A Quantitative Analysis of the Relationships between SO₂ or NO₂ Sorption and Their Acute Effects on Plant Leaves Using Image Instrumentation

Kenji OMASA,* Yasushi HASHIMOTO** and Ichiro AIGA*

*Division of Engineering, The National Institute for Environmental Studies, Yatabe, Ibaraki 305, Japan **Faculty of Agriculture, Ehime University, Matsuyama, Ehime 790, Japan

(Received April 16, 1981)

We have reported on a method for evaluating the distributions of stomatal resistance to water vapor diffusion and SO_2 or NO_2 sorption on a leaf, using a thermal infrared image instrumentation system. In the present paper, we examined quantitatively the relationships between the acute effects, such as stomatal response and visible injury, of SO_2 or NO_2 on a leaf and gas sorption, using the image instrumentation method. The results obtained were as follows.

1) There was a tendency for stomata to close during SO_2 or NO_2 exposure. However, the behavior varied randomly at different sites on a leaf. The differences in stomatal response at local sites were not dependent on those in integrated SO_2 or NO_2 sorption for 60 minutes exposure. These results suggest that there are differences in the stomatal sensitivity to SO_2 or NO_2 at local sites on a leaf.

2) There was a tendency for visible injury to occur at sites where the integrated SO_2 or NO_2 sorption was over a threshold value. Injured leaves were generally separated into two areas, a healthy area and an injured one. It was seen that the characteristic visible injuries were caused by differences in boundary layer and stomatal resistances at local sites governing the gas sorption.

INTRODUCTION

Sulfur dioxide and nitrogen dioxide are major air pollutants that cause various effects on plants.¹⁻³⁾ The degree of the effects of SO₂ or NO₂ in relation to the concentration, dosage size and the amount of sorption on one leaf or a whole plant has been frequently discussed.^{1,2,4,5)} However, visible injury and stomatal response, which are conspicuous symptoms of the acute effects, vary strikingly at different sites on the leaf.⁶⁻⁹⁾ Under the usual exposure conditions in the field and growth chamber, the leaf boundary layer and stomatal resistances governing SO₂ and NO₂ sorption also vary.⁸⁻¹⁰⁾ Therefore, to better understand the effects of SO₂ and NO₂ sorption, it is necessary to clarify relationships between local sorption, factors governing the sorption, and the degree of the effects at local sites.

We have recently developed an instrumentation method for studying the distribution of the sorption of air pollutants, transpiration, and stomatal diffusion resistance of leaves using a thermal infrared image instrumentation system, and have measured changes in the distributions of leaf temperature, transpiration rate, sorption rate and stomatal resistance to water vapor diffusion during SO_2 exposure.⁹⁾ However, the relationships between sorption and its effects all over the leaf surface have not been determined.

We therefore made the present study to elucidate the relationships between the distribution patterns of SO_2 or NO_2 sorption and its acute effects such as visible injury and stomatal response on leaves.

MATERIALS AND METHODS

Plant materials. Sunflower plants (*Helianthus annuus* L. cv. Russian Mammoth) were grown in a phytotron at $25/20^{\circ}$ C day/night temperature and 70% RH under natural light for 6 to 7 weeks (1,800 to 2,500 cm² leaf area/plant and 20 to 25 leaves/ plant) after sowing in pots (10 cm in diameter and 20 cm in height). The pot was filled with a 4:2:4:1 (v/v) mixture of vermiculite, perlite, peat moss and fine gravel which was moistened with nutrient solution. The plants were irrigated daily. Intact mature leaves (130 to 140 cm² leaf area) were used in the experiments.

