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Sufficient training data must be acquired to classify areas of interest using a

supervised classification method and hyperspectral data. However, the relatively

small size of agricultural plots in Japan means that there is no training area large

enough to represent a feature of interest. In this study, a new method for

identifying crops using hyperspectral remotely sensed data has been proposed in

order to resolve the problem of identifying training areas in agricultural crops.

This method was then compared with conventional methods. The proposed

method was found to be most effective for identifying crops using hyperspectral

data in an agricultural land area.

1. Introduction

Remote sensing has shown great promise in identifying the crops grown in

agricultural land. The resultant information has been found to be useful in the

prediction of crop production and of land use change (Myers 1983, Steve and Clark

1990, Owe and D’Urso 2002, Omasa et al., in press). Furthermore, recent advances in

agricultural remote sensing include applications in sustainable agriculture, such as

precision farming, agroforestry, and land conservation. These are closely related to

applications in forestry, ecology, hydrology, and environmental management (Hobbs

and Mooney 1990, Rencz 1999, Owe and D’Urso 2002, Omasa et al., in press).

Advancement in sensor technology has led to development of new tool, i.e.

mapping spectrometry from air- and space-borne platforms (Campbell 1996, Omasa

et al., in press). Although broad categories of interest such as crop, urban, water

bodies, and soil areas can be classified using multi-spectral sensors, such as the

Landsat Thematic Mapper (TM) and SPOT High Resolution Visible (HRV),

identification of crops or soils with subtle differences in spectral response pattern

will not be achieved. This is because multi-spectral sensors like TM and HRV have a

limited number of spectral channels and coarser spatial resolution. So, imaging

spectrometry with very narrow and several spectral bands may offer potential in this

endeavour. Currently, airborne hyperspectral sensors, which can acquire hyper-

spectral and hyperspatial imagery, are the most effective way to classify various

crops and soils in agricultural land.
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In studies using hyperspectral imagery data, arid vegetation has been

discriminated (Lewis et al. 2001), and green and dry vegetation components have

been identified (Datt 2000). Furthermore, Cochrane (2000) has classified vegetation

at species level using hyperspectral signatures. He used the discrimination methods

proposed by Price (1994) to calculate the root-mean-square difference and shape

difference between spectral signatures of a particular vegetation and a reference

species. However, the spectral signatures used were not remotely sensed data

measured by satellite or aircraft; rather, the data were measured by using a portable

spectral radiometer. In addition, these methods were effective for distinguishing

specific types of vegetation from each other, but they have not been applied to

identify various types of vegetation using hyperspectral remotely sensed imagery.

In this study, a new supervised classification method is proposed for identifying

crops at the species level in Japanese agricultural land by using hyperspectral data.

In general, it is important to identify a large number of training sets to classify a

particular crop or soil category by a supervised classification method using

hyperspectral data. However, because agricultural plots in Japan are too small, it is

difficult to find adequate number of sufficiently large training area for each category

of interest. It calls for development of a new method for accurate classification, even

in the absence of sufficient number of training data in the area of interest. The

proposed method has also been compared with the existing conventional methods.

2. Study area and data used

2.1 Characteristics of the Miura peninsula

The Miura peninsula is located in the south of Tokyo bay (figure 1) and, because of

its mild climate, has been developed as an agricultural area devoted mainly to

vegetable growing. The main crops are radish and cabbage in the winter and

watermelon, melon, and hard squash in the summer. Various fruits, flowers, and

animal products are also produced. In addition, the cultivation of vegetation such as

marigold (Tagetes) has increased recently because this flower is adequate for

agricultural or environmental conservation.

2.2 Hyperspectral data

Figure 2 shows hyperspectral image used to develop a new supervised classification

method and to compare it with conventional supervised classification methods in the

agricultural area of the Miura peninsula. The image was acquired on 27 July 2002.

The data were measured by Airborne Imaging Spectroradiometer for Application

(AISA), which is a hyperspectral sensor with a 2-m spatial resolution, developed by

Spectral Imaging Ltd. The wavelength range is 0.43–1.0 mm, with a maximum of 512

spectral bands. In this study, 70 spectral bands were used within the range of 0.43–

1.0 mm. The AISA sensor head includes a fibre optic probe (FODIS) for real-time

monitoring of downwelling solar irradiance to calculate the apparent reflectance of

the Earth’s surface (Omasa et al., in press).

