Onsager's scars in nonintegrable spin chains

Hosho Katsura (Dept. Phys., UTokyo)

Acknowledgment: Naoyuki Shibata (UTokyo) Nobuyuki Yoshioka (RIKEN)

N. Shibata, H.K., and N. Yoshioka, *Phys. Rev. Lett.* **124**, 180604 (2020)

Physics of

Intelligence

Trans-Scale Quantum Science Institute

Outline

- 1. Introduction and Motivation
- Eigenstate thermalization hypothesis (ETH)
- Violation of ETH
- Experiment on Rydberg-atom array
- Quantum many-body scars (QMBS)
- 2. Models with exact QMBS
- 3. Results and generalizations
- 4. Summary

Foundation of equilibrium stat-mech

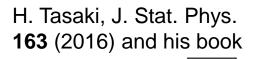
An isolated macro classical/quantum system relaxes towards a steady state at late times.

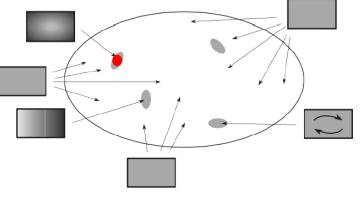
Typicality

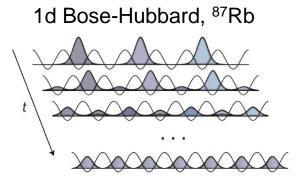
A great majority of states with the same energy are indistinguishable by macroscopic observables!

"thermal equilibrium"

- = common properties shared by the majority of states
- \rightarrow Microcanonical(MC) ensemble works!
- Thermalization
 The approach to these typical states
- Experiments and numerics
 S. Trotzky *et al.*, Nat. Phys. 8 (2012)
 M. Rigol *et al.*, Nature 452 (2008), ...







Eigenstate thermalization hypothesis (ETH) 4/25

• Setup

H: Hamiltonian, $|E_n\rangle$: (normalized) energy eigenstate, *O*: macroscopic observable, ρ_{mc} : MC ensemble, Energy shell: span{ $|E_n\rangle : H|E_n\rangle = E_n|E_n\rangle, E_n \in [E - \Delta E, E)$ }

• Thermal states

A state $|E_n\rangle$ is said to be thermal if $\langle E_n|O|E_n\rangle \simeq \text{Tr}[\rho_{\text{mc}}O]$.

• Strong ETH: All $|E_n>$ in the energy shell are thermal.

Believed to be true for a large class of non-integrable systems

Concept: von Neumann, Deutsch, Srednicki, Tasaki, ... Numerical evidence: D'Alessio et al., Adv. Phys. **65** (2016).

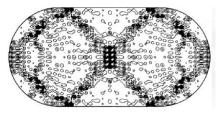
• Weak ETH: Almost all $|E_n>$ in the energy shell are thermal.

Proved under certain conditions: translational sym., local interaction Biroli, Kollath, Lauchli, PRL **105** (2010), Iyoda, Kaneko, Sagawa, PRL **119** (2017)

Violation of ETH

- Exceptions of strong ETH
 - Integrable systems
 Many conserved charges
 Strong ETH X, Weak ETH V
 - Many-body localized (MBL) systems Emergent local integrals of motion Strong ETH X, Weak ETH X
 - Quantum many-body scarred (QMBS) systems Strong ETH X, Weak ETH V
 Non-integrable but have scarred states which do not thermalize for an anomalously long time!

A very nice blog article "Quantum Machine Appears to Defy Universe's Push for Disorder", Marcus Woo, Quanta magazine, March 2019.



1-particle wavefunction in a Bunimovich stadium E. Heller, PRL **53** (1984)

Experiment on a Rydberg atom chain

Bernien et al., Nature 551 (2017)

• Rydberg atoms

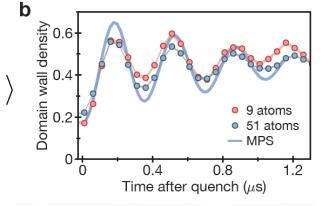
Atoms in which one of the electrons is in an excited state with a very high principal quantum number.

