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Definition of Entanglement Entropy(EE)

• Many body ground state (assumed to be unique) : 

• Density matrix :

• Reduced density matrix :

• Entanglement Entropy :

GGAB 

ABB TrA 

AAAAS  2logTr

G

A B

Physical Meaning of the EE

• Direct product state

• Maximally entangled state
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Entanglement Entropy in Spin Chains

• Vidal et al., PRL 90 (2003)
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EE in the XXZ and the XY model with magnetic field

□ : XY(a=1.1, γ=1) 

■ : XXZ(Δ=2.5, λ=0)

★ : XY(a=1, γ=1)

▲ : XY(a=∞, γ=0)

◆ : XXZ(Δ=1, λ=0)

Gapless point : kL
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~ (Conformal field theory prediction)

critical

Conjecture: gapped→saturation, gapless→logarithmic divergence



• Fan, Korepin and Roychowdhury, PRL 94 (2004)

EE in the S=1 valence-bond-solid state (Haldane gapped systems)

1. exact expression for the EE.

2. in the thermodynamic limit.

→ They ‘partially’ confirmed the conjecture proposed by Vidal et al.
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• S=1 valence-bond-solid state 

Affleck-Kennedy-Lieb-Tasaki(AKLT) model (1987)

A

: spin singlet

: symmetrization

This state is a GS of the following Hamiltonian :

A

: spin-1/2



Outline

1. Generic Valence-Bond-Solid with arbitrary integer spin-S

2. Exact expression for the entanglement entropy of VBS

a) Confirmation of the conjecture proposed by Vidal et al.

b) Relationship between the EE and correlation functions  

3.  Edge state interpretation and its application

4.  Numerical results

5.  Summary



Schwinger boson reps. of spin-operators

Constraint : 

a b

VBS with arbitrary integer-spin S

Boson a/b creates up/down spin.

Preliminary Notions

Coherent state representation of Schwinger bosons

Spinor coordinate : 

Advantage : The constraint                               is satisfied automatically.



… … … …

: spin singlet

: symmetrization

Construction of S=integer valence-bond-solid state

S

Schwinger boson reps.

Corresponding Hamiltonian (Arovas-Auerbach-Haldane)

Translationally invariant state

is a zero energy GS of the above Hamiltonian.

We cannot construct a translationally 

invariant S=half-odd-integer VBS.

projects the bond spin onto the total spin J subspace.



Our setting

N

k
L

: Spin S site

: Spin S/2 site

• Density matrix :

• Reduced density matrix :

• Entanglement Entropy :

Resolution of identity

Theorem : 

The reduced density matrix        does not depend on 

both the starting site k and the total length N.

We can set N=L without loss of generality.

0 N+1

Integrating over                                           and                            

one can show the following



L : Spin S site

: Spin S/2 site

Important Properties : 

• Entanglement Entropy :

(Reduced density matrix of two end spin-S/2’s :         ) 

⇒ We can focus on the RDM of two end spin-S/2’s.

•Transformation property of spinor coordinates

(∵ Schmidt decomposition)
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Eigenvalues of correlation matrix (                          matrix) 

→ Entanglement entropy
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Relation between EE and correlation functions  

• This can be thought of as a correlation function between the 

density matrices                   and                        .

• Matrix elements of          are completely determined by 

the two point correlation functions such as             .

cf) Free fermionic models : correlation matrix 

LSS


1

ji cc†

Then we can rewrite        as 
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Eigenvalues of

Total spin of the edge spins

j-th order polynomial ,・・・

Higher order polynomials are determined by the recursion relation :

The eigenvalues of        can be obtaine using transfer matrix.
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S=1

S=3

S=4

S=6

S=8

S=2

Saturation value
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Degrees of freedom

Entanglement Entropy

One can exactly calculate the finite size 

entanglement entropy by the recursion relation.



EE Boundary spins

Two spin-1’s
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Edge State Interpretation and its application

Two spin-S/2’s

Degeneracy (open boundary)

cf) Kennedy triplet + GS

boundary spin-S/2’s

Application of the Edge states

Each edge state behaves as a free spin-S/2.

→ This (S+1)-level system can be used as a qubit (qudit)!

magnetic field

Open boundary condition



Numerical Results

• S=2 Spin Hamiltonian

: Heisenberg, : AKLT

• S=1 Spin Hamiltonian (J.Phys.Soc.Jpn, 76 (2007) (Hirano and Hatsugai))

AKLT

Minimum at the AKLT point

EE from Exact Diagonalization 
(VBS g.s. is the exact g.s.)

= 2log2 3



 Obtained the exact expression for the EE in 

VBS states with generic integer-Spin S.

 Confirmed the saturation of the EE in the generic VBS.

 Clarified the relation between the EE and 

the correlation function 

 Proposed a novel application of the edge state 

as a qubit/qudit for quantum computation.

Summary

magnetic field


