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1. Introduction
« Origin of magnetism
« Hubbard models (SU(2) and SU(n))

* Frustration-free systems

2. SU(n) Hubbard model
3. 1D model and results

Summary
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Origin of magnetism
What's the mechanism behind ferromagnetism?

3/25

Macroscopic number of spins
(carried by electrons) are
aligned in the same direction.

But why?

B Coupling between spins

- Dipole-dipole interaction Uyg;p(r) o< —
Usually, too small (< 1K) to explain transition temperatures...

« EXchange interaction
Hint = JS; - 5 ( S;: spin at site i)

Direct exchange: J < 0 - ferromagnetic (FM)
Super-exchange: J > 0 - antiferromagnetic (AFM)

£

Heienberg
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Magnetism in ionic crystals

B Kanamori-Goodenough rules

Magnetic ions (cations) do not
directly couple each other.
They interact via anions.

4 )

[From Wikipedia (perovskite)] - -
- Simple examples (neglect orbital order)
d-orbital

p d p d
—
H—e—J ? |
Ferromagnetic

Antiferromagnetic int. ¢ ﬂ (except for d°.)
between mag. ions

Symmetry argument... Is there a more rigorous approach?
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Hubbard model

Paradigmatic model of correlated electrons in solids
« Operators o' (phys) = e*(math)
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Cx,o (C;[;,a): Creation (annihilation) op. of electron with spin 0=1 or | at site x

{CeorCy o} = {C;r:,0'7 chg,} =0, {cro, cg;,a,} = 0z.400.0/

Ng,o = CL,aCx,a: Number op. A : Finite lattice

Hamiltonian ~ H = Hpop + Hint

Hopping term Hyop = Z Z (@l G
o=1,1 x,ycA

On-site repulsion Hine =U Y ngqng,, (U >0)  EHEES
oA Hubbard (1963)
Kanamori, Gutzwiller
http://theor.jinr.ru/~kuzemsky/jhbio.html

Manifestly SU(2) inv.

Hopping and interaction
terms do not commute...


http://theor.jinr.ru/~kuzemsky/jhbio.html

(Crude) derivation of super-exchange 6/25
W 2-site Hubbard model ) %
« Hamiltonian
H=-—t Z (C-{’O_Czjg + cgjgcljg) +U Z ni4ni L 2
o=1,1 i=1,2

« 2nd order perturbation at half-filling, U > ¢

Basis states: |01,02) = ¢! c;aQ|vac>

1,01

A [ e a8
4 4 4 I I 4 I I
t: 0 | | 1 |
7 L 7 7 7
Pauli’ lusi
auli’s exclusion * o 0 2 2 o
o -7t M
p222 )
4t2 1 1 U U
Her = — (Sl - Sy — Z) S = o 0/ 1l

Origin of exchange int. = electron correlation!
Can explain antiferromagnetic int. What about ferromagnetism?



Scarcity of exact/rigorous results
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Hubbard model lacks general solutions. Numerically demanding...

Nagaoka ferromagnetism (Infinite-U, 1 hole)
Nagaoka, Phys. Rev. 147 (1966); Tasaki, PRB 40 (1989)

1D Hubbard chain (Bethe ansatz)
Lieb-Wu, PRL, 20 (1968), “Absence of Mott transition ...”

Ferrimagnetism (spin-reflection positivity)
Lieb, PRL, 62; Erratum PRL 62 (1989).
G.S. on a bipartite at half-filling has S, = ||A]-|B||/2.

Recent extensions by Miyao, arXiv:1712.05529
Brandt-Giesekus, PRL 68 (1992) Infinite-U Hubbard, RVB

Flat-band ferromagnetism (Frustration-free)
Mielke, JPA 24, L73, 3311 (1991); Tasaki, PRL 69, 1608 (1992).
Review: H.Tasaki, Prog. Theor. Phys. 99, 489 (1998).

Ferromagnetic states minimize H,,, & H,; simultaneously!
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Multi-component generalization
B SU(n) Hubbard model

« Fermions carry flavor (a=1, ..., n)

* Realization in cold-atom systems J

Tale et al., Nat. Phys. 8 (2012).
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B Rigorous results

« Nagaoka ferromagnetism
iIn SU(n) Hubbard model

H.K. and A. Tanaka,
Phys. Rev. A 87, 013617 (2013).

Underlying mechanism is the same as Puzzle & Dragons!