Rydberg blockade

• A surprising finding! Special initial states

$$|\mathbf{Z}_2\rangle = |\bullet \circ \bullet \circ \cdots \rangle, \ |\mathbf{Z}_2'\rangle = |\circ \bullet \circ \bullet \cdots$$

Exhibit robust oscillations. Other initial states thermalize much more rapidly.



6/25

PXP model

- Hamiltonian Turner *et al.*, Nat. Phys. **14**, 745 (2018) $H_{PXP} = \sum_{j} P_{j-1} X_{j} P_{j+1},$ $O \bigcirc O \quad \longleftrightarrow \quad \bigcirc \bigcirc \bigcirc$ $P = |\circ\rangle\langle \circ|, \ X = |\circ\rangle\langle \bullet| + |\bullet\rangle\langle \circ|$
- Properties
 - 1. Level statistics
 - \rightarrow Wigner-Dyson, non-integrable
 - 2. Long-time oscillations are observed
 - 3. Energy (*E*) v.s. entanglement entropy (*S*) \rightarrow Anomalously low *S* at high *E*

Exact QMBS

Lin and Motrunich, PRL 122, 173401 (2019)

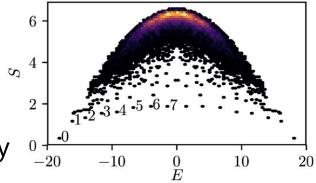
Exact eigenstates of H_{PXP} in the form of matrix product states (MPS)

 \rightarrow Low entanglement states at high energy

20

30

10



Exact QMBS

- Embedding method Shiraishi, Mori, PRL **119**, 030601 (2017)
- AKLT models

Moudgalya, Regnault, Bernevig, PRB **98**, 235156 (2018) Mark, Lin, Motrunich, PRB **101**, 195131 (2020)

• Ising and XY-like models

Iadecola, Schecter, PRB **101**, 024306 (2020) Chattopadhyay, Pichler, Lukin, Ho, PRB **101**, 174308 (2020)

• Floquet scars

Driven PXP: Sugiura, Kuwahara, Saito, arXiv:1911.06092

- Today's subject
 - A new class of exact QMBS via Onsager algebra
 - Spin-S and the interaction range can be arbitrary
 - Models allow for spatially varying couplings (disorder)

Outline

- 1. Introduction and Motivation
- 2. Models with exact QMBS
- Exactly solvable models
- Shiraishi-Mori method
- More algebraic approach
- Example: perturbed S=1/2 XY chain
- 3. Results and generalizations

4. Summary

Exactly solvable models

- (Crude) Classification
 - Integrable systems
 Free fermions/bosons, Bethe ansatz
 Many conserved charges

Not exclusive!

Heisenberg Hamiltonian

$$\mathbf{id} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad S^x = \frac{1}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad S^y = \frac{1}{2} \begin{pmatrix} 0 & -\mathbf{i} \\ \mathbf{i} & 0 \end{pmatrix}, \quad S^z = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Spin op. on *j*-th site: $S_j^{\alpha} = \overbrace{\mathbf{id} \otimes \cdots \otimes \mathbf{id} \otimes S_j^{\alpha} \otimes \overbrace{\mathbf{id} \otimes \cdots \otimes \mathbf{id}}^{L-j}$

$$H = -\sum_{j=1}^{L} (S_j^x S_{j+1}^x + S_j^y S_{j+1}^y + S_j^z S_{j+1}^z)$$

Eigenstates take the Bethe-ansatz form (1931)

A crash course in inequalities

- Positive semidefinite operators Appendix in H.Tasaki, Prog. Theor. Phys. 99, 489 (1998).
 - \mathcal{H} : finite-dimensional Hilbert space.
 - A, B: Hermitian operators on ${\cal H}$
 - Definition 1. We write $A \ge 0$ and say A is positive semidefinite (p.s.d.) if $\langle \psi | A | \psi \rangle \ge 0, \ \forall | \psi \rangle \in \mathcal{H}.$
 - Definition 2. We write $A \ge B$ if $A B \ge 0$.

Important lemmas

- Lemma 1. $A \ge 0$ iff all the eigenvalues of A are nonnegative.
- Lemma 2. Let C be an arbitrary matrix on \mathcal{H} . Then $C^{\dagger}C \ge 0$. Cor. A projection operator $P = P^{\dagger}$ is p.s.d.
- Lemma 3. If $A \ge 0$ and $B \ge 0$, we have $A + B \ge 0$.

