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A method of sub-pixel land cover estimation including an algorithm for

minimizing missing data due to cloud cover was proposed for the purpose of

evaluating and monitoring the environment of wide areas. A pair of Landsat

Thematic Mapper (TM) scenes over coincident multitemporal National Oceanic

and Atmospheric Administration (NOAA) Advanced Very High Resolution

Radiometer (AVHRR) time-series of directional hemispherical reflectance were

used to develop a fine-scale land cover map using either eight or three categories

and to estimate the endmembers of the AVHRR image using a positive

constrained linear least-squares method. Furthermore, three approaches were

evaluated for compositing sub-pixel estimates over cloudy areas in the AVHRR

image. Finally, from validation tests made for unmixing and compositing

methods, the results suggest that these methods may be generally useful for

comparing multispectral images in space and time.

1. Introduction

At present, it has been shown that for environmental assessment, fine spatial

resolution images such as Landsat Thematic Mapper (TM) (30 m630 m) have been

effective in measuring heterogeneous land cover distribution in regions where the

objective area is comparatively narrow (Oleson et al. 1995). However, when an

extensive area such as Asia becomes the object of research, it is difficult to measure

the land cover distribution of the entire area with Landsat TM, which can only

observe narrow areas. Furthermore, in many areas cloud-free data at fine spatial

resolutions are unavailable (Laporte et al. 1995). The repeat coverage being every 16

days can also hinder the assessment of vegetation dynamics even in relatively cloud-

free areas (Hall et al. 1991). This shows that it has been difficult to obtain consistent

categories from images taken at different times, due to variability in atmospheric

effects, instrumental response, and coarse temporal resolution.

Consequently, the utilization of coarse resolution images, which are useful in

monitoring land cover distribution and vegetation transformations at a global scale,

can be considered. For example, the Advanced Very High Resolution Radiometer

(AVHRR) has been used to produce multitemporal profiles of the Normalized

Difference Vegetation Index (NDVI) in order to measure and assess changes in
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vegetation phenology and conditions (Maselli et al. 1998) caused by events such as

deforestation. It can also be utilized to perform land-cover type classification at

global scales (Tucker et al. 1985). Moreover, the frequent repeat cycle of the satellite

providing fine temporal data of at least one sample per day depending on latitude,

is necessary for monitoring vegetation dynamics. However, its coarse spatial

resolution imposes limitations on spectral and spatial information (Cross et al. 1991,

Malingreau and Belward 1992, Quarmby et al. 1992, DeFries et al. 1997). In this

way, even though coarse resolution satellites can observe the Earth over a short

period, many categories are intermingled within each pixel of the observed image. It

becomes difficult to determine the categories and to calculate the land coverage with

sufficient precision.

To overcome these problems, numerous studies have shown that mixture

modelling can be used to estimate vegetation cover (Mackin et al. 1990, Smith

et al. 1990, Roberts et al. 1993), and Garcia-Haro et al. (1999) have shown that

mixture modelling is less sensitive than NDVI to soil background effects. However,

in traditional unmixing studies with AVHRR data, it is assumed that only a few

endmembers exist throughout an entire image (Robinson et al. 2000). For example,

Oleson et al. (1995) and Oki et al. (2002) have retrieved spectral reflectance for each

cover type in coarse resolution images using multiple linear regression analysis

dealing with only two to four endmembers. In other words, manifold categories

have not been dealt with.

Therefore, in this study, a method to calculate the distribution of land cover types

around those areas in northeastern Asia within AVHHR mixed pixels was

attempted by integrating multitemporal data in a mixture analysis to increase the

number of categories that can be analysed.

Moreover, because conventional unmixing studies have not dealt with cloud-

covered areas, a method to synthesize a composite image of the unmixed site, for the

use of land cover assessment of northeastern Asia was evaluated to eliminate the

problem of clouds. To illustrate, Oki et al. (2004), have unmixed and validated their

results for a wide area; however, only a faveolate map could be produced due to

clouds and assessment of the area is difficult. Thus, because atmospheric conditions

can hinder the assessment of land coverage, we propose to produce composite

images.

