可搬型 Scanning Lidar を用いた地表面と樹冠高の3次元計測

3-D Measurement of Terrain and Woody Canopy Height Using a Portable Scanning Lidar

吉見健司 *, **、細井文樹 *、清水庸 *、山田博章 **、大政謙次 * Kenji Yoshimi*, **, Fumiki Hosoi*, Yo Shimizu*, Hiroaki Yamada** and Kenji Omasa*

*東京大学大学院農学生命科学研究科 〒113-8657 東京都文京区弥生 1-1-1

* The University of Tokyo, Graduate School of Agricultural and Life Sciences
1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan
** 東亜大学大学院総合学術研究科 〒 751-8503 山口県下関市一の宮学園町 2-1
** University of East Asia, Graduate School of Integrated Science and Art
2-1 Ichinomiya-Gakuen, Shimonoseki, Yamaguchi 751-8503, Japan

ABSTRACT

A method for estimating three-dimensionally DTM (Digital Terrain Model) and DCHM (Digital Canopy Height Model) from range data measured by a portable scanning Lidar was examined. This method is expressed by (1) measurement of ground and tree canopy from nine points using a portable scanning Lidar, (2) transformation from polar coordinate to orthogonal coordinate and estimation of DEM (Digital Elevation Model) for each set of range data, (3) estimation of a composite DEM from DEM's obtained at nine points, (4) estimation of DTM from the composite DEM, and (5) calculation of DCHM by subtracting DTM from the composite DEM. As a result, the DCHM and DTM showed exact tree canopy and terrain surfaces. The error of DCHM was within 0.34 m (0.18 m in RMSE) in comparison with results measured by a rangefinder.

Key words : DEM, DTM, Portable scanning lidar, Urban green area, Woody canopy height

1. はじめに

都市緑地は、気候緩和や大気浄化などの環境調整機能が あるため重要視されている。このため、都市緑地の分布や 構造に関する調査が必要とされている。こうした情報を得 る手法として、航空写真測量やSAR (Synthetic Aperture Radar)、Landsat TM (Thematic Mapper) などを利用したリ モートセンシングによる調査が広く行われている (Cohen et al., 1995; Osumi, 1995; Rignot et al., 1994; Nilson, 1996; Waring et al., 1995)。これらは、広範囲の計測には適して いるが、空間解像度が非常に粗く、樹木の構造やバイオマ スを正確に計測するには問題がある。また、計測周期や天 候によって取得可能なデータが制限されてしまう問題もある。このため、航空機からのScanning Lidar (Light Detection and Ranging) による計測が行われるようになり (Flood et al., 1997; Harding et al., 2001; Naesseet, 1997; Nilson, 1996; Omasa et al., 2000)、最近、特に、ヘリコプター搭載 の高空間分解能 Scanning Lidar により、樹木の3次元構造 やバイオマスがより正確に得られるようになってきた (Omasa et al., 2000; Omasa et al., 2003)。

一方、リモートセンシングデータの解析のためには、地上 調査による裏付けが必要である。しかし、地上調査により正 確な樹木構造やバイオマスを求めるには、多大な時間と労 力を必要とする。このため、最近、地上調査にも小型化され た可搬型 Scanning Lidar を用い、樹木の3次元構造の計測 が行われるようになってきた(Hayashi et al., 2001; Omasa, 2000; Omasa et al., 2002; Urano et al., 2003; Yoshimura, 2001)。

しかし、可搬型 Scanning Lidar による計測データから地 表面推定を行い、正確に樹冠高を求めることは行われてい なかった。

そこで、本研究では可搬型 Scanning Lidar を用いて、地 表面と樹木の計測を行い、地表面および樹冠高を正確に推 定する方法について検討した。そして、同時期に行った樹 高の直接計測との比較による精度の検討を行った。

2. 可搬型 Scanning Lidar

本研究で使用した可搬型 Scanning Lidar システムは、1 次元のレーザースキャナ(RIEGL Q140/60)に、高精度の 回転用サーボモータを装着し、ノート型パソコンで制御す ることにより、2次元的に距離画像が計測できるシステム に改良した。レーザースキャナ部では、赤外線(0.9 µm) の半導体レーザーを計測対象物にパルス照射(12000 Hz) し、対象物から帰ってくる反射光をフォトダイオードで検 出し、その往復時間から距離を算出した。縦方向の計測で は、4枚のポリゴンミラーの回転により60度(990 データ) の視野角範囲を1/4秒でスキャンし、この縦方向スキャン が完了すると、サーボモータ(回転速度30 r/min、分解能 100,000 パルス/回転)が設定した一定の角度で回転し、 次の縦方向のスキャンを行った。なお、横方向はサーボモ ータで320度まで回転できる。

