JPS@岩手大学 (2017/9/21)

量子トライマー模型のRVB状態と **Z**₃トポロジカル秩序

Collaborators: Hyunyong Lee (東大物性研) Yun-Tak Oh, Jung Hoon Han (成均館大学校)

> Phys. Rev. B, 95, 060413(R) (2017) [arXiv:1612.06899]

Resonating valence bond (RVB) state

What are dimers?

$$\underbrace{\mathbf{o}}_{i}_{j} = \frac{1}{\sqrt{2}}(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle)$$

Dimer = spin singlet = valence bond

■ What is RVB?

• S=1/2 Heisenberg AFM model on \triangle lattice

$$H = J \sum_{\langle i,j \rangle} \vec{S}_i \cdot \vec{S}_j$$

Classically, the g.s. exhibits 120° order. What about quantum?

RVB = Equal-weight superposition of all dimer coverings P.W. Anderson, *Mat. Res. Bull.* **8**, 153 (1973).

Common belief: This is unlikely. The g.s. has 120° order.

Quantum dimer model

Model

Rokhsar-Kivelson, PRL 61, 2376 (1988).

• Basis states: dimer coverings on a square lattice

Dimers don't touch/overlap. Different configurations are orthogonal.

$$\langle \mathcal{C} | \mathcal{C}' \rangle = \delta_{\mathcal{C}, \mathcal{C}'}$$

- Hamiltonian kinetic potential $\mathcal{H}_{dimer} = \sum_{plaquettes} [-J(|\parallel\rangle\langle = | + H.c.) + V(| = \rangle\langle = | + |\parallel\rangle\langle\parallel|)]$
- Ground state

• V >> J > 0

• V = J (RK point) Exact g.s.: $|\Psi_0\rangle = \sum_{\mathcal{C}: \text{ flippable}} |\mathcal{C}\rangle$

Critical dimer-dimer correlation at RK \rightarrow Critical (gapless) point

Topological order

The model on a triangular lattice exhibits *topological order!* Moessner-Sondhi, *PRL* **86** (2001), Ivanov, *PRB* **70** (2004).

columnar 🗄

0

- What is topological order?
 - Spectral gap above the g.s. gap in RVB phase, vison excitations
 - G.S. degeneracy depends on topology 4-fold deg. on a torus
 - All g.s. are indistinguishable locally
- Beyond dimers?
 - RVB states consisting of trimers
 - RK type Hamiltonian and exact ground states
 - Topological degeneracy, Z₃ vortex excitations

V/J

 $\sqrt{12}x\sqrt{12}$ | RVB | staggered

-Place trimers without making holes

-Trimers should not touch or overlap

Q. How many ways to arrange trimers?

Tensor network approach

 α , β , γ , δ = 0, 1, or 2 labels a state on each *edge*. Only 10 nonzero elements.

■ How it works

Results

■ Counting

Entropy/site

Local tensor \rightarrow transfer matrix T_M

#(configs.) = $Z = \operatorname{Tr} (T_M)^N$

Ζ	<i>N</i> =1	2	3	4	5	6
<i>M</i> =3	3	33	174	585	2,598	11,550
6	3	297	11,550	54,417	705,708	9,027,000
9	3	2,913	1,094,943	7,111,413	325,897,458	15,280,181,589

Z grows exponentially with system size!

$$s = \frac{1}{MN} \ln Z \sim \frac{1}{M} \ln \lambda_M^{\max}$$

 $\lambda_M^{\rm max}$: Largest eigenvalues of ${\it T_M}$

For large *M* and *N*, we have

$$s = \begin{cases} 0.41194 & (= \ln 1.50974) \\ 0.27693 & (= \ln 1.31907) \\ 0.15852 & (= \ln 1.17178) \end{cases}$$
 bent only Froboese et al, JPA 29 (1996)
linear only Ghosh et al, PRE 75 (2007)

Quantum trimer model (1)

Basis states

Trimer coverings on a square lattice

Trimers don't touch/overlap. Different configurations are orthogonal.

$$\langle \mathcal{T} | \mathcal{T}' \rangle = \delta_{\mathcal{T}, \mathcal{T}'}$$

Quantum trimer model (2)

■ Schematic phase diagram

Ground-state correlations in tRVB

 $\langle tRVB | T_i T_j | tRVB \rangle \propto \frac{Z'_{ij}}{Z}$ Z: Total # of trimer configs. Z'_{ij} : # of configs with fixed trimers at *i* and *j*

Exponentially decaying correlations Imply gapped nature of the model

 $V_{\Gamma} := \omega^{n_l - n_r}$ commutes with *H*. $V_{\Gamma} = 1$, ω or ω^2 . \rightarrow 3 sectors! On a torus, we have 3 × 3=9 disconnected sectors.

■ Ergodicity ...

Hamiltonian *H* is block-diagonal w.r.t. the sectors. Is the action of *H* ergodic in each sector? \rightarrow NO!

Staggered states are frozen...

Z3 topological order

Around RK point

10/10

At RK, $|tRVB\rangle = \sum_{\mathcal{T}: \text{ flippable}} |\mathcal{T}\rangle$ is the exact *E*=0 g.s. in each sector.

Perturb a little bit! $v = t - \epsilon$ Rule out staggered states but still have 9-fold degeneracy. Clear sign of topological order! (NOTE: unique g.s. with OBC) Higher genus surfaces $\rightarrow 9^{g}$ -fold deg.

Z3 vortex excitations

Variational state

$$|v_1, \bar{v}_2\rangle = \sum_{\mathcal{T}} \omega^{n_l(\mathcal{T}) - n_r(\mathcal{T})} |\mathcal{T}\rangle$$

- Orthogonal to the g.s. $|\mathrm{tRVB}\rangle$
- Close to the true excited states?
- Can the pair sprit into fractional excitations?

Summary

- Trimer covering on square lattice (entropy/site s~0.41194)
- Quantum trimers on square lattice
- Exact ground states at RK point
- Short-range correlation in tRVB
- - □ 9-fold degeneracy on a torus
 - □ Z3 vortex excitations?

- Rigorous proof of exponential decay in tRVB
- Work out phase diagram (ED, QMC, TN, ...)
- Precise nature of the gapped excitations
- Connection to Z3 toric code? Topological QC?

Model with OBC

Unique *E*=0 g.s. at least in this example

Graph analysis

Adjacency matrix/graph

• Graph
$$\rightarrow$$
 Matrix
 $A = (a_{ij}), \quad a_{ij} = \begin{cases} 1 & i \sim j \\ 0 & \text{otherwise} \end{cases}$

• Matrix \rightarrow Graph Connect vertices *i* and *j* if $a_{ij} \neq 0$.

Adjacency graph of transfer matrix

M=5 (3⁵ states) M=6 (3⁶ states)

Not sparse. Unlikely to be solvable...

Single cluster for M=3k+1 or 3k+2. Three disconnected clusters for M=3k. Quite different from the dimer case.

Dimer case: M=6

General $M \rightarrow M+1$ clusters.