Frustration-free systems

- Anderson's bound *Phys. Rev.* **83**, 1260 (1951)
 - Total Hamiltonian: $H = \sum_j h_j$
 - Sub-Hamiltonian: h_j that satisfies $h_j \ge E_j^{(0)} \mathbf{1}$. ($E_j^{(0)}$ is the lowest eigenvalue of h_j)

(The g.s. energy of *H*) =:
$$E_0 \ge \sum_j E_j^{(0)}$$

Used to obtain a lower bound on the g.s. energy of AFM Heisenberg model

Frustration-free Hamiltonian

The case where the *equality* holds.

Definition. $H = \sum_{j} h_{j}$ is said to be *frustration-free* if there exists a state $|\psi\rangle$ such that $h_{j}|\psi\rangle = E_{j}^{(0)}|\psi\rangle$ for all *j*.

Ex.) S=1 Affleck-Kennedy-Lieb-Tasaki (AKLT), toric code

$$H = \sum_{j} h_j, \quad h_j = \mathbf{S}_j \cdot \mathbf{S}_{j+1} + \frac{1}{3} (\mathbf{S}_j \cdot \mathbf{S}_{j+1})^2$$

(Generalized) Shiraishi-Mori

Universal form of frustration-free system

- Hamiltonian $H = \sum A_j^{\dagger} A_j \ge 0$
- Zero-energy g.s.

 $|\psi\rangle$ s.t. $A_j|\psi\rangle = 0, \forall j$.

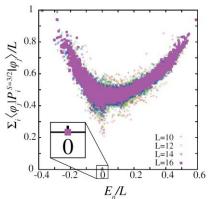
Can we cook up a model with exact/explicit excited states? YES!

Embedding method

• New Hamiltonian $H_{\text{new}} = \sum_{j} A_{j}^{\dagger} C_{j} A_{j}, \quad (C_{j}: \text{Hermitian})$

The g.s. of H remain the g.s. of H_{new} if $C_j \ge 0$. They become higher energy states when C_j are not p.s.d.

- Shiraishi-Mori PRL 119, 030601 (2017) Particular case where $A_j = A_j^{\dagger} = P_j$ (projection).
- Further generalization Witten's conjugation: $A_j \rightarrow \tilde{A}_j = M A_j M^{-1}$



More algebraic approach

- Strategy
 - 1. Starting point: Integrable model with conserved charges $Q_1, Q_2, ...$ They commute with the Hamiltonian H_{int}
 - 2. Take a subalgebra $\{Q_1, Q_2, ...\}$
 - 3. Find a reference eigenstate $H_{int}|\psi_0\rangle = E_0|\psi_0\rangle$ ψ_0 : simple state, e.g., product state or MPS
 - 4. Find a tower of eigenstates generated by acting with the subalgebra on the reference state:

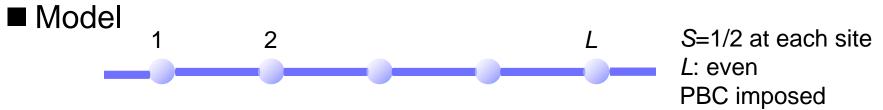
 $(Q_1)^m (Q_2)^n \cdots |\psi_0\rangle \leftarrow \mathsf{QMBS}$ in non-integrable H

They have the same energy with ψ_0

5. Add to H_{int} perturbations that break the integrability but leave the tower of states unchanged

 $H = H_{\text{int}} + H_{\text{pert}}, \qquad \text{e.g.}, H_{\text{pert}} (Q_1)^m (Q_2)^n \cdots |\psi_0\rangle = 0$

Example: S=1/2 XY chain



15/25

• Hamiltonian

$$H_{\text{int}} = \sum_{j=1}^{L} (S_j^+ S_{j+1}^- + S_j^- S_{j+1}^+) \qquad S_j^\pm := \frac{S_j^x \pm i S_j^y}{2}$$

Can be mapped to free fermions via Jordan-Wigner tr. Lieb-Schultz-Mattis (1961), Katsura (1962)