Environment control system.⁹⁾ SO₂ and NO₂ were introduced into the environment control chamber designed and constructed for studies of air pollution effects on plants. Air temperature and humidity in the chamber were maintained at $25.0\pm$ 0.1°C and $62\pm1\%$ RH. SO₂ and NO₂ concentrations were kept at the desired values of ca. 2 volppm and 7 volppm, respectively. An apparatus for fixing an intact leaf horizontally and fans for maintaining a uniform air current on the leaf surfaces were set in the chamber. The intact leaf was attached to a thick plastic sheet ($20 \times 20 \text{ cm}^2$) cut out geometrically in a shape similar to that of the leaf (cut area; ca. 100 cm²), and was placed on the fixing apparatus. The distributions of shortwave radiation, longwave radiation, illumination and boundary layer resistance to heat transfer on the leaf surface were maintained at $2.37\pm0.05 \times 10^{-3} \text{ cal}\cdot\text{cm}^{-2}\cdot\text{s}^{-1}$, ca. 25 klx, and $1.5\pm0.1 \text{ s}\cdot\text{cm}^{-1}$ except at the leaf edges.

Instrumentation system.⁹⁾ Distributions of integrated SO_2 or NO_2 sorption and stomatal resistance to water vapor diffusion were evaluated from the leaf temperature distribution, measured by using a thermal infrared image instrumentation system. Equations for evaluating their distributions were as follows:

(1) Stomatal resistance to water vapor diffusion at local site x, $r_{res}(s + cm^{-4})$, is expressed by

$$r_{ws_x} = \frac{2\{X_{s_x}(T_{i_x}) - \Phi X_s(T_a)\}}{W_x} - \left(\frac{\kappa}{D_w}\right)^{2/3} r_{ka_x} \tag{1}$$

and

$$W_{x} = \frac{\alpha_{p} E_{s_{x}} + \epsilon \{E_{w_{x}} - 2\sigma(273.15 + T_{l_{x}})^{4}\} + 2\rho c_{p} (T_{a} - T_{l_{x}})/r_{ka_{x}}}{L}, \qquad (2)$$

where T_i is leaf temperature (°C), T_a is air temperature (°C), $X_s(T)$ is saturated water vapor density at T °C ($g \cdot cm^{-3}$), Φ is relative humidity, W is transpiration rate ($g \cdot cm^{-2} \cdot s^{-1}$), r_{ka} is boundary layer resistance to heat transfer ($s \cdot cm^{-1}$), κ is thermal diffusivity of air (=0.222 cm² \cdot s^{-1}), D_w is air-water vapor diffusivity (=0.249 cm² \cdot s^{-1}), E_s is shortwave radiation from the environment (cal $\cdot cm^{-2} \cdot s^{-1}$), E_w is longwave radiation from the environment (cal $\cdot cm^{-2} \cdot s^{-1}$), α_p is absorption coefficient of shortwave radiation of the leaf (=0.68, sunflower), ϵ is emissivity of longwave radiation of the leaf (=0.98, sunflower), σ is Stefan-Boltzmann constant (=1.354×10⁻¹² cal·cm⁻²·s⁻¹·K⁻⁴), ρc_p is volumetric heat capacity of air (=0.285×10⁻³ cal·cm⁻³· °C⁻¹) and L is latent heat by evaporation (=583.3 cal·g⁻¹). The suffix x denotes the values at local site x on the leaf surface.

(2) Integrated SO₂ or NO₂ sorption at local site x, Q_{int_x} (g·cm⁻²), is expressed by

$$Q_{int_x} = \int_0^T Q_x dt \tag{3}$$

$$Q_x = \frac{2P_a}{r_{gax} + r_{gsx}} \tag{4}$$

$$r_{gax} = \left(\frac{\kappa}{D_g}\right)^{2/3} r_{\kappa ax} \tag{5}$$

and

$$r_{gs_x} = \left(\frac{D_w}{D_g}\right) r_{ws_x} , \qquad (6)$$

where Q is SO₂ or NO₂ sorption rate $(g \cdot cm^{-2} \cdot s^{-1})$, T is exposure time (s), t is time (s), P_a is SO₂ or NO₂ concentration of air $(g \cdot cm^{-3})$, r_{ga} is boundary layer resistance to SO₂ or NO₂ diffusion $(s \cdot cm^{-1})$, r_{gs} is stomatal resistance to SO₂ or NO₂ diffusion $(s \cdot cm^{-1})$ and D_g is air-SO₂ or -NO₂ diffusivity (=0.129 cm² \cdot s^{-1} (SO₂), =0.155 cm² \cdot s^{-1} (NO₂)).