Furthermore, a validation test was carried out in order to evaluate the accuracy of

the estimated land cover ratio results produced in the composite land cover map.

Classified Landsat TM data, which were verified with ground data, were used as the

criteria to assess the accuracy of the estimated results.

2. Study site

Because the environment, which is delicate, is easily affected by human

development, a method in which the land cover distribution is measured precisely

to assess environmental change is necessary. It is impossible to cover expansive areas

with tumultuous land cover types in ground data surveys. In order to show that by

using remote sensing technology, specific land coverage maps can be synthesized for

the use of different environmental research, we have chosen northeastern Asia,

shown in figure 1, as a study site to monitor specific land cover distribution due to its

vast and diverse land cover types (wetlands, grasslands, evergreen trees, deciduous

trees, agricultural areas, urban areas, deserts, rivers, lakes, etc.).

872 T. M. Uenishi et al.
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In this study, we used Landsat TM (satellite image overlapped onto map in

figure 1) and National Oceanic and Atmospheric Administration (NOAA) AVHRR

(figure 2) data. We selected this area, because the area within an AVHRR image has

the same land cover distribution as a single TM image. Furthermore, the Landsat

TM area (path 116/row 26) shown in figure 1 was chosen. This is because a fairly

accurate classification map could be produced through verification with land cover

data acquired from field surveys on foot and by helicopter using a global positioning

system (GPS) digital camera. Landsat TM images (path 116/row 26) from 16 June

and 18 July 1997 were selected. Eight NOAA AVHRR images with an upper left

coordinate of 52uN, 121uE and lower right coordinate of 42uN, 142uE shown in

figure 1, from June–September 1997 were chosen.

3. Algorithm of unmixing method

Generally, when considering coarse resolution images, pixels, which contain

multiple categories, can be called mixed pixels. On the other hand, pixels that are

made up of a single category are called pure pixels. Spectra of mixtures can be

analysed with linear spectral mixture analysis (LSMA), which models each spectrum

in a spectral dataset (not necessarily an image) as a linear combination of a finite

number of spectrally distinct signatures, referred to as endmembers, with coeffi-

cients or fractional abundances between zero and one and summing to one (Adams

et al. 1986, Smith et al. 1990).

Figure 1. Location of study area in northeastern Asia (upper left coordinate 52uN, 121uE/
lower right coordinate 42uN, 142uE). The image located in the centre is the Landsat TM
image (path 116/row 26) used to calculate endmembers and to evaluate results.

A land cover distribution image 873
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Endmembers are the features in a scene that are meaningful for an observer, and

constitute abstractions of real objects that can be regarded as having uniform

properties (Strahler et al. 1986). Unless the endmember of a particular category is

known, it is difficult to decompose these linear mixture models to calculate the
category ratio within a mixed pixel. Because the endmember of each category

covered within a pixel must be precisely known before carrying out the unmixing

method (Cross et al. 1991, Quarmby et al. 1992, Foody and Cox 1994), the methods

in which these endmembers are determined become vital for LSMA.

It is difficult to identify and estimate the spectral signature of a pure component

or endmembers which form the scene, since they vary with the scale and purpose of
the study. Several methods have been proposed for estimating the endmembers for

each category (Oleson et al. 1995, Thompkins et al. 1997, Bateson et al. 2000, Oki

et al. 2002). In this research endmembers are estimated by overlapping classified

Landsat TM images over AVHRR images and using a positive constrained linear

least-squares estimation. Oleson et al. (1995) and Oki et al. (2002) have also

retrieved spectral reflectance for each cover type in coarse resolution images in a

similar way using multiple linear regression analysis. However, they only deal with

two to four endmembers; in other words, only a few categories can be studied.
Moreover, only a limited area is analysed. Therefore, we propose to increase

categories and assess a wider range.

Figure 2. Sample NOAA AVHRR image of a study site projected in Albers Conic Equal
Area and resampled at a resolution of 1.1 km using a nearest neighbour interpolation method.
(Upper left coordinate 52uN, 121uE/lower right coordinate 42uN, 142uE.)