2.3 Training and test data for classification

To determine the training and test areas in which to analyse supervised methods

using hyperspectral imagery as shown in figure 2, a ground survey was carried out

on 14 August 2002. In this study, a total of seven categories (maize, watermelon,
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tree, marigold, soil 1, soil 2, and building) were used in the evaluation of each

supervised method. Figure 2(a) and (b) shows the training and test areas of each

category, and table 1 shows the number of pixels in each category used in the

training and test data. Because soil 1 and soil 2 differed in their spectral radiance, we

selected these soils as the training data. Figure 3 shows the average spectral radiance

of each of the seven categories in the training and test areas.

From table 1, we can see an inability to collect many pixels for each category from

the agricultural land area of the Miura peninsula. We need a lot of training data in

order to accurately classify land area using conventional supervised methods such as

maximum likelihood classification. In particular, more training data are needed

when supervised methods with hyperspectral data are used (Malek et al. 2002).

3. Classification methods

Four supervised classification methods—(1) maximum likelihood (MLH), (2)

Euclidean shortest distance (MED), (3) shape difference (SD), and (4) MED-

SD—were selected in this study to evaluate the accuracy of the classification of

agricultural land using hyperspectral data. MLH and MED have been used as

conventional methods for analysing multispectral data such as Landsat TM and

SPOT HRV. SD was recently proposed as a method for hyperspectral data (Price

1994, Cochrane 2000). In this study we propose MED-SD as a new method for

analysing hyperspectral data. The characteristics of these methods are described

below.

Figure 1. Location of the Miura peninsula in Japan.
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3.1 MLH

The MLH (maximum likelihood) method has been widely used for remote sensing

classification. In particular, the method has been used to classify multispectral

imagery such as that of the Landsat TM. The principle of MLH is based on Bayes’

decision rule. Thus, when spectral radiance data x5(x1, x2…., xn)t with n bands is

classified into k types of categories (w1, w2,…., and wk), the data x is classified into

the category wi, where the value of discriminant function fwi(x) as in the following

equation is smallest.

Figure 2. Hyperspectral image of agricultural land of Miura peninsula observed on 27 July
2002.

Table 1. Number of pixels in each category used in the training and test data.

Maize Watermelon Tree Marigold Soil 1 Soil 2 Building

(a) Training data
Number of
pixels

27 102 176 73 68 85 106

Area (ha) 0.011 0.041 0.070 0.029 0.027 0.034 0.042

(b) Test data
Number of
pixels

41 379 139 64 85 100 136

Area (ha) 0.016 0.152 0.056 0.026 0.034 0.040 0.054
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Discriminant function:

fwi xð Þ~ x{mið ÞtS{1
i x{mið Þzln Sij j ð1Þ

where mi is the average spectral radiance of category wi calculated from the sample

in the training area, Si is the dispersion covariance matrix of category i, and t stands

for transpose.

Because the MLH method is based on statistical theory, it has been used well to

classify multispectral imagery. However, it has been reported that an abounding

(a)

(b)

Figure 3. Average spectral radiances of each category in the (a) training and (b) test areas.
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number of samples of each category in the training area is necessary for accurate

classification using hyperspectral data (Malek et al. 2002). Therefore, it may not be

appropriate to use this method for agricultural land, such as that at our study site,

with its considerably small numbers of samples in each category (table 1).

3.2 MED

Like MLH, the MED (Euclidean shortest distance) method has been used to classify

multispectral imagery. The value of discriminant function fwi(x) as shown in the

following equation is smallest.

Discriminant function:

fwi xð Þ~ x{mið Þt x{mið Þ ð2Þ

where x is the measured spectral radiance with n bands, mi is the average spectral

radiance of category wi calculated from a sample in the training area, and t stands

for transpose.

It has been reported that the classification result of MED is better than that of

MLH when there are few samples of each category, because of the simplicity of

MED’s discriminant function, which uses only the mean of a sample in the training

area as statistical information (Fujimura and Tsubaki 1985). Furthermore, it has

been reported that the effects of mixed pixels, which contain various categories

within single pixels, are comparatively small when remotely sensed imagery was

classified with MED (Ishida and Inamura 2002).

3.3 SD

The SD (shape difference) method has been used to identify categories using

hyperspectral data (Price 1994, Cochrane 2000). The value of discriminant function

fwi(x) as shown in the following equation is smallest.

Discriminant function:

fwi xð Þ~cos{1

P
n xmi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
n x2

P
n m2

i

q

0

B
@

1

C
A ð3Þ

where x is the measured spectral radiance with n bands, mi is the average spectral

radiance of category wi calculated from the sample in the training area.

It is found that SD considers the similarity of spectral radiance to classify each

category from equation (3). From equation (3), the spectral radiances of the two

categories have identical shapes when the value of the discriminant function is zero,

but these categories are not always the same because various effects, such as the

angle of view, atmospheric properties, spectral mixture, and illumination angle can

change the spectral radiance (Price 1994, Cochrane 2000).