4 _ _ _ N JEEAEr —
« Ferromagnetism in a model with [See EFaf=21—2 2019]

completely or nearly flat band

_ H.K. & K. Tamura, arXiv:1908.06286j
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A crash course in inequalities

B Positive semidefinite operators
Appendix in H.Tasaki, Prog. Theor. Phys. 99, 489 (1998).
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H : finite-dimensional Hilbert space.
A, B: Hermitian operators on 'H

» Definition 1. We write A > 0 and say A is
positive semidefinite (p.s.d.) if (¢|A|Y) > 0, V|¢) € H.

e Definition 2. Wewrite A> B if A— B > 0.

B [mportant lemmas
Lemmal. A > 0 iff all the eigenvalues of A are nonnegative.

- Lemma 2. Let C be an arbitrary matrix on. Then CTC > 0.
Cor. A projection operator P = PTis p.s.d.

eLemma3.If A>0 and B > 0, we have A+ B > 0.
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Frustration-free systems 0/25
B Anderson’s bound (Phys. Rev. 83, 1260 (1951).)

* Total Hamiltonian: H =), h;
. Sub Hamlltonlan h; that satisfies h; > E( )
(E IS the lowest elgenvalue of h )
(0) Used to obtain a lower
(The g.s. energy of H) =: Lo > Z B bound on the g.s. energy

J of AFM Heisenberg model

B Frustration-free Hamiltonian
The case where the equality holds.

Definition. H Z h; is said to be frustratlon free
if there exists a state ¥) such that h;|v) = |1b) for all j.

Ex.) S=1 Affleck—Kennedy-Lieb-Tasaki (AKLT), toric code, ...

Flat-band ferro.
H = hj, h;= 2
Z 77 =55 St g (S Sj+1) is another example.
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2. SU(n) Hubbard model

« Hamiltonian and symmetry
* What are flat bands?

 Frustration-free case
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SU(n) Hubbard model

B Operators and Fock space
* Finite lattice: A
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 Creation & annihilation operators at site x with color a
cl’a, Cra (x€Na=1,2,---n)

{cxso“ Cyaﬁ} — {C.C-II‘T,OU C’L’ﬁ} — 07 {c.’L',CH c;,ﬁ} — 5w,y6a,ﬁ

* Number operator: n;.o = C;E,acm,a

e Vacuum: Cz.o|®Pvac) =0, Vz,a

« Many-particle states: CL,O&C;BCLW + [ Prac)

| Ham|lt0n|an H = Hhop + Hint
* Hopping term

Hhop = Z Z ta:,ycl;,acy,a

a=1xz,ycA

. Interactionterm Hy, = U Z Z Ne.ala g, (U >0)

1<a<fB<nxzcA




Symmetry of the model 13/25
B Generators .
- Total fermion number Ny =) "> “nq
a=1xzEA
» Color operators .
o = Z ci}acw,a Nt = Z e
TEAN a=1
Denote their eigenvalues by N,.
« Color raising & lowring operators F# .— cl oCe. (0 # B)

reEA

They commute with the Hamiltonian. [H, N,| = [H, F*f] =0
NOTE) SU(n) symmetry for fixed N;

B Subspaces
 Hamiltonian is block-diagonal w.r.t. (Ny,---, N,)

* Degenerate eigenstates in different subspaces are
related to one another by F®#(a # j3).
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Hopping term
B Diagonalization
Boils down to the diagonalization of T=(t

n
Hhop — Z Z tﬂ?aycl,ozcy

a=1lz,ycA
 Eigen-operators

Let v be an eigenvector of T with eigenvalue ¢.
Then, the operator

wﬂ; = Z vmc:[;,a satisfies [Hhop,wj;] = e@b];.
reEA
Acting with w:; on an eigenstate of Hy,p, raised energy by €.
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xy)

 Eigenstates
|@.ac) is an eigenstate of Hyop With energy 0.

General eigenstates take the form: ¢l ylP G 1 ,.)
where (k) _ (k)4 (k) i _Z,U(k)T

reEA
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Interaction Term
B Diagonalization
Already diagonal in the number basis!

mt =U 57\ jr\nxanwﬁ

1<a<pB<nxeA
 Eigenstates

_I_
Clacyﬁczv
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- |®Pyac) is an eignstate of Hipnt.

For example, ¢! ¢! el .cl el ®...) has energy 2U.
r,1vx,2%y,3%2,1>2,3

What about the full Hamiltonian?
» Hopping and interaction terms do not commute!
|Hhop, Hint] # 0
* Not even frustration-free in general...

But for a hopping term with a flat band (at the bottom),
the full Hamiltonian becomes frustration-free!