874 T. M. Uenishi et al.
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First, the total radiance of a coarse resolution mixed pixel can be assumed as a

linear sum of the products of the cover type radiance and the cover type weight as a

linear spectral mixture. Although pure pixels do not exist in any sort of digital

images, we also set the fine spatial resolution pixels as pure such that the cover type

radiances are invariant in order to extract details of AVHHR data up to Landsat

TM level. Furthermore, for temporal data, we define that the distribution of cover

types does not change.

Here, a linear spectral mixture model is a model where the observed radiance of a

particular pixel is given as P by endmembers m which include each category with

fractional cover ratio a of k types of categories as in the following equation.

P~
Xk

j~1

ajmj ð1Þ

where,

aj§0 ð2Þ

and

Xk

j~1

aj~1 ð3Þ

First, the coarse resolution image is geocorrected with the high spatial resolution

image as a basis. Next, we assume that a pixel within the high spatial resolution

image covers all uniform categories and classify it into k types of categories. By

assuming this, we unmix AVHRR images to Landsat TM-level resolution. Here,

land coverage a1 of each pixel in a portion of the coarse resolution image is

calculated by overlapping land cover distribution, which is evaluated from a high

spatial resolution image, onto the coarse resolution image. Furthermore, the

endmember of each category in the coarse resolution image is estimated for each

band. If the unknown endmember for the coarse resolution image is m1, the

observed radiance of each pixel within a coarse resolution image p1 is:

pl~
Xk

j~1

ajlmjl ð4Þ

where

mjl§0 ð5Þ

In this study, under the constraint of equation (5), we estimated the unknown

endmember m1 of each category in equation (4) using a non-negative least square

method.

With the estimated endmembers, the entire coarse resolution image is unmixed

using a non-negative least square method for each band. Thus, the land coverage a

for each pixel per category throughout the entire coarse resolution image is estimated.

Simple (traditional) unmixing assumes that a set number of endmembers (three or

four is a typical number) exists throughout the entire scene, and attempts to find

A land cover distribution image 875



D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

ity
 o

f T
ok

yo
/T

O
K

Y
O

 D
A

IG
A

K
U

] A
t: 

06
:0

4 
3 

M
ar

ch
 2

00
8 

fractions for these endmembers in every pixel (Robinson et al. 2000). In this study,

we have applied this unmixing methodology to unmix the AVHRR images into a

maximum of eight categories. It was possible to calculate up to eight endmembers by

creating multitemporal AVHRR data.

4. Process and results

4.1 Atmospheric calibration considerations

Time-of-flight system and atmospheric calibration data were not available for

Landsat or AVHHR images of the study area, nor was it possible to calibrate

empirically to ground targets at the time of each overpass of the satellite. A nominal

calibration to radiance using preflight instrument calibration data and a standard

atmospheric model was not made, because the accuracy of these corrections could
not have been verified and any errors in calibration might have propagated

undetected into the classification (Sabol et al. 1992a, b).

(a)

Figure 3. Fine scale land cover map of a multitemporal Landsat TM image (path 116/row
26). The Landsat TM image was classified into (a) eight categories and (b) three categories
using the ISODATA method and then separated into two images. The bottom left image was
used to estimate endmembers. The bottom right image was used for validation purposes.

876 T. M. Uenishi et al.
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4.2 Processing of high spatial resolution image

In this study, a pair of Landsat TM scenes over the same region is used to develop a

fine scale land cover map (eight and three categories) as shown in figure 3(a) and (b).

The Landsat TM image was classified into eight and three categories, using the

ISODATA method, assuming that the high spatial resolution image was composed

of pure pixels.

Before classifying, the thermal infrared layer (band 6) was removed because of its
difference in spatial resolution; thus, a total of six bands using visible and near-

infrared images was used. Furthermore, in order to improve the classification

accuracy, a multitemporal image dataset was produced from areas with no clouds

using two scenes, 16 June and 18 July 1997, producing a dataset with a total of 12

bands. We produced a multidate cloud-free Landsat TM composite dataset in order

to investigate various types of land cover that show seasonal characteristics. Thus,

depending on the study site, not all sites used in estimating endmembers will need

multidate data.