This image instrumentation system was calibrated by a blackbody source (Electro Optical Industries, Models PD1401X and D254) with chromel-constantan thermocouples which were traceable to the National Bureau of Standards in the U.S.A. The error in measuring leaf temperature using this system was within ± 0.1 °C, and errors in evaluating sorption and stomatal resistance to water vapor diffusion were within ca. 10% and $0.3 \text{ s} \cdot \text{cm}^{-1}$, respectively, until beginning of fading of plant pigments. The resolution of this system was $256^{H} \times 240^{v}$ pixels. Air temperature was measured with a calibrated copper-constantan thermocouple of 0.1 mm diameter, humidity with a dew-point instrument (EG and G, Model 660), SO₂ concentration with a pulsed fluorescent SO₂ analyzer (Thermo Electron, Model 43), NO₂ concentration with a chemiluminescent $NO-NO_2-NO_x$ analyzer (Thermo Electron, Model 14), and shortwave radiation or illumination with radiometers or a photometer (Eko, Model MS-42 and LI-COR, Model LI-185). Longwave radiation and boundary layer resistance to heat transfer were evaluated by substituting values obtained from experiments, where dry and wet model leaves were used instead of a real leaf, in the following Eq. 7 and by solving the simultaneous equations thus obtained.

$$\alpha_p E_{s_x} + \epsilon E_{w_x} - 2\epsilon \sigma (273.15 + T_{l_x})^4 + \frac{2\rho c_p (T_a - T_{l_x})}{r_{ka_x}} - LW_x = 0$$
(7)

where E_{sx} , E_{wx} , W_x , T_{lx} and r_{kax} were maintained constant all over the leaf surface. Leaf temperature and transpiration rate were measured with this image instrumentation system and electric balances (Mettler, Models PK 16 and PL 3000). The errors in evaluating longwave radiation and boundary layer resistance to heat transfer were within 1×10^{-4} cal·cm⁻²·s⁻¹ and 0.1 s·cm⁻¹, respectively. The signals

detected with these instruments were converted into digital signals and were transmitted to a computer for the image instrumentation system.

Experimental methods. An intact leaf of a test plant grown in a phytotron was attached to a thick plastic sheet and was placed horizontally on the fixing apparatus in the chamber. After the plant was sufficiently acclimatized to the new conditions, exposure to SO_2 or NO_2 was carried out for 60 minutes. The changes in leaf temperature distribution were measured at intervals of 2 minutes during the gas exposure by using the image instrumentation system, and the measured data were filed on magnetic tapes. The changes in distributions of stomatal resistance to water vapor diffusion and integrated SO_2 or NO_2 sorption were evaluated from the filed image data of the leaf temperatures, according to Eqs. 1 to 6. The visible injury images on the leaf surfaces were photographed one day later.

