Markov basis for testing homogeneity of Markov chains

Akimichi Takemura and Hisayuki Hara

University of Tokyo

July 6, 2009
Table of contents

1. Introduction and Notation
2. Properties of the configuration and the toric ideal
3. MB for two-state case with arbitrary length
4. MB for arbitrary finite state space and length of three
5. MB for three-state, length of four
6. Discussions and conjectures
Introduction and Notation
We study Markov basis for testing homogeneity of Markov chains.

Markov chain models are used in various fields, such as models for social mobility studies or state switching models in econometrics.

We give a complete description of Markov basis for the following cases:

- two-state, arbitrary length.
- arbitrary finite state space and length of three.
- three-state, length of four (already very hard!)

The general case remains to be a conjecture.
Consider a Markov chain $X_t, t = 1, \ldots, T (\geq 3)$, over a finite state space $S = \{1, \ldots, S\} (S \geq 2)$.

Each observed Markov chain is a path $\omega = (s_1, \ldots, s_T) \in S^T$.

\begin{center}
\begin{tikzpicture}
 \node (1) at (0,0) {1};
 \node (2) at (0,1) {2};
 \node (T) at (0,4) {T};
 \node (S) at (0,5) {S};
 \draw[->] (1) -- (2);
 \draw[->] (2) -- (T);
 \draw[->] (T) -- (S);
\end{tikzpicture}
\end{center}
Let $p_{ij}^{(t)} = P(X_{t+1} = j \mid X_t = i)$ denote the transition probability from time t to $t + 1$.

Let $\{\pi_i\}$ denote the initial distribution of X_1.

The probability of a path $\omega = (s_1, s_2, \ldots, s_T)$ is written as

$$p(\omega) = \pi_{s_1} p_{s_1 s_2}^{1} \cdots p_{s_{T-1} s_T}^{T-1}$$

(1)

We consider the null hypothesis of homogeneity:

$$H : p_{ij}^{(t)} = p_{ij}, \quad t = 1, \ldots, T - 1.$$

(2)
Then the probability of the path is

\[p(\omega) = \pi_{s_1} p_{s_1 s_2} \cdots p_{s_{T-1} s_T}, \]

which is a toric model (i.e. the right hand side is a monomial).

So we can test \(H \) by a Markov basis approach.

The parameters of the model under \(H \) is the set of transition probabilities \(\{ p_{ij} \}_{i,j \in S} \) and the initial distribution \(\{ \pi_i \}_{i \in S} \).
Suppose that we observe a (multi)set of N paths $W = \{\omega_1, \ldots, \omega_N\}$ of the Markov chain.
We identify the set of paths W with a T-way contingency table $x = \{x(\omega), \omega \in S^T\}$, where $x(\omega)$ denotes the frequency of the path ω in W.

We are going to count the number of transitions in W.

x_{ij}^t: the number of transitions from $s_t = i$ to $s_{t+1} = j$ in W.

x_i^t: the frequency of the state $s_t = i$ in W.

In particular x_i^1 is the frequency of the initial state $s_1 = i$.

The set of the numbers of transitions $\{x_{ij}^t\}$, $i, j \in S$, $t = 1, \ldots, T - 1$ forms a sufficient statistic for non-homogeneous model (conditional independence model)

$$p(\omega) = \pi_{s_1} p_{s_1 s_2}^{1} \cdots p_{s_{T-1} s_T}^{T-1}.$$
Introduction and Notation

- Let

\[x_{ij}^+ = \sum_{t=1}^{T-1} x_{ij}^t \]

denote the total number of transitions from \(i \) to \(j \) in \(W \) (ignoring the time \(t \)).