Conserved charges

Total S^z: $Q = \sum_{j=1}^{L} S_j^z$ Other charges are not very obvious in the spin basis... "bi-magnon" operator: $Q^{\pm} = \sum_{j=1}^{L} (-1)^{j+1} S_j^{\pm} S_{j+1}^{\pm}$, $[H_{\text{int}}, Q^{\pm}] = 0$

Reference eigenstate
 All down state: |↓⟩ = |↓⟩ ⊗ |↓⟩ ⊗ ··· ⊗ |↓⟩, H_{int} |↓⟩ = 0

 E=0 is in the middle of the spectrum

Tower of exact eigenstates

• Eigenstates with fixed total S^z

 $|\Downarrow\rangle, Q^{+}|\Downarrow\rangle, ..., (Q^{+})^{k}|\Downarrow\rangle, ..., (Q^{+})^{L/2}|\Downarrow\rangle$ ((Q⁺)^{L/2+1} = 0)

- "Coherent state" $|\psi(\beta)\rangle = \exp(\beta^2 Q^+) |\psi\rangle = \sum_{k=1}^{L/2} \frac{\beta^{2k}}{k!} (Q^+)^k |\psi\rangle$
- Matrix-product operator (MPO) $\exp(\beta^{2}Q^{+}) = \exp(\beta^{2}S_{1}^{+}S_{2}^{+})\exp(-\beta^{2}S_{2}^{+}S_{3}^{+})\cdots\exp(-\beta^{2}S_{L}^{+}S_{1}^{+})$ $= (1 + \beta^{2}S_{1}^{+}S_{2}^{+})(1 - \beta^{2}S_{2}^{+}S_{3}^{+})\cdots(1 - \beta^{2}S_{L}^{+}S_{1}^{+})$ $= (1, \beta S_{1}^{+})\begin{pmatrix}1\\\beta S_{2}^{+}\end{pmatrix}(1, -\beta S_{2}^{+})\begin{pmatrix}1\\\beta S_{3}^{+}\end{pmatrix}\cdots(1, -\beta S_{L}^{+})\begin{pmatrix}1\\\beta S_{1}^{+}\end{pmatrix}$ $= \operatorname{Tr}\left[\begin{pmatrix}1&\beta S_{1}^{+}\\\beta S_{1}^{+}&0\end{pmatrix}\begin{pmatrix}1&-\beta S_{2}^{+}\\\beta S_{2}^{+}&0\end{pmatrix}\cdots\begin{pmatrix}1&-\beta S_{L}^{+}\\\beta S_{L}^{+}&0\end{pmatrix}\right]$
- Coherent state = MPS with bond dimension 2

$$|\psi(\beta)\rangle = \operatorname{Tr}\left[\begin{pmatrix}|\downarrow\rangle_1 & \beta|\uparrow\rangle_1\\\beta|\uparrow\rangle_1 & 0\end{pmatrix}\begin{pmatrix}|\downarrow\rangle_2 & -\beta|\uparrow\rangle_2\\\beta|\uparrow\rangle_2 & 0\end{pmatrix}\cdots\begin{pmatrix}|\downarrow\rangle_L & -\beta|\uparrow\rangle_L\\\beta|\uparrow\rangle_L & 0\end{pmatrix}\right]$$

17/25

Telescoping trick

$$|\psi(\beta)\rangle = \operatorname{Tr}\left[M_{1}\cdots M_{j}M_{j+1}\cdots M_{L}\right], \qquad M_{j} = \begin{pmatrix} |\downarrow\rangle_{j} & (-1)^{j+1}\beta|\uparrow\rangle_{j} \\ \beta|\uparrow\rangle_{j} & 0 \end{pmatrix}$$
$$(S_{j}^{+}S_{j+1}^{-}+S_{j}^{-}S_{j+1}^{+})M_{j}M_{j+1} = L_{j}M_{j+1} - M_{j}L_{j+1}, \qquad L_{j} = \begin{pmatrix} 0 & 0 \\ 0 & |\downarrow\rangle_{j} \end{pmatrix}$$

- Proves $H_{\rm int} |\psi(\beta)\rangle = 0$. $[H_{\rm int}, Q^+] = 0$ isn't so important (?)
- A similar idea was used in Baxter's solution of XYZ chain
- Also in stochastic integrable models ("hat relation")