これらの制御はすべてノート型パソコンで行い、また、 データの収集、解析も同じノート型パソコンで行った。本 システムにおいて計測データは縦方向990データで固定で あるが、横方向はノート型パソコンで設定することにより、 サーボモータの回転角及び計測データ数を自由に設定でき る。このシステムは、反射率の大きい物体を被写体とした 場合、約300 m程度まで計測でき、その計測分解能は 8 mmで、測定精度は±5 cmである。なお、計測データの 座標変換のために、距離情報だけでなく、縦横のスキャン 角度も併せて収集した。また、レーザーは、スキャニング 下で人体への影響がないクラス1のレベルである。

3. 計測対象および方法

可搬型 Scanning Lidar を用いた計測は、東京大学構内の 樹木を対象として行った。Fig.1に計測地点及びスキャニ ング範囲を示す。計測は2000年11月末に、建物屋上5ヵ 所(A to E)から樹木を対象として、また、地上の4ヵ所 (F to I)から地表面および樹木下部を対象として実施した。 その際、計測角度を70度、回転角度を0.09度に設定した。

一方、可搬型 Scanning Lidar を用いた計測と平行して、 樹木5種20本(イチョウ、マテバシイ、ケヤキ、メタセ コイア、ヒマラヤスギ)の樹高(樹冠の最高点の高さ)の 直接計測を行った。計測には、三角測量の原理を利用した ポータブル型高性能レーザー距離計(RIEGL社、型式: FG21-HA、精度5 cm)を用いた。計測対象樹木の選定に あたっては、一定の場所に集中しないように Fig.1の計測 対象全域に分布するよう配慮した。また、計測は同一樹木 で3回行い(標準偏差13.0 cm 以下)、その平均を求めた。

Fig. 1 A measurement point and scanning range.

4. 地表面および樹冠高の推定方法

4.1 距離画像の作成

可搬型 Scanning Lidar により得られた距離データと縦横 スキャン角度のデータを用いて、各々の Lidar の設置点か らの距離画像を作成した。Fig. 2 に Lidar の設置点 A から

Fig. 2 Distance image of a test site from point A.

の距離画像の例を示す。この距離画像では、直線距離が 0.00 m から 276.00 m までをグレースケールで表し、黒い 部分が最も近く、白くなるにつれて距離が遠くなるように 表されている。ただし、276.00 m を越える空などの領域や、 反射が小さい窓などは黒色で表示した。

このようにして得られた各々のLidarの設置点(A to I) からの距離画像を用いて、地表面および樹冠の高さのメッ シュデータを得る手法について検討した。Fig.3はこの方 法の処理手順である。それぞれの手順について以下に説明 する。

Range images measured by portable scanning lidar

4.2 座標変換

Lidar の設置点からの距離画像を用いて、地表面および 樹冠高の推定を行うためには、極座標 (d, α, β) から直行 座標 (x, y, z) への変換が必要である (Fig. 4)。この座標 変換は次式で与えられる。

$\mathbf{x} = \mathbf{d}\cos\alpha\cos\beta\tag{1}$))
---	---	---

$y = d\cos\alpha \sin\beta \tag{2}$	2)	
-------------------------------------	---	---	--

 $z = dsin \alpha$

ただし、d は Lidar の設置点から計測対象点までの距離、 α

Fig. 4 Transformation of coordinate.

は縦方向のスキャン角度、 β は横方向のスキャン角度である。また、x,yは、それぞれ Lidar の設置点を原点としたときの直行座標での位置(x,y)、z は高さである。

さらに計算の便宜上、zを次式により基準高からの高さ hに補正し、この値をzの代わりに用いることとした。

 $\mathbf{h} = \mathbf{z} + \mathbf{H} \tag{4}$

ここで基準高は地表面より5m低い位置とし、Hは基準高からの高さhを求めるための補正定数である。基準高を地表面から5m低い位置にすることによって、地表面に凹凸があってもhとしては常に正の値で処理することができるようになる。

上記の処理をLidarの設置点(A to I)で計測された距離 画像に対して行い、9枚のメッシュデータモデル(DEM: Digital Elevation Model)を得た。なお、前処理として距離画 像に含まれているスパイク状のノイズを除去するために、 5×5画素のメディアンフィルター処理を行った。