3.4 MED-SD

MED-SD is this study’s proposed method to classify categories using hyperspectral

data. It is considered to combine characteristics of MED and SD. In particular,

MED-SD normalizes each value calculated from equations (2) and (3) and adds

them together. The value of discriminant function fwi(x) as shown in the following

equation is smallest.
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Discriminant function:

fwi xð Þ~ Di{Dmin

Dmax{Dmin

z
hi{hmin

hmax{hmin

ð4Þ

where Dmax and hmax are the maximum values of each pixel calculated from

equations (2) and (3), respectively, Dmin and hmin are the respective minimum values

of each pixel calculated from those equations, and Di and hi are the respective values

of each pixel calculated from those equations.

4. Evaluation of methods

4.1 Analytical procedure and evaluation

To compare the accuracy of the four supervised classification methods using

hyperspectral data for agricultural land of the Miura peninsula, a set of seven

categories, namely maize, watermelon, tree, marigold, soil 1, soil 2, and building was

used.

To evaluate the accuracy of each method in seven categories, error matrices have

been generated, wherein overall accuracy, Kappa coefficient value, the producer’s

accuracy, and the user’s accuracy were computed (Foody 2002, Keuchel et al. 2003,

Maxwell et al. 2004). Overall accuracy and Kappa coefficient value show the

proportion of pixels correctly identified, the producer’s accuracy shows the
proportion of verification pixels of a category correctly classified, and the user’s

accuracy shows the proportion of pixels that are classified correctly. Although the

user’s evaluation of accuracy for each method may be important during the

evaluation of the classification map produced over the study site, the user’s accuracy

evaluation is not important when the classification methods are evaluated. This is

because the user’s accuracy for each category depends on the number of verification

pixels in the test areas. In Japan’s typically small agricultural plots, it is difficult to

collect sufficient numbers of sample pixels in a training and test area, as shown in
table 1, to enable the use of the supervised classification method. Therefore, we used

overall accuracy, Kappa coefficient value, and the producer’s accuracy of error

matrixes to evaluate each of the four supervised classification methods for seven

categories.

4.2 Results and discussion

Table 2 shows the accuracy evaluation of the four supervised methods for seven
categories using error matrixes. In table 2, overall accuracy and Kappa coefficient

values of MLH method were not high in comparison with three methods of MED,

SD and MED-SD. In particular, the producer’s accuracies of MLH were not high

for maize, marigold, and soil 2 because there were few pixels for these categories in

the training area, as shown in table 1. It has been reported that MLH does not work

well when the number of training data are few (Fujimura and Tsubaki 1985, Ishida

and Inamura 2002, Malek et al. 2002). Therefore, MLH should not be used to

classify agricultural land in areas where the collection of training data is difficult,
such as the Miura peninsula.

On the other hand, overall accuracy and Kappa coefficient values of MED, SD

and MED-SD methods produced almost the same results with higher accuracy. On
average, the producer’s accuracies of MED-SD were higher for all categories. In

comparison with the results obtained with MED-SD, the producer’s accuracies of
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Table 2. Accuracy evaluation of the four supervised methods for seven categories.

Maize Watermelon Tree Marigold Soil 1 Soil 2 Building

User’s
accuracy

(%)

(a) MLH
Maize 1 0 0 0 0 0 0 100.0
Watermelon 22 369 0 5 0 80 110 63.0
Tree 18 1 139 24 0 0 1 76.0
Marigold 0 9 0 35 0 0 0 79.5
Soil 1 0 0 0 0 85 12 0 87.6
Soil 2 0 0 0 0 0 8 0 100
Building 0 0 0 0 0 0 25 100
Producer’s
accuracy (%)

2.4 97.4 100.0 54.7 100.0 8.0 18.4 70.1

Kappa
coefficient

0.583

(b) MED
Maize 41 19 29 0 0 0 0 46.1
Watermelon 0 350 5 0 0 0 0 98.6
Tree 0 0 105 1 0 0 0 99.1
Marigold 0 9 0 63 0 0 0 87.5
Soil 1 0 1 0 0 85 0 0 98.8
Soil 2 0 0 0 0 0 100 19 84.0
Building 0 0 0 0 0 0 117 100.0
Producer’s
accuracy (%)

100.0 92.3 75.5 98.4 100.0 100.0 86.0 91.2

Kappa
coefficient

0.890

(c) SD
Maize 34 35 0 0 0 0 1 48.6
Watermelon 0 339 7 0 0 0 0 98.0
Tree 0 0 92 0 0 0 0 100.0
Marigold 0 0 40 64 0 0 0 61.5
Soil 1 0 0 0 0 85 0 0 100.0
Soil 2 7 5 0 0 0 100 23 74.1
Building 0 0 0 0 0 0 112 100.0
Producer’s
accuracy (%)

