Keio Topo. Science (2016/11/18)

Disordered topological insulators with time-reversal symmetry: Z₂ invariants

Hosho Katsura

Department of Physics, UTokyo

Collaborators: Yutaka Akagi (UTokyo) Tohru Koma (Gakushuin)

• HK & T. Koma, J. Math. Phys. 57, 021903 (2016); arXiv:1611.01928.

Outline

1. Topological insulators (TI)

- Classification & characterization
- What about disordered systems?

2. Topological invariants of 2D & 3D class All TI

- Time-reversal symmetry & Kramers' theorem
- Z₂ index (Noncommutative ver.)

3. Application

- 3D Wilson-Dirac model, phase diagram
- Numerical results

4. Summary

What are topological insulators (TI)?

- Band insulators (free-fermions)
- Characterized by topological invariants TKNN invariant = Chern #
- Robust gapless edge/surface states

Reviews and textbooks: M.Z. Hasan and C.L. Kane, *RMP*. **82**, 3045 (2010). X-L. Qi and S-C. Zhang, *RMP*. **83**, 1057 (2010), ...

Examples

- Integer quantum Hall effect ('80s) Magnetic field von Klitzing *et al.*, TKNN
- 2D Quantum spin Hall effect Spin-orbit Kane-Mele ('05), Molenkamp's group, ...
- **3D** TI (Bi_{1-x}Sb_x, Bi₂Se₃, Bi₂Te₃) Fu-Kane-Mele, Hasan's group, ...

Valence

E

k

Periodic Table -- Classification of TI & SC -- ^{3/19}

Symmetries: Time-reversal(T), particle-hole(C) & Chiral(S). Topo. Num. : $Z_2 = \{0,1\}, Z=\{0, \pm 1, \pm 2, ...\}, 2Z=\{0, \pm 2, \pm 4, ...\}$ Schnyder *et a*l., *PRB* **78** (2008); Kitaev, AIP Conf. Proc. **1134** (2008).

Symmetry				Spatial dimension d								
CAZ	TRS	PHS	CHS	1	2	3	4	5	6	7	8	
А	0	0	0		\mathbb{Z}	-	\mathbb{Z}		\mathbb{Z}		\mathbb{Z}	
AIII	0	0	1	\mathbb{Z}		IQHE		\mathbb{Z}		\mathbb{Z}		
AI	+1	0	0			L	$2\mathbb{Z}$		\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	
BDI	+1	+1	1	\mathbb{Z}		p+ip S	SC	$2\mathbb{Z}$		\mathbb{Z}_2	\mathbb{Z}_2	
D	0	+1	0	\mathbb{Z}_2	\mathbb{Z}				$2\mathbb{Z}$		\mathbb{Z}_2	
DIII	-1	+1	1	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}				$2\mathbb{Z}$		
AII	-1	0	0		\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}				$2\mathbb{Z}$	
CII	-1	-1	1	SHE		ℤ 3[) TI	\mathbb{Z}				
\mathbf{C}	0	-1	0		$2\mathbb{Z}$		\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}			
CI	+1	-1	1			$2\mathbb{Z}$		\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}		

Derivation based on Random matrix, *K*-theory, ... Can be refined with additional symmetry, e.g., inversion.

What are topo. invariants that can distinguish different phases?

What about disordered systems?

Characterization

A **disordered TI** is an insulator with edge/surface states that do not **Anderson localize**.

Physics of *d*-dim TI \rightarrow (*d*-1)-dim Anderson loc.

Topological invariant

Momentum k is not a good quantum num. Can we define topo. num?

- Niu-Thouless-Wu formula (IQHE) Niu-Thouless-Wu, *PRB* **31** (1985). $(k_x, k_y) \rightarrow (\theta_x, \theta_y)$: boundary twists
- Noncommutative Geometry Avron, Seiler & Simon, CMP 159 (1994).
 k-derivative → Commutator in real space

$$\frac{d}{dk} \rightarrow [iX, \ldots]$$

An extension gives a precise definition of topo. Invariant for each element in periodic table!

HK and T. Koma, arXiv:1611.01928. 95 pages, no figures... Today, I will focus on *killer apps*. 2D & 3D class All TI.

Outline

- 1. Topological insulators (TI)
- Classification & characterization
- What about disordered systems?

2. Topological invariants of 2D & 3D class All TI

- Time-reversal symmetry & Kramers' theorem
- Z₂ index (Noncommutative ver.)