What are flat bands? 16/25
B Single-particle eigenstates of Hy, o—t—1
Hyop = Z Z tm,ycl,acy,a £ {
a=1z,yeA
« Energy bands L X
In systems with translation symmetry, wave-num. M X

k is a good quantum number.
Hh0p¢lz(k)|q)va<:> = E(k)wl(k)l@vaJ

* Flat band
Single-particle energy ¢(k) is independent of k.

B 1D example (Tasaki lattice) 3

|
~
|
St
~
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Why frustration-free

* Positive-semi-definite Hopping matrix 7" > 0
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- Kernel of T spanned by orthonormal v (j =1,---, D), TvY) =0

« Zero-energy eigen-operators a;[,a = Z vﬁf)c;a [ Hyop, a,}:a] =0
. ) zeEN
* Interaction term is p.s.d.
Dy
- Many-body zero-energy state |Pferro.0) = H a;’a | Dyac)
(for fermion num. = D) j=1

Because of the Pauli principle (!, ,)* =0,
Hhop‘(j[)ferro,a> — Hint‘(pferro,a> ‘q)va,c> =0 Frustration-free!

Are they unique (up to trivial degeneracy)?

* In the SU(2) case, Mielke established a necessary and sufficient
condition for the uniqueness [Mielke, PByS' Lett. A 174, 443 (1993)]
0

» Related to irreducibility of (P),., := Z(Uéﬂ'))*@éﬁ)

j=1
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3. 1D Model and results
 Lattice and Hamiltonian

« Model with completely flat band
* Model with nearly flat band



Model on 1D Tasaki lattice 19/25
. . 3 i
B Lattice and hopping term . M1
- Lattice: A ={1,2,...,2M} "
O=1{1,3,5,...}, £={2,4,6,...}
* Periodic boundary conditions: m b2 . -
|dentify site | with j+2M. ty = vt, ty = v,
tee =1, too = 2U°t
* Hopping term
Hyop = Z Z tmycxacya :tz Zb
amtmyeh a=l2€0 t=1, v=1/V2
ba:,a = VCy—1,0 T Cx,a T VCryl,ay, T E O 3f
o2
B [ ocalized eigen-operators of Hy, %1/\
Ar.o = —VCg—1,c + Crx,a — VCy41,05 x el 0
[Huop,al o] =0 (2 {al by 5} = 0) S

The flat band is spanned by a-operators.
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Model on 1D Tasaki lattice

B L attice and hopping term
- Lattice: A ={1,2,....,2M}
O=1{1,3,5,...}, £ ={2,4,6,...}

 Periodic boundary conditions: 2M 2

|dentify site | with j+2M. ty = vt, ty = v,
tee =1, too = 202t

* Hopping term

Hhop—z Z tmycxacya:tZZb

a=1zycA a=1zc0

ba:,a = VCgp—1,00 T Cx,o0 T VCgptl,ay T E O

M | ocalized eigen-operators of Hiop

Ay, = —VCp—1,a0 T Cx,a — VCptl,as, & E E

[HhOpv ai:,a] =0 ( {al,av by,ﬁ} — 0)

The flat band is spanned by a-operators.

t=1, v=1/V2

3_
x
w 1!

\
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Model on 1D Tasaki lattice

B L attice and hopping term
- Lattice: A ={1,2,....,2M}
O=1{1,3,5,..}, £€={2,4,6,...
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 Periodic boundary conditions:

|dentify site | with j+2M. ty = vt, ty = v,

* Hopping term

Hhop—z Z tmycxacya—tZZb

a=1zycA a=1zc0

ba:,a = VCgp—1,00 T Cx,o0 T VCgptl,ay T E O

M | ocalized eigen-operators of Hiop

Ay, = —VCp—1,a0 T Cx,a — VCptl,as, & E E

[HhOpv ai:,a] =0 ( {al,av by,ﬁ} — 0)

The flat band is spanned by a-operators.

tee =1, too = 202t

t=1, v=1/V2

3_
x
w 1!

\
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Flat-band ferromagnetism

B SU(n) Ferromagnetic (FM) states
* Fix total fermion number: Ny = M (total number of unit cells)

* Fully polarized states  |®,, ) := H al Q) [ Dyac), a=1,...,n
xel

are ground states of H=H,, +H;,
as it makes both H,,, and H;,, vanish.

- Other FM ground states:  [®y, ... n, ) = (F" )N (F2H)N2 1D, 1)
(M +n—1)!
M!(n —1)!
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Frustration-free!