Possible perturbations

$$M_{2k-1}M_{2k}M_{2k+1} = \begin{pmatrix} |\downarrow\downarrow\downarrow\rangle - \beta^2(|\downarrow\uparrow\uparrow\rangle - |\uparrow\uparrow\downarrow\rangle) & \beta|\downarrow\downarrow\uparrow\rangle + \beta^3|\uparrow\uparrow\uparrow\rangle \\ \beta|\uparrow\downarrow\downarrow\rangle - \beta^3|\uparrow\uparrow\uparrow\rangle & \beta^2|\uparrow\downarrow\uparrow\rangle \end{pmatrix}_{2k-1,2k,2k+1}$$

- We never have $|\downarrow\uparrow\downarrow\rangle$ or $(|\downarrow\uparrow\uparrow\rangle + |\uparrow\uparrow\downarrow\rangle)/\sqrt{2}$ in any three consecutive sites
- Identify Hermitian operators that annihilate $|\psi(\beta)\rangle$

 $H_{\mathrm{pert}}|\psi(\beta)
angle=0$ Couplings can be random!

$$\begin{split} H_{\text{pert}} &= \sum_{j=1}^{L} (c_j^{(1)} |\downarrow\uparrow\downarrow\rangle \langle\downarrow\uparrow\downarrow| \\ &+ \frac{c_j^{(2)}}{2} (|\downarrow\uparrow\uparrow\rangle + |\uparrow\uparrow\downarrow\rangle) (\langle\downarrow\uparrow\uparrow| + \langle\uparrow\uparrow\downarrow|) \\ &+ c_j^{(3)} [|\downarrow\uparrow\downarrow\rangle (\langle\downarrow\uparrow\uparrow| + \langle\uparrow\uparrow\downarrow|) + \text{h.c.}]) \end{split}$$

Outline

- 1. Introduction and Motivation
- 2. Models with exact QMBS
- 3. Results and generalizations
- Level statistics \rightarrow Non-integrability
- Entanglement and dynamics
- Longer-range extensions
- Higher-spin generalizations

4. Summary

Is the perturbed model non-integrable?

- Level-spacing statistics
 - Perturbed Hamiltonian $H = H_{int} + H_{pert} + hQ$,
 - Energy levels
 - Level spacing

$$E_{1} \leq E_{2} \leq E_{3} \leq \cdots \qquad \Delta E_{i} = E_{i+1} - E_{i}$$

$$s_{i} := \frac{\Delta E_{i}}{\langle \Delta E_{i} \rangle} \qquad \langle \Delta E_{i} \rangle : \text{ average}$$
Casati *et al*, PRL **54** (1985),

- *H* is integrable
 → Poisson distribution, PDF: P(s) = exp(-s)
- *H* is non-integrable (GOE) → Wigner-Dyson distribution, $P(s) = \frac{\pi}{2} s \exp\left(-\frac{\pi s^2}{4}\right)$

Numerical result

- System size: *L*=16
- Only diagonal perturbation
- Zero magnetization sector

Clearly Wigner-Dyson! *H* is non-integrable!

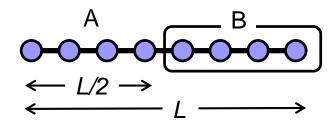
19/25

Pal, Huse, PRB 82 (2010)

20/25

Entanglement diagnosis

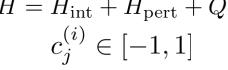
- Half-chain entanglement
 - Reduced density matrix $ho = |\psi\rangle\langle\psi|, \quad
 ho_A = \operatorname{Tr}_B[
 ho]$



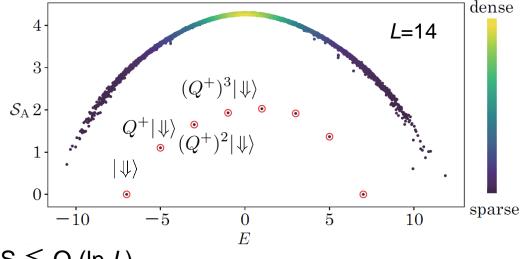
- Entanglement entropy (EE) $S_A = -\text{Tr}_A[\rho_A \ln \rho_A]$
- Thermodynamic entropy ~ EE Mori *et al.*, J. Phys. B **51**, 112001 (2018) Volume law $S_A \propto L \rightarrow$ Thermal Sub-volume law \rightarrow non-thermal (including area law $S_A \leq \text{const.}$)