3. Application

- 3D Wilson-Dirac model, phase diagram
- Numerical results

4. Summary

Time-reversal operation

Preliminaries

- Wavefunction: $\varphi_{a,\sigma}(x)$ (*a*: orbital, σ : spin, *x*: position)
- Complex conjugation: K
- Unitary operation: U
- Time reversal: $\Theta = UK$

$$K\varphi_{a,\sigma}(x) = \varphi_{a,\sigma}^*(x)$$
$$U\varphi_{a,\sigma}(x) = \sum_{b,\tau} U_{a\sigma,b\tau} \varphi_{b,\tau}(x)$$

Antiunitary operation!

 $\Theta^2 = +1$: even time reversal, $\Theta^2 = -1$: odd time reversal Standard choice: $\Theta = I \otimes (-i\sigma_y)$ with $\Theta^2 = -1$.

Important property

 $\langle \Theta \psi, \Theta \varphi \rangle = \langle \varphi, \psi \rangle$

Consequence of anti-unitarity. Frequently used later.

Proof)

$$\langle \Theta \psi, \Theta \varphi \rangle = \langle U \psi^*, U \varphi^* \rangle = \langle \psi^*, \varphi^* \rangle = \langle \varphi, \psi \rangle$$

Kramers' theorem

Time-reversal symmetry (TRS) Hamiltonian *H* commutes with Θ , $[H, \Theta] = 0$.

 $UH^*U^\dagger = H$ *H* is real modulo unitary.

- *H* has even-TRS if $\Theta^2 = +1$.
- *H* has odd-TRS if $\Theta^2 = -1$.

■ Theorem

Consider a Hamiltonian *H* with odd-TRS. The multiplicity of any energy eigenvalue of *H* must be even.

Proof)

If φ_1 is an eigenstate of *H* with energy $E(H\varphi_1 = E\varphi_1)$, then $\varphi_2 = \Theta \varphi_1$ is also an eigenstate of *H* with energy *E*.

The states φ_1 and φ_2 are orthogonal, because $\langle \varphi_1, \varphi_2 \rangle = \langle \Theta \varphi_2, \Theta \varphi_1 \rangle = \langle \Theta^2 \varphi_1, \Theta \varphi_1 \rangle = -\langle \varphi_1, \Theta \varphi_1 \rangle = -\langle \varphi_1, \varphi_2 \rangle$ Property $\langle \Theta \psi, \Theta \varphi \rangle = \langle \varphi, \psi \rangle$ $\Theta^2 = -1$

Lattice model

Setting

- Lattice Z³ (infinite cubic lattice)
- Wavefunction $\varphi_{a,\sigma}(x)$ (a=1,...,r, $\sigma=\uparrow,\downarrow, x\in \mathbb{Z}^3$)
- Tight-binding Hamiltonian *H* with odd-TRS: $\Theta^2 = -1$ Short-ranged, may be inhomogeneous

• Dirac operator
$$D_a(x) := \frac{1}{|x-a|} (x-a) \cdot \gamma$$

a = (1/2, 1/2, 1/2) is the origin of the dual lattice (**Z**³)* $\gamma = (\sigma_1, \sigma_2, \sigma_3)$ acts on the auxiliary space (\mathbb{C}^2).

Fermi projection

Assumption: Fermi level $E_{\rm F}$ lies in the gap. Projection to the states below $E_{\rm F}$

$$P_{\rm F} = \frac{1}{2\pi i} \oint_{\mathcal{C}} (z - H)^{-1} dz$$

$$(D_a)^{\dagger} = D_A$$
$$(D_a)^2 = 1$$

 $(P_{\rm F})^2 = P_{\rm F}$

Index of a pair of projections

i) $A^2 + B^2 = 1$ (Kato, 1955)

■ A and B operators

$$A := P - Q, \quad B := 1 - P - Q$$

$$P$$
 and Q : projections
 $P^2 = P$, $Q^2 = Q$

ii) $\{A, B\} = AB + BA = 0$ (Avron-Seiler-Simon, 1993)

Proof) Almost trivial! Just use $P^2 = P$, $Q^2 = Q$.