Using an unsupervised classification, the Landsat TM image was ultimately

classified into eight categories: wetland 1, wetland 2, grassland, evergreen, deciduous

trees, agricultural area, urban area/bare soil, and water (figure 3(a)). Furthermore, a

three classification (vegetation, urban area/bare soil and water) thematic dataset

(figure 3(b)) was also created for comparison with the eight category result. Table 1

(b)

Figure 3. (Continued.)

A land cover distribution image 877
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shows the definitions for nomenclature of categories used in this study. The

classified image was confirmed with ground data produced from field surveys of

northeastern Asia.

4.3 Processing of coarse spatial resolution

The NOAA AVHHR image was preprocessed by geocorrection at a resolution of

1.1 km. Each NOAA image was corrected geometrically using Landsat TM images

as a datum with manual control points. A nearest-neighbour interpolation method

was used to prevent the original pixel values from being annulled. As a result, the

Root Mean Square Error (RMSE) of the superposed NOAA image was within one

pixel.

Next, areas that included clouds in each scene were removed based on a threshold

determined for bands 3, 4, and 5 of the AVHHR data. After confirming the removal

of cloud pixels common in each image, a multi-temporal image was produced. In

this study, full cloud effects are assumed to be composited out. All five bands for

each dataset were used; thus, 10 band datasets were produced.

Four multitemporal image datasets, each with a total of 10 bands, were produced

combining images from June, July, or September 1997. Four areas that did not have

significant amounts of cloud were selected to produce a final composite map. Each

dataset was used to compensate another for the unidentified areas. Dataset 1 was a

combination of 14 June and 18 July 1997. Dataset 2 was a combination of 16 June

and 1 September 1997. Dataset 3 was a combination of 29 June and 5 September

1997. Dataset 4 was a combination of 23 July and 30 September 1997. By producing

multitemporal datasets, a more accurate endmember estimation can be calculated.

4.4 Determining endmembers of coarse resolution images

After preprocessing each fine and coarse resolution image, endmembers were

determined. First, the bottom left image in figure 3(a) and (b) of the classified

Table 1. Definitions of nomenclature used in this study.

(a) Eight categories

Category
number Category type Description

1 Wetland 1 Reeds constitute this category; water level is high
2 Wetland 2 Sedges consitute this category; water level is low
3 Grassland Grasses constitute this category; dry area
4 Evergreen Evergreens constitute this category; dry area
5 Deciduous trees Deciduous trees constitute this category; dry area
6 Agricultural area Areas where agriculture is in activity
7 Urban area/bare soil Buildings, roads, areas where agriculture is inactive
8 Water Rivers’ lakes, and sea

(b) Three categories

Category
number Category type Description

1 Vegetation Wetlands, forests, agricultural areas constitute this area
2 Urban area/bare soil Buildings, roads, areas where agriculture is inactive
3 Water Rivers’ lakes, and sea

878 T. M. Uenishi et al.
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Landsat TM image was overlapped onto each multitemporal NOAA image and the

land coverage from each mixed pixel of the overlapped area was calculated. Finally,

endmember m1 in equation (4) was estimated using a least-squares method under

non-negative constraints. This method was applied for both eight categories and

three categories.

4.5 Unmixing and validation

After endmembers were estimated for each land cover type from equation (4) under

the constraint of equation (5), they were input into equation (1) and the land cover

area of each category was estimated using a least-squares method under the

constraints of equations (2) and (3). All four multitemporal AVHRR datasets were

each unmixed separately with endmembers determined accordingly. Because the

study site consists of the same categories as in the classified map, it was possible to

unmix the entire AVHRR data.

Furthermore after unmixing, land cover estimates of each unmixed image were

evaluated for accuracy of the unmixing method for both eight categories and three

categories. The RMSEs, shown in equation (6), for each category were calculated by

comparing estimated results and classified Landsat TM data as a reference of an

area that was not used in determining endmembers (bottom right image shown in

figure 3(a) and (b)). Here we defined that the classified Landsat TM image was true.