- The sufficient statistic under \(H \) is given by

\[b = b(\mathbf{x}) = \{ x_s^1, s \in S \} \cup \{ x_{ij}^+, i, j \in S \}. \]

- Fiber:

\[\mathcal{F}_b = \{ \mathbf{x} \in \mathbb{N}^{ST} \mid b(\mathbf{x}) = b \}. \]
Example of elements of a fiber:

We want to obtain a set of “moves” for transforming a set of paths to another set in the same fiber: Markov basis.
Properties of the configuration and the toric ideal

“homogeneous Markov chain toric ideal”
(HMC toric ideal)
For illustration we write out the configuration A for $S = 2$ and $T = 4$.

\[
\begin{align*}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
11 & 3 & 2 & 1 & 1 & 1 & 0 & 0 & 0 & 2 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
12 & 0 & 1 & 1 & 1 & 1 & 2 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 0 \\
21 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 2 & 1 & 1 & 1 & 1 & 0 \\
22 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 2 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 2 & 3
\end{align*}
\]

The columns 1121 and 1211 are identical!
We need to consider degree 1 moves.

We could choose just one column from A among identical columns. But it is not clear which column to choose.
“Crossing path swapping”

Data with crossing path swappings look the same:

corresponds either to \(\{111, 212\}\) or to \(\{112, 211\}\).
Properties of HMC toric ideal

- **FACT**: crossing path swappings are the square-free degree two moves for the non-homogeneous model (linearly ordered conditional independence model):

\[
p(\omega) = \pi_{s_1} p_{s_1 s_2}^1 \cdots p_{s_{T-1} s_T}^{T-1}.
\]

\((\pi_{s_1} \text{ can be absorbed into } p_{s_1 s_2}^1.\))

Proposition 1 (Dobra)

The set of crossing path swappings constitutes a Markov basis for the linearly ordered conditional independence model.

- (Roughly) we will be identifying all the data sets with the same picture.
Properties of HMC toric ideal

- Example of a move: “2 by 2 swap”

(Roughly again) Note that this “move” corresponds to a collection of moves, because in the picture the other parts of the paths are not specified.
Markov basis for two-state case (arbitrary length)
Theorem 1

A Markov basis for $S = 2$, $T \geq 4$, consists of the following moves.

1. cross path swappings,
2. degree one moves,
3. 2 by 2 swaps of the following form:
4. moves of the following form (the case of 2 included).
For $S = 2$, the complexity of Markov basis is the “same” for arbitrary T. (Looks somewhat like “Markov complexity” result.)

Actually for $T = 3$, we do not need the fourth type.

Moves are sums of at most two “loops”.

Proof of the theorem is not too difficult, but not too easy.
Markov basis for arbitrary finite state space and length of three
MB for $T = 3$

- Here we give an explicit form of a Markov basis for the case of $T = 3$. The number of states $S = |S|$ is arbitrary.
- Let $t: ij$ denote the transition from i to j at time t to $t + 1$.
- For $T = 3$ we only need to consider $t = 1, 2$.
- Let $i_1, \ldots, i_m, m \leq S$, be distinct elements of S. Similarly let $j_1, \ldots, j_m, m \leq S$, be distinct elements of S.
- Define a move (a “permutation”) $Z(i_1, \ldots, i_m; j_1, \ldots, j_m)$ by

$$Z(i_1, \ldots, i_m; j_1, \ldots, j_m) :$$
$$\{1: i_1j_1, 1: i_2j_2, \ldots, 1: i_mj_m\} \leftrightarrow \{2: i_1j_m, 2: i_2j_1, \ldots, 2: i_mj_{m-1}\}.$$ (4)
MB for $T = 3$

A typical move for $S = 6$ with $m = 4$, $(i_1, i_2, i_3, i_4) = (1, 2, 4, 5)$, $(j_1, j_2, j_3, j_4) = (1, 3, 5, 6)$.
Theorem 2

A Markov basis for HMC toric ideal with $T = 3$ is given by the set of crossing path swappings and moves corresponding to m times m permutations $Z(i_1, \ldots, i_m; j_1, \ldots, j_m)$ in (4), where $m = 2, \ldots, S$, i_1, \ldots, i_m are distinct, and j_1, \ldots, j_m are distinct.