Results

- Coherent state $|\psi(\beta)\rangle$ MPS, area-law EE
- Energy eigenstates? $H = H_{int} + H_{pert} + Q,$



QMBS: $(Q^+)^k | \Downarrow \rangle$



Rigorous result: EE of QMBS \leq O (In *L*)

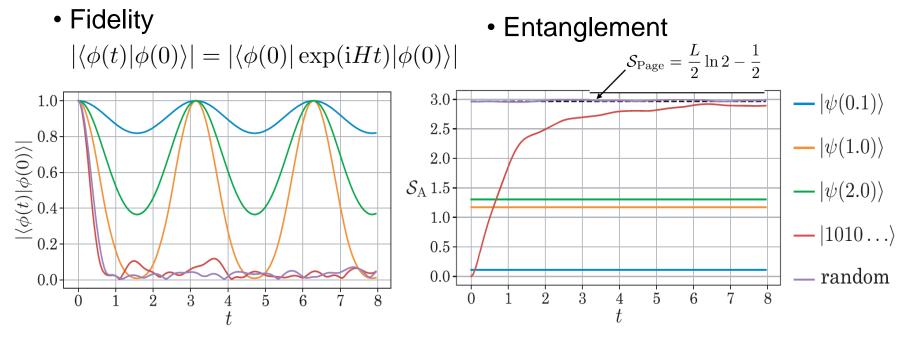
Dynamics

- Initial state = coherent state
 - Hamiltonian $H = H_{int} + H_{pert} + hQ$,
 - Coherent state $|\psi(\beta)\rangle = \exp(\beta^2 Q^+) |\Downarrow\rangle$
 - Time evolution

 $|\psi_t(\beta)\rangle = \exp(-iHt)|\psi(\beta)\rangle \propto |\psi(\beta e^{-iht})\rangle \qquad t = t_k = \frac{\pi k}{h}, \quad k \in \mathbb{N}$

Revival at

Numerical results $L = 10, h = 1.0, c_j^{(i)} \in [-1, 1] \text{ (random)}$



Onsager algebra

- Hamiltonian $H_2 = i \sum_{j=1} (S_j^+ S_{j+1}^- S_j^- S_{j+1}^+)$ Unitarily equivalent to H_{int}
- Commuting operators

$$Q = \sum_{j=1}^{L} S_{j}^{z}, \quad \hat{Q} = 2 \sum_{j=1}^{L} S_{j}^{x} S_{j+1}^{x}$$

(Quantum) Ising! $H_{\rm QI} = Q + \lambda \hat{Q}$ Phys. Rev. 65 (1944)

 $[H_2, Q] = [H_2, \hat{Q}] = 0$ Any polynomial in Q, \hat{Q} commutes with H_2

Q

- Dolan-Grady relation $[Q, [Q, [Q, \hat{Q}]]] = 4[Q, \hat{Q}]$ $[\hat{Q}, [\hat{Q}, [\hat{Q}, Q]]] = 4[\hat{Q}, Q]$
- Defining relations of algebra

$$\begin{split} & [Q_l^r, Q_m^r] = 0 \quad (r = 0, \pm) \\ & [Q_l^-, Q_m^+] = Q_{m+l}^0 - Q_{m-l}^0 \\ & [Q_l^\pm, Q_m^0] = \mp 2(Q_{m+l}^\pm - Q_{m-l}^\pm) \end{split}$$

All Q_m^r commute with H_2

$$= Q_0^0/2, \quad \hat{Q} = (Q_1^0 + Q_1^+ + Q_1^-)/2$$
$$Q_1^0 \propto H_{\text{int}}, \quad Q_1^{\pm} \propto \sum_{j=1}^L S_j^{\pm} S_{j+1}^{\pm}$$

$$Q_m^+ \propto \sum_{j=1}^L S_j^+ S_{j+1}^z \cdots S_{j+m-1}^z S_{j+m}^+$$

Allows for scarred models with longer-range interactions!

What about S >1/2 ?