RESULTS AND DISCUSSION

Figure 1 shows changes in the distribution of stomatal resistance to water vapor diffusion on a leaf surface during exposure to ca. 2 volppm SO₂. The stomatal resistances distributed in the range of 0.4 to $1.4 \text{ s} \cdot \text{cm}^{-1}$ before the start of SO₂ exposure, began to increase within 5 minutes after the start and reached 0.7 to 3.2 s.cm⁻¹ after 60 minutes exposure. From a series of image data, there was an observable tendency for the stomatal resistance to be great and to increase especially in the vicinity of veins and leaf edges. Stomatal resistance is generally an indicator of the degree of stomatal opening and increases at sites of stomatal closure under usual growing conditions, except in cases of water-soaking and wilting.^{9,10)} Figure 2 shows changes in the distribution of integrated SO₂ sorption during the exposure and a photograph (f) taken one day later under lighting. The integrated SO₂ sorptions were 0.05 to 0.10×10^{-5} g·cm⁻² after 8 minutes of SO₂ exposure, 0.31 to 0.50×10^{-5} $g \cdot cm^{-2}$ after 30 minutes exposure and 0.62 to $1.05 \times 10^{-5} g \cdot cm^{-2}$ after 60 minutes. Visible injuries progressed successively with water-soaking, wilting, fading of pigments and necrosis or chlorosis. Water-soaking began to appear slightly at sites of the smallest stomatal resistance after 60 minutes exposure. However, wilting and fading of vegetal pigments did not appear during SO₂ exposure. The injuries in Fig. 2, (f) which occurred one day later, reached the stage of necrosis and chlorosis. There was a tendency for the visible injury to occur at sites where the integrated SO_2 sorption at the end of 60 minutes exposure was over a threshold value of ca. 0.85×10^{-5} g·cm⁻². The differences in stomatal response at local sites were not dependent on those in the integrated SO₂ sorption.

Figure 3 shows changes in the distribution of stomatal resistance to water vapor diffusion on a leaf surface during exposure to ca. 7 volppm NO₂. The stomatal resistances were 0.4 to $1.4 \text{ s} \cdot \text{cm}^{-1}$ before the start of NO₂ exposure, began to increase within a few minutes after the start and reached 4.8 to $17 \text{ s} \cdot \text{cm}^{-1}$ after 60 minutes exposure. Unlike the phenomena observed during SO₂ exposure, the sites where increase of the stomatal resistance was striking could not be specified. Figure 4 shows changes in the distribution of integrated NO₂ sorption during the exposure, and a photograph (f) taken one day later under lighting. The integrated NO₂ sorptions were 0.08 to $0.14 \times 10^{-5} \text{ g} \cdot \text{cm}^{-2}$ at 8 minutes exposure, 0.55 to $1.0 \times 10^{-5} \text{ g} \cdot \text{cm}^{-2}$ after 30 minutes exposure and 0.83 to $1.85 \times 10^{-5} \text{ g} \cdot \text{cm}^{-2}$ after 60 minutes. Visible injuries progressed successively with water-soaking, wilting, fading of pigments and necrosis

Fig. 1 Changes in distribution of stomatal resistance to water vapor diffusion on a leaf during exposure to ca. 2 volppm SO₂. (a) to (e) show distribution patterns of the stomatal resistance at given periods of exposure. (f) shows changes with time of maximum (———), minimum (———) and mean (——) stomatal resistances and SO₂ concentration during the exposure. Environmental conditions: air temperature, 25.0°C; humidity, 62% RH; shortwave radiation, 2.37×10^{-3} cal·cm⁻²·s⁻¹; longwave radiation, 2.23×10^{-2} cal·cm⁻²·s⁻¹; illumination, 25 klx; boundary layer resistance to heat transfer, 1.5 s·cm⁻¹.

Fig. 2 Changes in distribution of integrated SO₂ sorption during the exposure in Fig. 1 and visible injury photographed one day later. (a) to (e) show distribution patterns of the integrated SO₂ sorption at given periods of exposure. (f) shows the distribution pattern of the visible injury.

or chlorosis in a manner similar to that seen in the images with SO₂ exposure. Watersoaking began to appear at the sites with the smallest stomatal resistance after 30 minutes exposure, and saturation occurred at the sites with small stomatal resistances after 40 minutes. It was observed that successive wilting began at the same sites after 50 minutes. The injuries in Fig. 4, (f) which occurred one day later, reached the stage of necrosis and chlorosis. There was a tendency for the visible injury to occur at sites where the integrated NO₂ sorption at the end of 60 minutes exposure was over a threshold value of ca. 1.2×10^{-5} g cm⁻². The differences in stomatal response at local sites were not dependent on those in the integrated NO₂ sorption.