4.3 メッシュデータの合成

可搬型 Scanning Lidar により得られた距離画像の DEM は、メッシュデータの密度が遠距離ほど粗くなる。また、 1 地点からの計測では、計測対象物の後方のデータを得る ことができない。このため、建物屋上および地上という異 なる位置から得られた複数の DEM を一つの DEM に合成 する必要がある。

4.2 で得られた9カ所からの DEM は、それぞれ異なる独 立した座標をもっている。そこで、2枚の DEM から同一 対象点を3点以上抽出し、アフィン変換を用い座標を統一 する。同様の方法で、この合成された DEM に他の DEM を合成するといった処理により、座標が統一された1枚の 合成 DEM を作成する。その際、同一の(x,y) 座標上に 異なるz座標がある場合は、z座標の値が最も大きいデー タを採用した。

4.4 地表面および樹冠高の推定

(3)

被覆率が高い樹木では、多くの場合、樹木によりレーザ ーが遮断され、地表面を計測することが困難である。そこ で、データの取得できた周辺の地表面から計測範囲の地表 面を推定する必要がある。

実在地表面の抽出には、合成 DEM のヒストグラムを用 いた。基準高が地表面より5 m 低い位置にあるため、ヒス トグラム上では h = 5 m 付近の分布が地表面を表し、これ をもとに、閾値を決定した。さらに、ここで得られた実在 地表面から、TIN 内挿法(Dakowicz et al., 2003)により仮 想地表面を推定した。TIN 内挿法は3 点から平面が構成さ れる原理に基づいており、近接の3 点で三角形を構成し、 地表面データが無い部分は補間処理を行う手法である。こ の処理により、連続的な仮想地表面(DTM: Digital Terrain Model)を生成でき、樹冠垂直下の地表面が得られ ないという問題が解決できる。

樹冠高のメッシュデータモデル (DCHM: Digital Canopy Height Model) は、4.3 で得られた合成 DEM から地 表面のメッシュデータ DTM を引くことによって推定した。

5. 結果および考察

5.1 可搬型 Scanning Lidar データの解析結果

Fig. 5は、Fig. 1の設置点Aからの距離画像を、4.2で述 べた方法を用いて作成した DEM である。この画像では、 h = 0.00 m から 36.64 m までをグレースケールで表し、黒 い部分が最も低く、白くなるにつれて高さが高くなるよう に表されている。この段階での樹冠高は、樹冠高だけでは なく地表面の起伏も混在している。

Fig. 6は、全ての DEM を合成した DEM を画像で示した ものである。この画像では、h = 0.00 mから44.92 mまで をグレースケールで表したものである。この処理によりデ ータ量が増加し、遮蔽部分や計測範囲外を補っていること が確認できる。

この処理により、可搬型 Scanning Lidar により得られた 距離画像の DEM が、メッシュデータの密度が遠距離ほど 粗くなり、1地点からの計測では、計測対象物の後方のデ ータを得ることができないという問題は解決できた。

Fig. 7は、合成 DEM の高さをヒストグラム化したもので ある。このヒストグラムにおいて、h=5m付近の集合を地 表面とし、閾値を 4.40 m から 5.05 m と決定し、基準レベル からの実在地表面を得た。さらに、ここで得られた実在地 表面から、TIN 内挿法により仮想地表面を推定した。Fig. 8 は、推定した地表面のメッシュデータ DTM である。この 処理により、連続的な仮想地表面を生成することができた。

Fig.9は、合成 DEM から DTM をひくことによって推定 した DCHM である。地表面の起伏が除かれ、平地に樹木

Fig. 5 DEM : Digital Elevation Model

Fig. 6 A combined DEM.

Fig. 7 Histogram of a combined DEM.

Fig. 8 DTM : Digital Terrain Model

Fig. 9 DCHM : Digital Canopy Height Model

が生育しているように表示されている。この図から、樹冠の形や樹木の高さがわかる。

5.2 計測精度の検討

DCHM から求めた樹高と直接レーザー距離計により計 測したものを比較すると、誤差は0.34 m 以内であった。 また、RMSE (root mean square error) でみると0.18 m 程度 の誤差であった。

Scanning Lidar による樹高計測の誤差要因として、合成 DEM や DTM の推定誤差が考えられる。また、比較に用 いた直接計測の誤差による要因も考えられる。

今回の計測では、樹冠を対象とした計測だけではなく、 地表面および樹木下部を対象とした計測も行った。これに より、正確な仮想地表面を生成することができた。また、 Scanning Lidar を用いた計測と地上での直接計測を同時期 に行うことにより、樹木の成長により生じる誤差をなくし た。さらに、直接計測の際に、樹高が正確に計測できる樹 木を選定した。これらの処置によって、本方法の妥当性を 確認することができた。

