maize 0 0 0 0
Grass 87.1 86.5 95.5 95.5
Tree 65.8 77.5 67.2 67.2

Overall (vegetated) 75.8% 80.4% 85.4% 85.4%

Kappa statistic
(vegetated)

0.724 0.737 0.804 0.804

Non-vegetated
areas

Ando-soil 100% 100% 100% 100%
Light ando soil 100 100 100 100
Mixture soil 9.5 9.5 51.6 51.6
Built-up 80.6 80.6 33.3 33.3
Concrete 75.7 86.3 95.5 95.5
Vinyl mulches 34.6 34.6 98.4 98.4

Overall (non-vegetated) 57.7% 59.8% 84.6% 84.6%

Kappa statistic
(non-vegetated)

0.502 0.528 0.812 0.812

Whole image Overall (whole) 66.3% 69.6% 85.0% 85.0%
Kappa statistic 0.626 0.663 0.832 0.832

*Each category accuracy is the producer’s accuracy
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Figure 5. Classification results of agricultural land image without pre-classification by
NDVI. Soil1 is the ando-soil, soil2 is the light ando soil and soil3 is the mixture of ando and
light ando soil.

Figure 6. Classification results of agricultural land image with pre-classification by NDVI.
Soil1 is the ando-soil, soil2 is the light ando soil and soil3 is the mixture of ando and light
ando soil.

976 S. Lu et al.
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tried to pre-classify the image into vegetated area and non-vegetated area by NDVI

using a threshold of 0.3, before performing the feature extraction and classification

using the four methods. The confusion matrices for the four methods with pre-

classification by NDVI are listed in table 3. The accuracy and kappa statistics on the

test data sets are shown in table 4, while the classification result is shown in figure 6.

The pre-classification procedure improved the accuracy of each classification

method. For example, the PCA-MLC in the single-step classification without pre-

classification by NDVI resulted with a kappa (overall accuracy) of 0.626 (66.3%),

while the same classification method with NDVI procedure yielded the value of

kappa (overall accuracy) approaching 0.694 (72.5%). For the classifier of DBFE-

ECHO which performed well in the single-step procedure, the kappa (overall

accuracy) also improved from 0.832 (85.0%) to 0.924 (93.3%). The other two

methods also obtained higher accuracy compared to that of without pre-

classification by NDVI.

The overall accuracy of both vegetated area and non-vegetated area has increased

appreciably. For the vegetated area classified by PCA-MLC and PCA-ECHO, the

kappa statistic (overall accuracy) increased from 0.724 (75.8%) and 0.737 (80.4%) to

0.784 (84.0%) and 0.783 (83.9%), respectively, compared to the classification

without pre-classification by NDVI. The DBFE-MLC and DBFE-ECHO methods

yielded 0.856 (89.5%) and 0.878 (91.1%) classification accuracy with 0.052 (4.1%)

and 0.074 (5.7%) improvement, respectively.

For the individual category, the four methods performed well for pumpkin,

marigold, ando soil and light ando soil. A big improvement was found in

identification of mixture of ando and light ando soil class. The best classification

accuracy achieved was 88.7% using the DBFE-ECHO method with pre-classification

by NDVI. On the other hand, without the pre-classification, the best accuracy was

only 51.6%. The tree mapping was also improved from 67.2% to 79.5% by the DBFE-

ECHO method. The best producer’s accuracies of each category for the image were

79.5% to 100% for plant species (watermelon, pumpkin, marigold, grass and tree),

88.7% to 100% for soil types, 97.8% for concrete, and 99.4% for vinyl mulches.

The results showed that hyperspectral remote sensing data can be applied to

characterize complex agricultural lands. Here proper selection of feature extraction

methods was very important. DBFE was found to be superior to PCA in classifying

agricultural land cover in the present study. The main reason lies on PCA which is

based on the whole data statistics, unlike DBFE which based classification directly

on the training samples. PCA minimizes the mean square error for a given number

of features but in classification it is desirable to extract features which are focused on

discriminating between classes. PCA tries to project the data onto a lower dimension

that favours discriminating the classes which are having the largest inter-variance

(Cheriyadat and Bruce 2003). But when the classes have a small difference in mean

value, the information contained in lower dimension may not be appropriate for

discriminating them and thus degrading overall classification accuracy. The

superiority of DBFE to PCA is that it does not deteriorate even when there is

little or no mean difference between classes, because the transformation is based

upon not only the mean value difference, but also the covariance between the

training samples (Lee and Landgrebe 1993).

The accuracy was also improved after separating the data into vegetated and non-

vegetated areas. The result implied that the pre-classification by NDVI prevented the

spectral confusion between the classes under the vegetated and non-vegetated areas.

Comparison between several feature extraction/classification methods 977
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Table 3. Confusion matrices for four methods with pre-classification by NDVI. The left-hand side (y axis) is labelled with the categories on the verification
sites; the upper edge (x axis) is labelled with the same categories; these refer to those on the verification sites to be evaluated. The class of ‘mixture soil’ in the

confusion matrix is the class of ‘mixture of ando and light ando soil’ and the ‘light-ando’ is the class of light ando soil.
(a) The confusion matrix for PCA-MLC.

