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What are topological insulators (TI)?

Examples

• Band insulators (free-fermions)

• Characterized by topological invariants

TKNN invariant = Chern #

• Robust gapless edge/surface states

E

EF

k

Conduction

Valence

Reviews and textbooks:
M.Z. Hasan and C.L. Kane, RMP. 82, 3045 (2010).

X-L. Qi  and S-C. Zhang, RMP. 83, 1057 (2010), …

• Integer quantum Hall effect (’80s)

von Klitzing et al., TKNN 

• 2D Quantum spin Hall effect

Kane-Mele (‘05), Molenkamp’s group, …

• 3D TI (Bi1-xSbx, Bi2Se3, Bi2Te3)

Fu-Kane-Mele, Hasan’s group, …

Spin-orbit

Magnetic field
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Periodic Table  -- Classification of TI & SC --
Symmetries: Time-reversal(T), particle-hole(C) & Chiral(S).

Topo. Num. : Z2 = {0,1},  Z={0, ±1, ±2, …},  2Z={0, ±2, ±4, …}

Bott

Periodicity

Schnyder et al., PRB 78 (2008); Kitaev, AIP Conf. Proc. 1134 (2008).

Derivation based on Random matrix, K-theory, …

Can be refined with additional symmetry, e.g., inversion.

What are topo. invariants that can distinguish different phases?

IQHE

QSHE 3D TI

p+ip SC
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What about disordered systems?

Characterization

A disordered TI is an insulator with edge/surface states 

that do not Anderson localize.

Physics of d-dim TI  (d-1)-dim Anderson loc.

 Topological invariant

Momentum k is not a good quantum num. Can we define topo. num?

• Noncommutative Geometry 

Avron, Seiler & Simon, CMP 159 (1994).

k-derivative  Commutator in real space

• Niu-Thouless-Wu formula (IQHE)

Niu-Thouless-Wu, PRB 31 (1985).

(kx, ky)  (θx, θy): boundary twists

An extension gives a 

precise definition of topo. 

Invariant for each element 

in periodic table!

HK and T. Koma, arXiv:1611.01928. 95 pages, no figures…

Today, I will focus on killer apps. 2D & 3D class AII TI.
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( a: orbital, σ: spin, x: position)• Wavefunction: 

• Complex conjugation: 

• Unitary operation: 

• Time reversal: 

Time-reversal operation

Preliminaries

 Important property

Proof) 

Standard choice:                              with                .   

Antiunitary operation!

: even time reversal,                 : odd time reversal

Consequence of anti-unitarity.

Frequently used later.
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Kramers’ theorem

 Theorem

Consider a Hamiltonian H with odd-TRS. The multiplicity 

of any energy eigenvalue of H must be even.

If φ1 is an eigenstate of H with energy E (Hφ1 =Eφ1), 

then φ2=Θφ1 is also an eigenstate of H with energy E.

Hamiltonian H commutes with Θ,                      . 

 Time-reversal symmetry (TRS)

H is real modulo unitary.

・ H has even-TRS if               .                       

・ H has odd-TRS if .

Proof) 

The states φ1 and φ2 are orthogonal, because

Property
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• Lattice Z3 (infinite cubic lattice)

• Wavefunction 

• Tight-binding Hamiltonian H with odd-TRS:

Short-ranged, may be inhomogeneous

• Dirac operator

Lattice model
Setting

(a=1,…,r,  σ=↑, ↓,  x∈ Z3)

is the origin of the dual lattice (Z3)*
acts on the auxiliary space (    ).

 Fermi projection

Assumption: Fermi level EF lies in the gap.

Projection to the states below EF

E

EF

C
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Index of a pair of projections

P and Q : projections

i) (Kato, 1955)

ii)                                                (Avron-Seiler-Simon, 1993)

Proof) Almost trivial! Just use                                .         

A and B operators

Relative index

• SUSY structure 

Suppose                   . Then                   satisfies

and              when              . parameter

• Eigenvalues        come in pairs!

Index (Ind) is a topological Invariant. 
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• φ1 and φ3 are degenerate eigenstates of A.

• Orthogonality:

• The dimension of the eigenspace of λ is even unless λ=±1.

⇒ dim ker (A-1) is invariant modulo 2.

What does time-reversal symmetry imply?
Anti-unitary operator 

Suppose we have such and                     .

Then                     is nonzero and  satisfies                       .

Eigenvalues        come in pairs! Also applies to              . 

vanishes identically…

Doublet structure 

λ=±1 is always 

pair-created or 

annihilated!

parameter
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Z2 index for 3D class AII models

Index = #(eigenstates of A with eigenvalue   ) mod 2.

The index is 0 (trivial) or 1 (topological), and 

• Quantized without ensemble average

• Robust against any odd-TRS perturbations (min-max thm.)

• But meaningful only in the infinite-volume limit

• A truncated version is very useful in numerics

 Identification
Let’s take 

They satisfy all the desired algebraic relations.

can be used to define topo. invariant! 

 Z2 index
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Z2 index for 2D class AII models

• Lattice Z2 (infinite square lattice), dual lattice (Z2)*   

• Tight-binding Hamiltonian H with odd-TRS:

Short-ranged, may be inhomogeneous

• Dirac operator

Setting

 Z2 index

acts on the auxiliary space (    ).

The index is 0 or 1, and 

• Quantized without ensemble average

• Robust against any odd-TRS perturbations 
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3D Wilson-Dirac model
Hamiltonian

A prototypical model of 3D class AII TI.

X-L. Qi et al., PRB 78 (2008); K.G. Wilson, PRD 10 (1974).

Gamma matrices:

(σ0: 2x2 identity)

Spin and orbital (in total 4) 

degrees of freedom 

at each site.

NOTE) In the continuum limit, H0 reduces to
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Phase diagram

Disordered case
Transfer matrix studies:

Kobayashi, Ohtsuki, Imura, PRL 110, 236803 (2013).

Ryu and Nomura, PRB 85, 155138 (2012).

Uniform case

m2 =1, t =2, t0=0   (EF=0) TI TIWTI Triv.Triv.
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• 3D lattice torus with PBC, N3 sites  

• Fermi projection

• Calculate projection

• Truncated A supported in domain D

• Compute eigenvalues of AD

Numerical result (1)

 Finite-size approximation of Z2 index

D is chosen, e.g. a cube with linear size N/2.

Uniform case (Warm-up) 

Linear size: N = 12 (1728 sites)

Parameters: m2 =1.0, t =2.0, m0=-1, t0=0.01 (EF=0)

(First few) largest eigenvalues of AD

𝟎. 𝟗𝟗084, 0.70443, 0.70443, 0.68628, 0.68628,…

Desired result!

dim ker (A-1) mod 2 = 1

D
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Numerical result (2)
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Phase diagram

Reproduces 

the phase diagram 

by Kobayashi et al.!

m2 =1, t =2, t0=0, N3 =1000 sites.
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• Characterization of weak TI

In a WTI phase, numerical result shows dim ker (A-1) = 2. 

Why? Can we always distinguish WTI from OI?

Metallic surface v.s. dark side?

• Other applications

1D and 2D Wilson-Dirac models. More realistic applications…

Summary

• Studied 3D disordered insulators with time-reversal symmetry

• Operator theoretic definition of Z2 index

• Proved quantization and robustness

• Application to 3D Wilson-Dirac model

Reproduced the phase diagram 

obtained by Kobayashi et al., PRB 85 (2012).

Future directions
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