Stomatal responses to SO_2 or NO_2 are complex; Several investigators have shown that the stomatal responses vary with plant species, culture conditions and gas concentrations.¹¹⁻¹⁶ Recently, by using the image instrumentation method, we have noticed that the stomatal responses to SO_2 vary at different sites on a leaf, and that the stomata behaved randomly.^{8,9} In the present study, we recognized that the stomatal response to NO_2 at local sites is also random. We further noticed that differences in stomatal response at local sites are not dependent on those in the integrated SO_2 or NO_2 sorption. These results suggest that there are differences in the stomatal sensitivity to SO_2 and NO_2 at local sites on a leaf.

Some investigators have attempted to analyze quantitatively the relationship between the amount of SO_2 or NO_2 sorption and the degree of visible injury from the standpoint of one leaf or of a whole plant.^{5,17)} However, they did not pay attention to differences in gas sorption and the visible injury at local sites. It is a characteristic of SO_2 and NO_2 visible injuries, which reached the stage of necrosis and chlorosis, that an injured leaf is generally separated into two areas, a healthy area and an injured one. In the present study, we examined the relationship between integrated sorption and visible injury at local sites all over the leaf surface, and showed that the characteristic injuries were caused by the slight differences in these vicinities of the threshold value of the integrated sorption.

In the present experiments, differences in the integrated SO₂ or NO₂ sorption at local sites were caused by differences in the stomatal resistance because the boundary layer resistance was kept constant all over the leaf surface, and the SO₂ or NO₂ concentration at the gas-liquid interface in the substomatal cavity was assumed to be zero volppm.^{15,18,19)} Under the usual exposure conditions in the field and growth chamber, however, the differences in the gas sorption at local sites depend on both boundary layer and stomatal resistances. Therefore, it can be said that the characteristic injuries of SO₂ or NO₂ are caused by differences in the boundary layer and stomatal resistances.

We sincerely wish to thank Messrs. Naka Ito and Takeshi Yamada of the University of Tsukuba for their assistance in these experiments, and the members of the Engineering Division who maintained the equipment and cultivated the plants used in the experiments.

REFERENCES

- MUDD, J. B. 1975. Sulfur dioxide. In "Responses of Plants to Air Pollution" (Ed. by Mudd, J. B., and T. T. Kozlowski) 9-22, Academic Press, New York.
- 2) TAYLOR, O. C., C. R. THOMPSON, D. T. TINGEY, and R. A. REINERT. 1975. Oxides of nitrogen. In "Responses of Plants to Air Pollution" (Ed. by Mudd, J. B., and T. T. Kozlowski) 121-139, Academic Press, New York.

Vol. 19, No. 2 (1981)