Class

name

Class

number

Accuracy*

(%)

Number 0 1 2 3 4 5 6 7 8 9 10 11 12

Samples Background

Mixture

soil

Ando-

soil

Built-

up Concrete

Vinyl-

mulches

Light-

ando Grass Marigold Maize Tree Watermelon Pumpkin

Mixture soil 1 8.8 399 0 35 0 220 0 144 0 0 0 0 0 0 0

Ando-soil 2 100 329 0 0 329 0 0 0 0 0 0 0 0 0 0

Built-up 3 75 36 9 0 0 27 0 0 0 0 0 0 0 0 0

Concrete 4 62 313 4 0 0 10 194 105 0 0 0 0 0 0 0

Vinyl

mulches

5 71.7 315 0 0 0 88 1 226 0 0 0 0 0 0 0

Light-ando 6 100 144 0 0 0 0 0 0 144 0 0 0 0 0 0

Grass 7 91.2 443 0 0 0 0 0 0 0 404 1 27 0 10 1

Marigold 8 95.2 83 0 0 0 0 0 0 0 0 79 0 0 4 0

Maize 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Tree 10 70.6 503 0 0 0 0 0 0 0 117 0 19 355 0 12

Watermelon 11 89.2 288 0 0 0 0 0 0 0 0 0 0 0 257 31

Pumpkin 12 100 71 0 0 0 0 0 0 0 0 0 0 0 0 71

Total 2924 13 35 329 345 195 475 144 521 80 46 355 271 115

reliability accuracy (%){ 100 100 7.8 99.5 47.6 100 77.5 98.8 0 100 94.8 61.7

Overall accuracy (2121/2924)572.5%.
Kappa statistic50.694.
*(100, percent omission error) also called producer’s accuracy.
{(100, percent commission error) also called user’s accuracy.
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(b) The confusion matrix for PCA-ECHO.

Class

name

Class

number

Accuracy*

(%)

Number 0 1 2 3 4 5 6 7 8 9 10 11 12

Samples Background

Mixture

soil

Ando-

soil

Built-

up Concrete

Vinyl-

mulches

Light-

ando Grass Marigold Maize Tree Watermelon Pumpkin

Mixture soil 1 8.8 399 0 35 0 220 0 144 0 0 0 0 0 0 0

Ando-soil 2 100 329 0 0 329 0 0 0 0 0 0 0 0 0 0

Built-up 3 75 36 9 0 0 27 0 0 0 0 0 0 0 0 0

Concrete 4 74.1 313 4 0 0 10 232 67 0 0 0 0 0 0 0

Vinyl

mulches

5 71.7 315 0 0 0 88 1 226 0 0 0 0 0 0 0

Light-ando 6 100 144 0 0 0 0 0 0 144 0 0 0 0 0 0

Grass 7 91 443 0 0 0 0 0 0 0 403 1 29 0 10 0

Marigold 8 95.2 83 0 0 0 0 0 0 0 0 79 0 0 4 0

Maize 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Tree 10 70.6 503 0 0 0 0 0 0 0 116 0 20 355 0 12

Watermelon 11 89.2 288 0 0 0 0 0 0 0 0 0 0 0 257 31

Pumpkin 12 100 71 0 0 0 0 0 0 0 0 0 0 0 0 71

Total 2924 13 35 329 345 233 437 144 519 80 49 355 271 114

reliability accuracy (%){ 100 100 7.8 99.6 51.7 100 77.6 98.8 0 100 94.8 62.3

Overall accuracy (2158/2924)573.8%.
Kappa statistic50.708.
*(100, percent omission error) also called producer’s accuracy.
{(100, percent commission error) also called user’s accuracy.
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(c) The confusion matrix for DBFE-MLC.

Class

name

Class

number

Accuracy*

(%)

Number 0 1 2 3 4 5 6 7 8 9 10 11 12

Samples Background

Mixture

soil

Ando-

soil

Built-

up Concrete

Vinyl-

mulches

Light-

ando Grass Marigold Maize Tree Watermelon Pumpkin

Mixture soil 1 88.5 399 0 353 0 0 0 0 46 0 0 0 0 0 0

Ando-soil 2 100 329 0 0 329 0 0 0 0 0 0 0 0 0 0

Built-up 3 47.2 36 15 0 0 17 0 4 0 0 0 0 0 0 0

Concrete 4 97.4 313 2 0 0 5 305 1 0 0 0 0 0 0 0

Vinyl

mulches

5 99.4 315 0 0 0 1 1 313 0 0 0 0 0 0 0

Light-ando 6 100 144 0 0 0 0 0 0 144 0 0 0 0 0 0

Grass 7 97.3 443 1 0 0 0 0 0 0 431 0 2 0 0 9

Marigold 8 98.8 83 0 0 0 0 0 0 0 0 82 0 0 1 0

Maize 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Tree 10 74.8 503 1 0 0 0 0 0 0 103 0 16 376 0 7