RMSE~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i~1

âi{aihð Þ2
.

n

s
ð6Þ

where â is each land coverage of a certain category for each pixel estimated by

unmixing the AVHRR image; ah is the true land coverage of the same category for

the same pixel in the AVHRR image, calculated by overlapping the land cover

distribution that is evaluated from the Landsat TM image on to the AVHRR image;

and n is the number of pixels in the validation area of the AVHRR image. Accuracy

results of the estimated land coverage for eight and three categories are shown in

table 2.

Several conclusions can be drawn about the results from table 2. For eight

categories, although the unmixing accuracy was different according to land cover

type, it showed that certain categories could be analysed more affectively than

others. For example, in this study, the results for wetland 1 and water were

estimated with relatively good accuracy. The best RMSE for wetland 1 was 5.2%,

and water was 9.6%. Thus, it was shown that if the subject of one’s research were

about reeds or bodies of water they could be estimated from a coarse resolution

image at a relatively good accuracy. On the other hand, categories other than

wetland 1 and water, such as deciduous trees, showed poorer results relatively.

However, traditionally only approximate land cover types, such as vegetation/soil/

water could be distinguished using coarse resolution images. Nevertheless, by using

the unmixing method in this study, the analysis of certain land cover types, even

deciduous trees, in an extensive area becomes possible. In other words, it is possible

to evaluate land cover changes of multiple categories within a pixel with this

technique.

The unmixing accuracy was also relatively good for the three category case as

shown in table 2, making it possible to evaluate the land cover changes from NOAA

images when assessing only three categories.

A land cover distribution image 879
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4.6 Compositing method

The unmixing method used in this study was relatively useful for determining the

land cover distribution; however, the presence of clouds prevented the entire site

from being evaluated (figure 2). Therefore, a compositing method was proposed to

eliminate the issue of clouds and produce a land cover map of a wide area.

When synthesizing a composite image with multiple datasets, areas that overlap

geographically become a problem. Theoretically the results for overlapping areas

should be the same; however, in reality there is a slight variation in the results. Three

approaches were evaluated for compositing the sub-pixel estimates over cloudy

areas. The three methods were tested to see which method was optimal in creating a

composite image from a number of results. Land cover estimates for each

overlapping area were calculated for each category separately.

The first method for determining the pixel value of an overlapping area was to

compare RMSE results of the unmixed images. Instead of calculating an RMSE for

each category, one RMSE value was calculated for each dataset by using all of the

estimated values as one result. The image with the lowest error was selected to

represent the overlapping area. Thus, the estimated value for each category was

provided by the ‘better’ image. However, in this case the result depended on the

number of pixels in each category.

The second method was to compare the actual estimated results of each category

for each overlapping area and simply selecting the better-estimated result for the

pixel value of the particular overlapping area in each category.

Finally, rather than comparing, the third method was to calculate the mean of the

estimated values of each category for each overlapping area and represent the mean

value as the pixel value for each overlapping area in each category.

Furthermore, after producing a composite image for each method, a validation

test was made on each composite image to determine the optimal compositing

Table 2. RMSEs of land cover estimates per category of four unmixed AVHRR datasets, (a)
eight categories and (b) three categories.

(a) Eight categories

Dataset 1
RMSE(%)

Dataset 2
RMSE(%)

Dataset 3
RMSE(%)

Dataset 4
RMSE(%)

Wetland 1 5.2 9.3 8.2 9.6
Wetland 2 21.4 19.4 24.1 20.1
Grassland 21.7 27.2 23.8 25.8
Evergreen 32.9 16.0 31.5 34.8
Deciduous trees 34.6 34.1 37.6 39.2
Agricultural area 15.8 36.6 15.5 13.8
Urban area/bare soil 12.1 9.9 6.5 7.4
Water 26.7 9.6 18.0 20.5

(b) Three categories

Dataset 1
RMSE(%)

Dataset 2
RMSE(%)

Dataset 3
RMSE(%)

Dataset 4
RMSE(%)

Vegetation 29.2 13.6 21.9 25.3
Urban area/bare soil 12.1 9.1 5.9 8.4
Water 27.6 11.3 21.2 24.6

880 T. M. Uenishi et al.
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method. Validation tests were made for each compositing method by calculating the

RMSE in equation (6) using an area of the composite image with that of the

classified Landsat TM image, which was not used in determining endmembers

(bottom right image shown in figure 3(a) and (b)). Validation results of the estimated

land coverage for eight and three categories are shown in table 3.