Relative index

 $Ind = \dim \ker (A - 1) - \dim \ker (A + 1)$

- SUSY structure Suppose $A\varphi_1 = \lambda\varphi_1$. Then $\varphi_2 := B\varphi_1$ satisfies $A\varphi_2 = -\lambda\varphi_2$ and $\varphi_2 \neq 0$ when $\lambda \neq \pm 1$. $\langle \varphi_2, \varphi_2 \rangle = \langle \varphi_1, B^2 \varphi_1 \rangle = (1 - \lambda^2) \langle \varphi_1, \varphi_1 \rangle$
- Eigenvalues $\pm \lambda$ come in pairs! $(|\lambda| \neq 1)$ Index (Ind) is a topological Invariant.

What does time-reversal symmetry imply?

■ Anti-unitary operator Ξ

 $\{\Xi, A\} = [\Xi, B] = 0, \quad \Xi^2 = -1.$

Suppose we have such Ξ and $A\varphi_1 = \lambda \varphi_1$. Then $\varphi'_2 := \Xi \varphi_1$ is nonzero and satisfies $A\varphi'_2 = -\lambda \varphi'_2$.

Eigenvalues $\pm \lambda$ come in pairs! Also applies to $\lambda = \pm 1$. dim ker $(A - 1) - \dim \ker (A + 1)$ vanishes identically...

Doublet structure

λ=±1 is always
pair-created or
annihilated!

- φ_1 and φ_3 are degenerate eigenstates of *A*.
- Orthogonality: $\langle \varphi_1, \varphi_3 \rangle = \langle \Xi \varphi_3, \Xi \varphi_1 \rangle = -\langle B \varphi_1, \Xi \varphi_1 \rangle = -\langle \varphi_1, \varphi_3 \rangle$
- The dimension of the eigenspace of λ is even unless λ=±1.
 ⇒ dim ker (A-1) is invariant modulo 2.

Z₂ index for 3D class All models

Identification

Let's take $P = P_{\rm F}$, $Q = D_a P_{\rm F} D_a$, $\Xi = D_a \sigma_2 \Theta$ They satisfy all the desired algebraic relations. $A = P_{\rm F} - D_a P_{\rm F} D_a$ can be used to define topo. invariant!

$\blacksquare \mathbf{Z}_2$ index

$$\operatorname{Ind}(P_{\mathrm{F}}, D_{a}P_{\mathrm{F}}D_{a}) := \dim \ker \left(\underline{P_{\mathrm{F}} - D_{a}P_{\mathrm{F}}D_{a}} - 1\right) \mod 2$$

$$A$$

Index = #(eigenstates of A with eigenvalue $\lambda = 1$) mod 2.

The index is 0 (trivial) or 1 (topological), and

- Quantized without ensemble average
- Robust against any odd-TRS perturbations (min-max thm.)
- But meaningful only in the infinite-volume limit
- A truncated version is very useful in numerics

Z₂ index for 2D class All models Setting

- Lattice Z² (infinite square lattice), dual lattice (Z²)*
- Tight-binding Hamiltonian H with odd-TRS: Short-ranged, may be inhomogeneous $\Theta^2 = -1$
- Dirac operator $D_a(x) := \frac{1}{|x-a|} (x-a) \cdot \gamma$

 $\gamma = (\sigma_1, \sigma_2)$ acts on the auxiliary space (\mathbb{C}^2).

$\blacksquare \mathbf{Z}_2$ index

$$Ind = \frac{1}{2} \dim \ker \left[\sigma_3 (P_F - D_a P_F D_a) - 1 \right] \mod 2$$

= dim ker $(P_F - \mathcal{D}_a^* P_F \mathcal{D}_a - 1) \mod 2$ $D_a = \begin{pmatrix} 0 & \mathcal{D}_a^* \\ \mathcal{D}_a & 0 \end{pmatrix}$
he index is 0 or 1, and $\mathcal{D}_a^* \mathcal{D}_a = \mathcal{D}_a \mathcal{D}_a^* = 1$

The index is 0 or 1, and

- Quantized without ensemble average
- Robust against any odd-TRS perturbations

Outline

- 1. Topological insulators (TI)
- Classification & characterization
- What about disordered systems?
- 2. Topological invariants of 2D & 3D class All TI
- Time-reversal symmetry & Kramers' theorem
- Z₂ index (Noncommutative ver.)