- 3) HORSMAN, D. C., and A. R. WELLBURN. 1976. Guide to the metabolic and biochemical effects of air pollutants on higher plants. In "Effects of Air Pollutants on Plants" (Ed. by Mansfield, T. A.) 185-199, Cambridge University Press, Cambridge.
- 4) THOMAS, M. D. 1961. Effects of air pollution on plants. W.H.O. Monogr. Ser. 46: 233-278.
- 5) BRESSAN, R. A., L. G. WILSON, and P. FILNER. 1978. Mechanisms of resistance to sulfur dioxide in the cucurbitaceae. Plant Physiol. **61**: 761-767.
- 6) BARRETT, T. W., and H. M. BENEDICT. 1970. Sulfur dioxide. In "Recognition of Air Pollution Injury to Vegetation: A Pictorial Atlas" (Ed. by JACOBSON, J. S., and A. C. HILL) C1-C17, Air Pollution Control Association, Pittsburgh.
- 7) TAYLOR, O. C., and D. C. MACLEAN. 1970. Nitrogen oxides and the peroxyacyl nitrates. In "Recognition of Air Pollution Injury to Vegetation: A Pictorial Atlas" (Ed. by Jacobson, J. S., and A. C. Hill) E1-E14, Air Pollution Control Association, Pittsburgh.
- OMASA, K., F. ABO, Y. HASHIMOTO and I. AIGA. 1980. Measurement of the thermal pattern of plant leaves under fumigation with air pollutant. Res. Rep. Natl. Inst. Environ. Stud. 11: 239-247.
- 9) OMASA, K., F. ABO, I. AIGA, and Y. HASHIMOTO. 1981. Image instrumentation of plants exposed to air pollutants—Quantification of physiological information included in thermal infrared images. Trans. Soc. Instrum. Control Eng. 17(6): in press.
- 10) MONTEITH, J. L. 1973. Principles of Environmental Physics. 78-149, Edward Arnold, London.
- 11) MAJERNIK, O., and T. A. MANSFIELD, 1970. Direct effect of SO₂ pollution on the degree of opening of stomata. Nature **227**: 377–378.
- 12) MAJERNIK, O., and T. A. MANSFIELD. 1972. Stomatal responses to raised atmospheric CO₂ concentrations during exposure of plants to SO₂ pollution. Environ. Pollut. 3: 1–7.
- UNSWORTH, M. H., P. V. BISCOE, and H. R. PINKNEY. 1972. Stomatal responses to sulphur dioxide. Nature 239: 458-459.
- 14) KONDO, N., and K. SUGAHARA. 1978. Changes in transpiration rate of SO₂-resistant and -sensitive plants with SO₂ fumigation and the participation of abscisic acid. Plant Cell Physiol. 19: 365-373.
- 15) OMASA, K., F. ABO, T. NATORI, and T. TOTSUKA. 1979. Studies of air pollutant sorption by plants (II) Sorption under fumigation with NO₂, O₃ or NO₂+O₃. J. Agric. Meteorol. 35: 77-83.
- 16) FURUKAWA, A., O. ISODA, H. IWAKI, and T. TOTSUKA. 1979. Interspecific differences in responses of transpiration to SO₂. Environ. Control in Biol. 17: 153–159.
- 17) THOMAS M. D., and G R. HILL, Jr. 1935. Absorption of sulphur dioxide by alfalfa and its relation to leaf injury. Plant Physiol. 10: 291-307.
- 18) OMASA, K. and F. ABO. 1978. Studies of air pollutant sorption by plants. (I) Relation between local SO₂ sorption and acute visible leaf injury. J. Agric. Meteorol. 34: 51-58.
- 19) OMASA, K. 1980. Environmental problems. 9. Gas exchange between polluted air and plants. Environ. Inf. Sci. 9(2): 77-80.

<和文抄録>

画像計測による植物葉の SO2 あるいは NO2 収着と 急性影響との関係の定量的解析

大政謙次*·橋本 康**·相賀一郎*

* 国立公害研究所技術部 ** 愛媛大学農学部

筆者らは,既に,熱赤外画像計測システムを用いて,気孔開度の指標である水蒸気拡散に対する気孔 抵抗や SO₂ あるいは NO₂ 収着量の葉面分布を推定する手法について報告している.本論文では,この 画像計測手法を用いて,SO₂ あるいは NO₂ に被暴した植物葉に生じる気孔反応や可視害等の急性影響 とガス収着量との関係を定量的に検討した.その結果は,以下のようであった.

1) SO2 あるいは NO2 暴露に伴い,気孔は閉鎖する傾向があった.しかし,その挙動は,葉の局所 部位により異なり,不規則であった.これらの局所部位における気孔反応の違いは,ガス暴露期間中の 積算ガス収着量の違いには依存しなかった.このことは,SO2 あるいは NO2 に対する気孔の感受性が 葉の局所部位により異なることを示唆している.

2) SO₂ あるいは NO₂ に被暴した葉において,可視害は,積算ガス収着量が閾値を越える領域に発現する傾向があった.そして,障害葉は,正常な領域と可視害領域に分離されるという特徴があった. この特徴ある可視害の発現は,葉の局所部位における気孔抵抗や葉面境界層抵抗などの SO₂ あるいは NO₂ 収着を支配する要因の違いにより生じることが示唆された.