From validation tests, the optimum method to create an accurate land coverage

map was to simply select the best estimation of a given area from unmixed results as

shown in method 2 of table 3. By synthesizing composite images, the accuracy of the

estimated values was able to be improved. It was possible to improve estimation of

land cover area significantly, by comparing both eight and three category accuracy

results of single multitemporal datasets, shown in table 2, with the accuracy results

from the second compositing method, shown in table 3. This could be explained by

the fact that by increasing datasets, estimated values could converge towards the

probable value. Therefore, by producing composite images, the environment can be

monitored for land cover distribution and vegetation dynamic studies without the

Table 3. RMSEs of three different compositing methods per category within the composite
image for eight categories and three categories.

(a) Method 1

Category (8) RMSE (%) Category (3) RMSE(%)

Wetland 1 7.8 Vegetation 16.8
Wetland 2 20.5 Urban/soil 9.1
Grassland 25.7 Water 15.2
Evergreen 20.6
Deciduous trees 32.5
Agricultural area 29.2
Urban/soil 9.4
Water 12.4

(b) Method 2

Category (8) RMSE(%) Category (3) RMSE(%)

Wetland 1 8.0 Vegetation 14.5
Wetland 2 19.5 Urban/soil 9.5
Grassland 26.0 Water 12.3
Evergreen 17.3
Deciduous trees 34.3
Agricultural area 28.2
Urban/soil 10.1
Water 10.3

(c) Method 3

Category (8) RMSE(%) Category (3) RMSE(%)

Wetland 1 9.5 Vegetation 14.5
Wetland 2 19.5 Urban/soil 9.2
Grassland 27.3 Water 12.3
Evergreen 17.3
Deciduous trees 34.3
Agricultural area 36.0
Urban/soil 9.9
Water 10.3

A land cover distribution image 881
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affects of clouds. The final land distribution composite maps using method 2 for

each category are shown in figure 4 and figure 5 for eight categories and three

categories respectively. The composite map shows the area ratio of a category within

a pixel accordingly with the colour bar. The black regions along the perimeter of the

colour image are areas that were not used in the calculations (e.g. ocean, distinct

land cover distribution), and the black regions within the image are areas that could

not be embedded with cloud-free data.

5. Discussion

In this way, by increasing datasets and using the proposed composite method,

estimated values can be ameliorated while clouds can be totally eliminated at the

same time.

Although the error did exceed 30% for some categories as shown in tables 2 and 3,

this unmixing and compositing method is considerably useful for quantifying the

amount of categories, such as wetland 1. To illustrate, conventionally for NOAA

images, the NDVI was calculated to evaluate the quantity of vegetation (Elmore

et al. 2000). However, only a relative amount of vegetation could be tracked.

Because of this fact, it is advantageous that the proposed technique can estimate the

quantity of a category.

Figure 4. Composite images of eight categories. The top four categories are (a) wetland 1,
(b) wetland 2, (c) grassland, (d) evergreen, from left to right. The bottom four categories are
(e) deciduous trees, (f) agricultural land, (g) urgan area/bare land (h) water from left to right.
The colour bar on the right is an index to show the area percentage of a category in a certain
pixel. Black regions along the perimeter of the colour image were not used in the calculations
(e.g. ocean, distinct land cover distribution), and the black regions within the image could not
be embedded with cloud-free data.

Figure 5. Composite image of three categories. The categories are (a) vegetation, (b) urban
area/bare land, (c) water from left to right. The colour bar on the right is an index to show the
area percentage of a category in a certain pixel. Black regions along the perimeter of the
colour image were not used in the calculations (e.g. ocean, distinct land cover distribution),
and the black regions within the image could not be embedded with cloud-free data.
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In order to improve the accuracy of land cover estimates in a wide area for future

studies, several points were considered for improvement. To begin with, the spectral

signature of the categories in northeastern Asia resembled each other well, so it was

difficult to discriminate between them and estimate endmembers. For example, the

spectra of deciduous tree and agricultural field resemble each other. McGwire et al.