Watermelon 11 97.9 288 0 0 0 0 0 0 0 0 0 1 0 282 5

Pumpkin 12 100 71 0 0 0 0 0 0 0 0 0 0 0 0 71

Total 2924 19 353 329 23 306 318 190 534 82 19 376 283 92

reliability accuracy (%){ 100 100 73.9 99.7 98.4 75.8 80.7 100 0 100 99.6 77.2

Overall accuracy (2703/2924)592.4%.
Kappa statistic50.914.
*(100, percent omission error) also called producer’s accuracy.
{(100, percent commission error) also called user’s accuracy.
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(d) The confusion matrix for DBFE-ECHO.

Class

name

Class

number

Accuracy*

(%)

Number 0 1 2 3 4 5 6 7 8 9 10 11 12

Samples Background

Mixture

soil

Ando-

soil

Built-

up Concrete

Vinyl-

mulches

Light-

ando Grass Marigold Maize Tree Watermelon Pumpkin

Mixture soil 1 88.7 399 0 354 0 0 0 0 45 0 0 0 0 0 0

Ando-soil 2 100 329 0 0 329 0 0 0 0 0 0 0 0 0 0

Built-up 3 47.2 36 15 0 0 17 0 4 0 0 0 0 0 0 0

Concrete 4 97.8 313 2 0 0 4 306 1 0 0 0 0 0 0 0

Vinyl

mulches

5 99 315 0 0 0 2 1 312 0 0 0 0 0 0 0

Light-ando 6 100 144 0 0 0 0 0 0 144 0 0 0 0 0 0

Grass 7 97.1 443 9 0 0 0 0 0 0 430 0 1 0 0 3

Marigold 8 98.8 83 0 0 0 0 0 0 0 0 82 0 0 1 0

Maize 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Tree 10 79.5 503 1 0 0 0 0 0 0 85 0 11 400 0 6

Watermelon 11 97.9 288 0 0 0 0 0 0 0 0 0 0 0 282 6

Pumpkin 12 100 71 0 0 0 0 0 0 0 0 0 0 0 0 71

Total 2924 27 354 329 23 307 317 189 515 82 19 400 283 86

reliability accuracy (%){ 100 100 73.9 99.7 98.4 76.2 83.5 100 0 100 99.6 82.6

Overall accuracy (2727/2924)593.3%.
Kappa statistic50.924.
*(100, percent omission error) also called producer’s accuracy.
{(100, percent commission error) also called user’s accuracy.
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Table 4. Classification accuracies of agricultural land image separated by NDVI.

Class

Accuracy*

PCA-MLC PCA-ECHO DBFE-MLC DBFE-ECHO

Vegetated area Watermelon 89.2% 89.2% 97.9% 97.9%
Pumpkin 100 100 100 100
Marigold 95.2 95.2 98.8 98.8
Maize 0 0 0 0
Grass 91.2 89.2 97.3 97.1
Tree 70.6 70.6 74.8 79.5

Overall (vegetated) 84.0% 83.9% 89.5% 91.1%

Kappa statistic
(vegetated)

0.784 0.783 0.856 0.878

Non-vegetated areas Ando-soil 100% 100% 100% 100%
Light ando 100 100 100 100
Mixture soil 8.8 8.8 88.5 88.7
Built-up 75.0 75.0 47.2 47.2
Concrete 62.0 74.1 97.4 97.8
Vinyl mulches 71.7 71.7 99.4 99.0

Overall (non-vegetated) 62.2% 64.6% 95.1% 95.2%

Kappa statistic
(non-vegetated)

0.552 0.582 0.939 0.940

Whole image Overall (whole) 72.5% 73.8% 92.4% 93.3%
Kappa statistic 0.694 0.708 0.914 0.924

*Each category accuracy is the producer’s accuracy.
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The classification accuracies shown here are obtained by the selected verification

areas listed in the figure 2. In general, purely random points may give lower

classification accuracies. But since the same verification areas were used for each

classification method, it will not change the result of the comparison of the

classification methods.

5. Conclusion

This research described an encouraging finding for using hyperspectral imagery to

map diverse agricultural land covers near the metropolis of Tokyo. The research has

evaluated the different classification methods for processing AISA hyperspectral

imagery. Based on the results, DBFE is suited for improving the classification of

complex agricultural lands in Japan. This is basically because of its capability of

distinguishing between classes based on training samples, thus also reducing the

dimensionality of the data.

Moreover, the pre-classification process using NDVI that separate the whole

image into vegetated area and non-vegetated area also improved the classification

accuracy. This is due to the elimination of spectral confusion between categories.

Hence, this study concluded that the combination of pre-classification by NDVI and

DBFE method is the most appropriate for classifying the complicated agricultural

land use patches in Miura Peninsula.
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