82.9 89.4 66.2 100.0 100.0 100.0 82.4 87.5

Kappa
coefficient

0.846

(d) MED-SD
Maize 35 30 15 0 0 0 1 43.2
Watermelon 0 346 11 0 0 0 0 96.9
Tree 0 0 113 0 0 0 0 100.0
Marigold 0 0 0 64 0 0 0 100.0
Soil 1 0 1 0 0 85 0 0 98.8
Soil 2 6 2 0 0 0 100 24 75.8
Building 0 0 0 0 0 0 111 100.0
Producer’s
accuracy (%)

85.4 91.3 81.3 100.0 100.0 100.0 81.6 90.5

Kappa
coefficient

0.881
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MED and SD were relatively low for trees. Most of the erroneous classifications

pertained to maize, watermelon and marigold classified using MED and SD. Table 3

shows the values calculated by equation (2) and (3). The similarity between

categories is high when the values of the discriminant function are near zero. From

table 3, the values of equations (2) and (3) for maize, watermelon and marigold were

relatively similar to that of trees. Furthermore, it can be seen in figure 3 that tree and

marigold have most similar spectral radiance shapes. On the other hand, the

proposed MED-SD method is considered to combine the merits of MED and SD.

Therefore, the classification accuracies for tree were higher using MED-SD.

5. Conclusions

Four supervised classification methods for identifying agricultural crops using

hyperspectral data were evaluated. The results showed that MLH should not be

used to classify agricultural land where it is difficult to collect training data, such as

Table 3. The values of MED and SD in training and test areas.

Maize Watermelon Tree Marigold Soil 1 Soil 2 Building

Training area—SD
Maize 0 0.102 0.229 0.232 0.317 0.433 0.525
Watermelon 0.102 0 0.154 0.144 0.408 0.520 0.603
Tree 0.229 0.154 0 0.052 0.544 0.660 0.741
Marigold 0.232 0.144 0.052 0 0.547 0.658 0.740
Soil 1 0.317 0.408 0.544 0.547 0 0.136 0.282
Soil 2 0.433 0.520 0.660 0.658 0.136 0 0.269
Building 0.525 0.603 0.741 0.740 0.282 0.269 0

Training area—MED
Maize 0 14679.26 12371.38 30640.34 10834.57 18340.68 17121.49
Watermelon 14679.26 0 8179.10 16574.36 24642.67 22533.01 31076.83
Tree 12371.38 8179.10 0 19789.59 23135.50 26419.45 29057.59
Marigold 30640.34 16574.36 19789.59 0 41024.76 37245.85 47362.20
Soil 1 10834.57 24642.67 23135.50 41024.76 0 17016.64 7903.43
Soil 2 18340.68 22533.01 26419.45 37245.85 17016.64 0 22690.28
Building 17121.49 31076.83 29057.59 47362.20 7903.43 22690.28 0

Test area—SD
Maize 0 0.063 0.227 0.183 0.337 0.459 0.549
Watermelon 0.063 0 0.209 0.153 0.370 0.488 0.575
Tree 0.227 0.209 0 0.067 0.562 0.683 0.772
Marigold 0.183 0.153 0.067 0 0.518 0.635 0.724
Soil 1 0.337 0.370 0.562 0.518 0 0.154 0.240
Soil 2 0.459 0.488 0.683 0.635 0.154 0 0.216
Building 0.549 0.575 0.772 0.724 0.240 0.216 0

Test area—MED
Maize 0 14783.20 19069.36 29131.84 13598.54 17695.83 17418.37
Watermelon 14783.20 0 10158.65 15667.97 27552.76 21826.98 30472.83
Tree 19069.36 10158.65 0 11728.31 32609.87 30729.06 36349.59
Marigold 29131.84 15667.97 11728.31 0 42569.82 36588.98 45804.60
Soil 1 13598.54 27552.76 32609.87 42569.82 0 18397.60 5193.15
Soil 2 17695.83 21826.98 30729.06 36588.98 18397.60 0 18507.12
Building 17418.37 30472.83 36349.59 45804.60 5193.15 18507.12 0
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on the Miura peninsula, despite this method’s popularity in conventional remote
sensing classification.

On the other hand, on an aircraft, the classification accuracies of the proposed

MED-SD method in all categories were higher than those derived using other

methods. In the future, it is proposed to use data dimensionality for improving the

classification accuracy while reducing the time required for analysing hyperspectral

measurement.
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