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What are flat bands 3/17
- Single-particle Schrodinger equation  Hy = e

- It may happen that there exists an energy . deg. - deg. : degeneracy

eigenvalue with macroscopic degeneracy. Voo V V : volume

- Flat band: space of states spanned by
these degenerate eigenstates

- Examples
- Continuous space: Landau levels

- Lattice: Kagome, pyrochlore, ...
 Old subject... Weaire-Thorpe, Phys. Rev. B 4 (1971)

- What are they good for?

- Kinetic energy is quenched

- Interesting playground for studying correlation physics
Fractional quantum Hall effect, ferromagnetism, superconductivity, ...

Kagome lattice Band structure




Today’s subject 17

- How to construct tight-binding models with flat bands?

- Various constructions
- Line-graph construction: Mielke
- Cell construction: Tasaki, (recent extension: Hatsugai, Mizoguchi)
- Imbalance-type: Sutherland, ...
- Resonance-type: Katsura-Maruyama, ...

- What is the mathematical structure behind them?

) IntertWining relati()n Decorated honeycomb Band structure
- Two matrices A and A 2

2.2 7 if‘ 'j,;F,/ .
~ | .
AC =CA ’
A and A have common eigenvalues =
- Covers many known examples ‘
- >

-1.8|

- Applications to tight-binding models

0 )
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2. Intertwining relation
« Graph theory in a nutshell
« ADE Dynkin diagrams
« Graph intertwiner



Graph Theory in a nutshell 6/17

- Graph G(V, E) wath. | _phys.
- A pair of V, a set of vertices, and E, a set of edges graph lattice
- Sometimes called undirected graph  (4,7) = (4,1) HEInEE site
. Example 1 edge bond/link
| V =1{1,2,3,4}
ette grapt g B={02,01,9),2.3),6.0)

- Adjacency matrix A(G)

- 4,j € V are said to be adjacent 1 2 3 4
If there exists (i,j) € £ 0 1 1 o\ 1
- Matrix elements A(G) = 1 01 0] 2
S 1 if ¢ and j are adjacent 110 1] 3
“J 1 0 otherwise 0 0 1 0/ 4

- Spectrum of A(G) is an
important characteristic of G! spec(A(G)) ={—-1.48...,—1,0.31...,2.17...}



ADE Dynkin diagrams
- Ubiquitous in Math. and Phys.

- Classification of semisimple Lie algebras

« Classification of modular invariant
partition functions of 2d CFT

- Perron-Frobenius eigenvector of A(G)
—> Solution of Yang-Baxter eq.

- Miraculous property
- Spectrum of adjacency matrix

Tl h : Coxeter number
A\; = 2CO0S e ;

: exponents

- Eigenvectors can also be obtained analytically.
They are written solely by trigonometric functions.

Why common eigenvalues for different graphs?
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1 2 3 n
A, o—eo—eo—0o—0-0—-9

h=n+1, ;,=1,2,3,..,n

h=2(n—1), {;=1,3,5,....2n — 3,n — 16

EGO—O—I—O—.

h=12, ¢; =1,4,5,7,8,11

ET.—O—I—H—.

h=18, f; =1,5,7,9,11,13,17

ﬁ

By

h=30, ¢, =1,7,11,17,19, 23,29



Example: As < D,

Graph Adjacency matrix
(0 1 0 0 0)
1 2 3 4 5 1 01 0 O
o—0—90—0-9o A(A5)=10 1 0 1 0
00 1 0 1
\0 0 0 1 0/
' : 1011
ADP) =141 0 o
3 01 00
.. : 1" 2 3 4
- Intertwining relation /10 0 0)
0O 1 0 0
A(As)C = C A(Dy) C=10 0 1 1
01 00
- C: graph intertwiner \l 0 0 0

B~ WO N B

5
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eigenvalues

A=0,+1,+V3
They share eigenvalues

A=0,0,+v3

el

Can construct C for any (A,, Dn+3)

P. A. Pearce & Y-K. Zhou, Int. J. Mod. Phys. B7, 3649 (1993)



Graph intertwiner 9/17

- Common eigenvalues

- Let A and A be adjacency matrices. i
If there exists C' # O such that AC = CA, Intertwining relation
then spec(A) Nspec(A) # ).

- Proof) Suppose v is an eigenvector of A with eigenvalue \.
Then Cwv Is an eigenvector of A with eigenvalue )\,
provided that Cv # 0.