 Total number of FM states: deg. =

B Theorem 1 (uniqueness of the FM ground states)

Consider the Hubbard Hamiltonian H with the total fermion
number N.=M. For arbitrary t >0 and U >0, the ground states
of the Hamiltonian are SU(n) ferromagnetic states and unique
apart from trivial degeneracy due to the SU(n) symmetry.

A slight generalization of R.-J. Liu et al., arXiv:1901.07004.
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Outline of proof
 Hamiltonian

H= Hhop+H1nt—t Z Z b :13 otU Z Z(Cm,acm,ﬁ)Tcm,acaz,B

a=1zeQ a<fBreA

Since H,,,=0 and H, =0, any ground state of H must be
annihilated by H,,, and H;,, simultaneously. This further means

boo|Pcs) =0, Ve € Oand a=1,...,n b’s do not appear in g.s.

21/25

Ca.aCep|Pas) =0, Vo € A and («, B). i Ny
2,0&2 2,04

» Multiple occupancy of a’s are prohibited

[Pas) = > Cla (H Uy o, ) | Pyac)

e

o\ IS\
« Examining the 2nd condition on top sites, we have C(a) = C(azwy).
Cla)=C( om0y, ), ClQpoy) =C(- 0y, -, ag, )

* In a subspace labeled by (n,,---,N,,), the g.s. is an equal weight
superposition of a;wlal,wz R agM,wM | Pyac), w e W(Ny,...,N,)

(set of possible permutations). This state is equivalent to a FM state.
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Model with nearly flat band

B L attice and hopping term
« Hopping term

Hhop —— S E E :G’L,aaic;a

a=1ze&
+t) > blabeo
a=1ze®

* Total Hamiltonian
H = Hhop + Hint

22/25

5)
ty =v(t+5), to =%t th = —1v%s

lTee =1 — 21/23, too = —s + 2%t

3.
2/\
<
T1

JT JT
-7T == 0 = 7T
2 2

B Theorem 2 (uniqueness of the FM ground states) k

Consider the Hubbard Hamiltonian H with the total fermion
number N.=M. For sufficiently large t/s >0 and U/s >0, the
ground states of H are SU(n) ferromagnetic states and unigue
apart from trivial degeneracy due to the SU(n) symmetry.

A natural SU(n) generalization of H. Tasaki, PRL 75, 4678 (1995).
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Outline of proof (1)
B Decoupling of the Hamiltonian

H = \Hg.; + Z hy — sM (202 4+ 1)
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xef
* Flat part
Haay = Z Z bl bao + Z e alle. 5 Flat-band Hamiltonian
a=1zc0O a<p (t:U:l)

- t— A\
* Local term he =) ( sal o+ —(bi L abr—t.a+ bLH,abm,Q))

a=1
’{(U4_ A)m 2(Na—2 — 1) + UT_A”af—l(nx‘l -1
(1—r)(U =N -2\
+ 5 naz(n;v — 1) + A
(U =N

4

N1 (nx+1 — 1)

_|_

Nyro(Neio — 1)+ s(20°7 + 1),

Hlemmal (0 <A <min{t,U}, 0<k<1)

If each local Hamiltonian h, is positive semi-definite, then
the ground states of H are the same as those of H;,;.
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Outline of proof (2)

B Proof of Lemma 1

* Frustration-free?
If each h, is p.s.d., any state annihilated by H;_ and all h,
IS a ground states of H.

* Fully polarized states |®.)1.4) := (H ag;’a) |Dyae) are
annihilated by H;_, and all h,. zef
- They are eigenstates of H with E = —sM (207 + 1).
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» Uniqueness
Unigueness of these ground states just follows from Theorem 1.
B Positive semi-definiteness of h, s

12+
« Computer-assisted proof
By numerially diagonalizing h,
(5-site Hamiltonian), one can identify
the region in which h, is p.s.d. 3/

— — — 0t | L . . L
[plot for n =4,v =1/v2,k = 07] o 10 30 30 4o soUls

9,

6,
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BlLemma 2 /

Suppose that t, U are infinitely large and 0 < k <1.
Then, h, is positive semi-definite.

Proof.) Based on the analysis of projected Hamiltonian Ph_. P
(Projected onto the space of finite-energy states.)

Remark. Lemma 2 ensures finite thresholds for t/s and U/s,
above which h, is positive semi-definite.

Summary

* Reviewed rigorous results for Hubbard models

* Introduced SU(n) Hubbard model on 1D Tasaki lattice

* Ferromagnetism in the model with a completely flat band

* Ferromagnetism in the model with a nearly flat band

Established rigorous example in a non-singular situation!