Self-dual U(1)-invariant clock model

Vernier, O'Brien, Fendley, J. Stat. Mech. (2019)

• Matrices
$$\omega = \exp(2\pi i/n)$$

 $\tau = \begin{pmatrix} 1 & & \\ & \omega & \\ & & \ddots & \\ & & & \omega^{n-1} \end{pmatrix}, \quad S^+ = \begin{pmatrix} 0 & 1 & & \\ & \ddots & \ddots & \\ & & 0 & 1 \\ & & & 0 \end{pmatrix}, \quad S^- = (S^+)^{\dagger}$

 Hamiltonian Truly interacting for *n*>2!

$$H_n = i \sum_{j=1}^{L} \sum_{a=0}^{n-1} \frac{1}{1 - \omega^{-a}} [(2a - n)\tau_j^a + n(S_j^+ S_{j+1}^-)^{n-a} - n(S_j^- S_{j+1}^+)^a]$$

 H_2 boils down to (twisted) XY, $H_3 \rightarrow S=1$ Fateev-Zamolodchikov

- U(1) symmetry $[H_n, Q] = 0, \quad Q = \sum_{i=1}^{L} S_j^z$
- Self-duality (in the $\sigma \tau$ rep.) Onsager algebra! $Q^+ = \sum_{j=1}^{L} \sum_{\alpha=1}^{n-1} \frac{1}{1-\omega^{-\alpha}} (S_j^+)^{\alpha} (S_{j+1}^+)^{n-\alpha}, \quad [H_n, Q^+] = 0$

S=1 (n=3) model

• Integrable Hamiltonian

$$H_{\text{int}} = \sqrt{3} \sum_{j=1}^{L} \left[S_j^+ S_{j+1}^- + S_j^- S_{j+1}^+ - (S_j^+ S_{j+1}^-)^2 - (S_j^- S_{j+1}^+)^2 - (S_j^z)^2 + \frac{2}{3} \right]$$

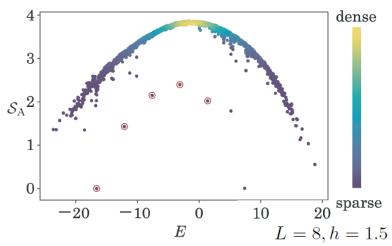
Coherent state

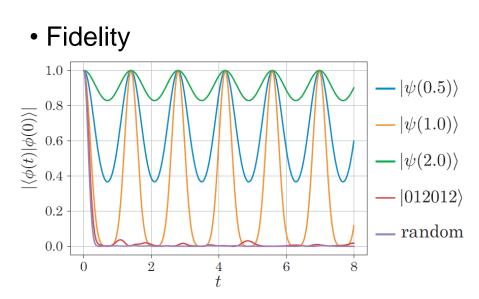
$$Q^{+} = \frac{2}{\sqrt{3}} \sum_{j=1}^{L} S_{j}^{+} (S_{j}^{+} - S_{j+1}^{+}) S_{j+1}^{+}, \quad |\psi(\beta)\rangle = \exp(\beta^{2} Q^{+})|-, -, \cdots, -\rangle$$

This is again an MPS. The bond dimension is 3. Desired perturbations can be identified from this MPS.

 $H = H_{\rm int} + H_{\rm pert} + hQ,$

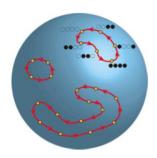
• Half-chain entanglement

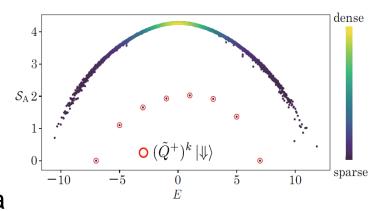


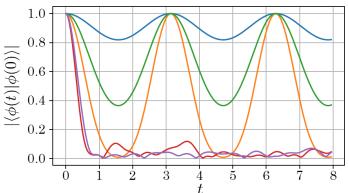


Summary

- A new construction of QMBS
 - Perturbed S=1/2 XY chain
 - Use Onsager algebra
 - Level-spacing statistics
 → non-integrability
 - Exact MPS rep. of scarred states
 - Entanglement, fidelity, dynamics, ...
- Generalizations
 - Use other elements of Onsager algebra
 - Higher-spin models
- Future directions
 - Floquet dynamics version
 - Other models with other symmetries







25/25