3. Application

- 3D Wilson-Dirac model, phase diagram
- Numerical results

4. Summary

3D Wilson-Dirac model

Hamiltonian

A prototypical model of 3D class All TI. X-L. Qi *et al.*, *PRB* **78** (2008); K.G. Wilson, *PRD* **10** (1974).

$$\begin{split} H &= H_0 + H_{\text{hop}} + H_{\text{dis}}, \\ H_0 &= \sum_{\boldsymbol{x}} \sum_{\mu=1,2,3} \left[c_{\boldsymbol{x}+\boldsymbol{e}_{\mu}}^{\dagger} \left(\frac{it}{2} \alpha_{\mu} - \frac{m_2}{2} \beta \right) c_{\boldsymbol{x}} + \text{h.c.} \right] + (m_0 + 3m_2) \sum_{\boldsymbol{x}} c_{\boldsymbol{x}}^{\dagger} \beta c_{\boldsymbol{x}}, \\ H_{\text{hop}} &= t_0 \sum_{\boldsymbol{x}} \sum_{\mu=1,2,3} (c_{\boldsymbol{x}+\boldsymbol{e}_{\mu}}^{\dagger} c_{\boldsymbol{x}} + \text{h.c.}), \\ H_{\text{dis}} &= \sum_{\boldsymbol{x}} v_{\boldsymbol{x}} c_{\boldsymbol{x}}^{\dagger} c_{\boldsymbol{x}}, \qquad v_{\boldsymbol{x}} \in \left[-\frac{W}{2}, \frac{W}{2} \right] \end{split}$$
Spin and orbital (in total 4) degrees of freedom at each site.
$$c_{\boldsymbol{x}}^{\dagger} = (c_{\boldsymbol{x}1\uparrow}^{\dagger}, c_{\boldsymbol{x}1\downarrow}^{\dagger}, c_{\boldsymbol{x}2\uparrow}^{\dagger}, c_{\boldsymbol{x}2\downarrow}^{\dagger}) \end{split}$$

Gamma matrices: $\alpha_{\mu} = \sigma_1 \otimes \sigma_{\mu}$ $(\mu = 1, 2, 3), \beta = \sigma_3 \otimes \sigma_0$ (σ_0 : 2x2 identity)

NOTE) In the continuum limit, H_0 reduces to $\mathcal{H}_0 = -i \partial_k \alpha_k + m\beta$

Phase diagram

Uniform case

$$m_2 = 1, t = 2, t_0 = 0$$
 ($E_F = 0$)

Triv. TI WTI TI Triv. m_0 -6 -4 -2 0

Disordered case

Transfer matrix studies:

Kobayashi, Ohtsuki, Imura, PRL 110, 236803 (2013).

Ryu and Nomura, *PRB* **85**, 155138 (2012).

Numerical result (1)

- **\blacksquare** Finite-size approximation of \mathbf{Z}_2 index
 - 3D lattice torus with PBC, N^3 sites
 - Fermi projection $P_{\rm F} = \sum_{E_n < E_{\rm F}} |\psi_n\rangle \langle \psi_n|$
 - Calculate projection $A = P_{\rm F} D_a P_{\rm F} D_a$
 - Truncated A supported in domain D $A \rightarrow A_D$ D is chosen, e.g. a cube with linear size N/2.
 - Compute eigenvalues of A_D

Uniform case (Warm-up)
Linear size: N = 12 (1728 sites)
Parameters: $m_2 = 1.0$, t = 2.0, $m_0 = -1$, $t_0 = 0.01$ ($E_F = 0$)

(First few) largest eigenvalues of *A_D* {**0.99**084, 0.70443, 0.70443, 0.68628, 0.68628, ...}

Phase diagram

 $m_2 = 1, t = 2, t_0 = 0, N^3 = 1000$ sites.

Reproduces the phase diagram by Kobayashi et al.!

Summary

- Studied 3D disordered insulators with time-reversal symmetry
- Operator theoretic definition of Z_2 index $Ind(P_F, D_a P_F D_a) := \dim \ker (P_F - D_a P_F D_a - 1) \mod 2$
- Proved quantization and robustness
- Application to 3D Wilson-Dirac model Reproduced the phase diagram obtained by Kobayashi *et al.*, *PRB* 85 (2012).

Future directions

Characterization of weak TI

In a WTI phase, numerical result shows dim ker (A-1) = 2. Why? Can we always distinguish WTI from OI? Metallic surface v.s. dark side?

• Other applications

1D and 2D Wilson-Dirac models. More realistic applications...