A(C’U) — O@ = /\(C’U)
= \v
Since C # O, there is at least one eigenvector of A which is not
annihilated by (.

+ Generalization: A and A may not necessarily be adjacency matrices.
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3. Application to flat bands
« Decorated honeycomb lattice
* Decorated Haldane model
* Decorated diamond lattice in 3D and 4D



Tight-binding model
- Lattice (Graph) G(V, E)

- Single-particle Schrodinger equation

- Hopping matrix
T = (ti;)ijev
« Spectrum of T

- Assume translation invariance.
- (Discrete version of) Bloch theorem:

Yr(roa + R) = eik'R@k(ra)

* Hermitian matrix
if (i,j) € £
* Generalization of adjacency matrix

ti’j 75 0

- Diagonalization boils down to

that of n x n matrix 0
H(k) — (tf*(k)

11/17

Can be infinite

Z ti,j; = €P;, VieV

JjeVv

Graphene

k : crystal momentum
T . position within unit cell
a=1,2,...n

R = nja; + ngas + n3as




Decorated honeycomb lattice (1)

- Motivation
- a-graphyne

- Each edge of graphene is replaced with -C=C-.
Baughman, Eckhardt, Kertesz, J. Chem. Phys. 87, 6687 (1987)

- 1T-TaS,
- Transition metal dichalcogenide with CDW order

- Metallic network inside CDW domains
Lee, Geng, Park, Oshikawa, Lee, Yeom, Cho,
Phys. Rev. Lett. 124, 137002 (2020)

* (Our) Terminology & convention

- Linker E ‘?‘ Q, o

- Linkage

™

- Primitive translation vectors 7R\ /7 .
= (1/2,V3/2), a2 = (—1/2,V/3/2) oMo

Assume uniform hopping (for the moment)
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Decorated honeycomb lattice (2)

- Hamiltonian in momentum space
+ (39+2) X (3g+2) marix

( 0 ta:g tmg tmg
H(k) = | txq Oq H .01 Oq
tﬂ’}q Oq Oq Hmol

0 te—ik-alyg‘ te—ik-a,quT tyT

- Molecular Hamiltonian for linkage
- X q matrix (independent of k)

o )

H,o = t 0 . =tA(Ay)
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qg—1
—N—
ikgl \ z, = (1,0,..,0)"
i Yq 4
t ik',-ag q
€ Yq —N— T
" ye = (0,...,0,1)

O, :

q X q zero matrix

0 )

1 2 3 q
*—0—0 00090
Aq

- Eigenvalues and eigenvectors
are known explicitly

en:2tcos( m ), n=1,2,...,q
q+1




Flat-band energies = Eigen-enegies of H,,

- Intertwining relation

H(k)C(k) = C(k) Hmol

* Intertwiner
(39+2) X g matrix

- Implications
- Multiple flat bands!

™
€n, = 21 COS (

qg+1
- Eigenvectors

(k #0)

C(k)

q
N

0---0
/[A(k)]lfq\
[)\(k)]2jq

(A(k)]s1,
e

N (k) :
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I, : g % g identity matrix

1 _ e—ik-ag
Ak) = —14e ke
_e—ik-al _|_€—ik-a,2

Orthogonal to
(1’ 1’ 1)T’ (e—ik:-al ’ 8—ik-a23 1)T

Normalization const.

¢, : n—th eigenvector of H,.
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« Band touching occurs at k=0 (at which C(k)=0)

« Combining the idea of line graph, one can also study
decorated kagome lattice (related to COF, e.g., triptycene)

Mizoguchi et al., Phys. Rev. Mater. 3, 114201 (2019).
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Other applications

- Decorated Haldane model .,

- Toy model for integer o°
quantum Hall effect !
Haldane, Phys. Rev. Lett. O,
61, 2015 (1988). “o*

- Parameters
t1 =0.5, ta =0.7, t3=1.0, t4 = 0.5, A=0.1

- Decorated diamond lattice (g=3)
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Summary 17/17
- Intertwining relation  Ac = A
- Applicable to finite and infinite graphs

- Underlying mechanism behind flat bands
- Decorated honeycomb lattices

- Decorated diamond lattices in 3D, 4D, ... .{:::3

Future directions
- Inhomogeneous generalizations? o

.
- Possible in some cases, e.g., q=1 decorated honeycomb e
- What abut the effect of interactions? “ ’

- Localized “exciton” states? ey B
- Intertwining relation in many-body systems?