6. おわりに

本研究では可搬型 Scanning Lidar を用いて、地表面と樹 木の計測を行い、地表面および樹冠高を正確に推定する方 法について検討した。そして、同時期に行った樹高の直接 計測との比較による精度の検討を行った。この方法の特徴 は、極座標 (d, α, β) から直行座標 (x, y, z) へ変換し DEM を作成すること、複数地点から得られた DEM を一 つの DEM に合成することにより、データ量を増大させる こと、合成 DEM から DTM を引くことにより DCHM を推 定することである。

推定した DCHM は、樹高を地上で直接計測した結果と
 比較すると、個々の樹木において 0.34 m 以内、RMSE で
 0.18 m 以内の計測誤差であった。この結果より、DCHM、
 DTM は、精度よく推定できたことがわかる。

今回の樹冠高推定は、平坦な地表面の範囲についてのみ行 ったが、今後は、起伏度変化の激しい地表面や傾斜の大きい 地表面についての検討及び実際の森林での検討等が必要で あろう。

引用文献

- Cohen, W. B., Spies, T. A., and Fiorella, M., 1995 : Estimating the age and structure of forests in a multi-ownership landscape of western Oregon, U.S.A. Int. J. Remote Sens. 16, pp.721-746.
- Flood, M., and Guteluis, B., 1997 : Commercial implications of topographic terrain mapping using scanning airborne laser rader.

Photgramm. Eng. Remote. Sens. 63, pp.327-366.

- Harding, D. J., Lefsky, M. A., Parker, G. G., and Blair, J. B., 2001 : Laser altimeter canopy height profiles methods and validation for closed-canopy, broadleaf forest. Remote Sens. Environ, 76, pp283-297.
- Hayashi, M., Numata, Y., Oguma, H., Yamagata, Y., 2001 : Forest parameter measurement by using remote sensingdata. Journal of the Japan Society of Photogrammetry, 40 (3), pp.41-46.
- Naesseet, E., 1997 : Determination of mean tree height of forest stands using airborne laser scanner data. ISPRS J. Photogramm Remote Sens, 52, pp.49-56.
- Nilson, M., 1996 : Estimation tree heights and stand volume using an airborne lidar system. Remote. Sens. Environ,. 56, pp.1-7.
- Osumi, S. (ed.), 1995 : The lecture on forest measurment, Yokendo, Tokyo.
- Omasa, K., 2000 : Phytobiological IT in agricultural engineering. Proc. The XIV Memorial CIGR World Congress 2000, pp.125-132.
- Omasa, K., Akiyama, Y., Ishigami, Y. and Yoshimi, K., 2000 : 3-D Remote sensing of woody canopy heights using a scanning helicopter-borne Lidar system with high spatial resolution. Journal of Remote Sensing Society of Japan, 20, pp.394-406.
- Omasa, K., Urano, Y., Oguma, H., and Fujinuma, Y., 2002 : Mapping of tree position of *Larix leptolepis* woods and estimation of diameter at breast hight (DBH) and biomass of the trees using range data measured by a portable scanning lidar. Journal of Remote Sensing Society of Japan, 22, pp.550-557.
- Omasa, K., Qiu, G. Y., Watanuki, K., Yoshimi, K., and Akiyama, Y., 2003 : Accurate estimation of forest carbon stocks by 3-D remote sensing of individual trees. Environmental Science & Technology, 37, pp.1198-1201.
- Rignot, E., Way, J., Williams, C. and Viereck, L., 1994 : Radar estimates of aboveground biomass in boreal forests of interior Alaska. IEEE Trans Geosci. Remote Sens, 32, pp.1117-1124.
- Urano, Y., Omasa, K., 2003 : Error estimation about the biomass of Japanese cedar (*Cryptomeria japonica*) woods measured by a portable scanning lidar. Eco-Engineering, 15 (2), pp.79-85.
- Waring, R. H., Way, J., Hunt, E. R. Jr., et al., 1995 : Imaging radar for ecosystem studies. Bio-Science. 45, pp.715-723.
- Yoshimura, M., 2001 : Process of canopy growth in spatial scaling. Science, Iwanami shoten, pp.1210-1216.
- Dakowicz, M. and Gold, C., 2003 : Extracting meaningful slopes from terrain contours. International Journal of Computational Geometry & Applications. 13 (4) : pp.339-357.