(2000) also found that this may occur because two spectral endmembers are so

similar, creating non-unique solutions to the mixture equations where noise plays a

large factor in pushing the weights to one endmember or the other. Thus, the

method can be expected to perform optimally when cover types are spectrally

separated and well represented in the area of interest.

Secondly, the accuracy of the classification Landsat TM data, which are assumed

to be composed of pure pixels, may not be as high due to current classification

methods that are subjective; thus, in the future, a classification method which does

not intervene human judgment needs to be developed. Here, the ISODATA method

was used to classify the Landsat TM image. This requires human intervention to

judge the categories. In this study, a 30 m630 m spatial resolution surface imagery

was used, so it is possible to unmix the NOAA images at a higher accuracy if higher

resolution data were used instead.

Moreover, in the future surface radiant exitance-related errors need to be dealt

with. Here we assumed that the measured coarse spatial resolution radiance

represents the true radiance of the target area. However, errors can be made due to

atmospheric attenuation of the signal, solar and viewing geometry (bidirectional

effects), subpixel cloud effects, topographical variation, and instrument noise. Thus

these problems need to be taken into consideration.

Finally, there was the problem of error caused from the geometric correction of

the AVHHR imagery. The conversion RMSE was within one pixel, which equals

less than one kilometre difference in the AVHHR imagery. It is difficult to estimate

an accurate endmember due to this deviation caused by geometric correction.

Currently there are limits to geolocation accuracy for existing fine and coarse spatial

resolution satellites due to the fact that the fine and coarse spatial resolution

instruments currently orbit different platforms. Puyou-Lascassies et al. (1994) also

found that the ability to unmix coarse spatial resolution data using fine resolution

data is adversely affected by current limitations on coregistration accuracies.

However, according to Oleson et al. (1995), recently developed techniques for

optimally determining spacecraft position and attitude based on high resolution

surface maps have demonstrated potential for significantly increasing georegistra-

tion accuracies for coarse spatial resolution instruments. In future studies, in

addition to taking BRDF effects into account, georegistration techniques may

improve the proposed method.

6. Conclusions

A practical method for unmixing mixed pixels of coarse resolution images and

synthesizing a land cover area composite image to eliminate the influence of clouds

has been proposed. AVHRR radiance measurements were unmixed using co-located

Landsat TM land cover for calibration. From this, the land cover area at the

subpixel level of a coarse resolution image can be estimated. In this study, the actual

land cover distribution within each mixed pixel was measured from AVHRR images

of northeastern Asia.

A land cover distribution image 883
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In addition, the verification of the unmixing accuracy was carried out with

optimistic results. Over a single scene processed the land cover was estimated with

,20% accuracy for three classes and ,30% accuracy for eight classes. From the

RMSE results, it was shown that the land coverage could be estimated at a relatively

acceptable accuracy. Although the unmixing accuracy was different according to

land cover type, this unmixing method was shown to be effective according to

certain objectives, from both results of eight categories and three categories.

Moreover, the proposed techniques are a considerable improvement over estimating

relative quantity of a category.

Furthermore, a compositing method was considered to be able to evaluate

uniform land cover areas to remove the influence of clouds. From validation tests,

the best method to create an accurate land coverage map was simply to select the

best estimation of a given area from unmixed results. By synthesizing composite

images, the accuracy of the estimated values could also be improved. By producing

composite images land cover distribution can be monitored without the affects of

clouds.

Accumulated data from the past can be used for environmental assessment at a

global scale. By using this technique, it is possible to evaluate yearly change of the

detailed land cover using coarse resolution images. Furthermore, this study shows

that integration techniques that exploit the unique characteristics of multiple

instruments are preferable over methods that are compromised by the inherent

disadvantages of a single dataset. Thus, by using multiple instruments with the

proposed method, the affects of clouds can be removed and information on the

status and condition of the existing land types as well as any change occurring in

the land type condition over time can be obtained to assess detailed land cover

distribution at a global scale for research such as improvement of land management

practices on lands susceptible to desertification.
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