Proof of this theorem is “easy”.
Markov basis for three-state, length of four
MB for $S = 3, \ T = 4$

- We wanted to check the case $S = 3, \ T = 4$, assuming that it is not too complicated.
- However this case turned out to be incredibly difficult.
- We now have a theorem, but the proof at the moment exists in my hand-written memo of 150 pages with hundreds of pictures.
- To state our theorem we need some more definitions.
An extended simple loop

- Intuitively, it is a loop, such that when we are moving towards the future we follow positive edges (solid lines) and when we are moving towards the past we follow negative edges (dotted lines).
- Also we require that each node is passed at most once.
- An important example of an extended simple loop for $S = 3$ and $T = 4$ is depicted as follows.
MB for $S = 3$, $T = 4$

Sign-conformal sum of extended simple loops

- Two extended simple loops L_1, L_2 are *sign-conformal* if each edge $t:ij$ belonging to both L_1 and L_2 has the same sign in two loops.

- A sign-conformal sum of two extended simple loops L_1, L_2 is a graph where each edge is weighted by a non-zero integer.

- The weight of an edge is given by its sign in L_1 and the number of L_k's containing the edge.

Example: sign-conformal sum of \[\begin{array}{ccc} \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \end{array} \] and \[\begin{array}{ccc} \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \end{array} \] is

\[\begin{array}{ccc} \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \end{array} \]

weight 2
MB for $S = 3$, $T = 4$

- Now our summary result for 3×4 case is stated as follows.

Theorem 3

A Markov basis for $S = 3$ and $T = 4$ is given by the set of crossing path swappings and the set of moves which are sign-conformal sums of at most three extended simple loops.

- Actually this statement is composed in hindsight. We are actually proving the following theorem:

Theorem 4

A Markov basis for $S = 3$ and $T = 4$ consists of moves in the following list (16 types of moves).
MB for $S = 3$, $T = 4$

- **Type 0** Crossing path swapping.
- **Type 1, “Deg1”** Degree one moves.
- **Type 2, “2:2swap”** 2 by 2 swaps of (3).
- **Type 3, “1*1swap”** Degree 2 move of partial path swapping with $m = 1$ in the following picture:
[Type 4, “3:3 permutation”] Since $S = 3$, the 3 by 3 permutation is written as $\{t:1i_1, t:2i_2, t:3i_3\} \leftrightarrow \{t':1j_1, t:2j_2, t:3j_3\}$ where $1 \leq t < t' \leq 4$ and both $\{i_1, i_2, i_3\}$ and $\{i_1, i_2, i_3\}$ are permutations of $\{1, 2, 3\}$. Further, for this move to be degree three, we require $i_1 \neq j_1$, $i_2 \neq j_2$ and $i_3 \neq j_3$. An example of this move is

[Type 5, “2:2:2 swap”] Sum of three loops of length 4:
MB for $S = 3, T = 4$

- [Type 6, “2 by 2 swap of unequal length”, “2:2 uneq”] A swap of partially specified partial paths for 3×4 case such as

- [Type 7, “2+3loop”, sum of loops of length 4 and 6] There are three types, 7A, 7B, 7C:
MB for $S = 3$, $T = 4$

- [Type 8, “3loops”, sum of three loops of length 4]
 \[
 \begin{align*}
 \cdot & \quad \cdot \\
 \cdot & \quad \cdot \\
 \cdot & \quad \cdot
 \end{align*}
 \begin{align*}
 \cdot & \quad \cdot \\
 \cdot & \quad \cdot \\
 \cdot & \quad \cdot
 \end{align*}
 =
 \begin{align*}
 \cdot & \quad \cdot \\
 \cdot & \quad \cdot \\
 \cdot & \quad \cdot
 \end{align*}
 +
 \begin{align*}
 \cdot & \quad \cdot \\
 \cdot & \quad \cdot \\
 \cdot & \quad \cdot
 \end{align*}
 +
 \begin{align*}
 \cdot & \quad \cdot \\
 \cdot & \quad \cdot \\
 \cdot & \quad \cdot
 \end{align*}

- [Type 9, “3loopsW”, sum of three loops of length 4 with overlapped edges]
 \[
 \begin{align*}
 2 & \quad 2 \\
 \cdot & \quad \cdot \\
 \cdot & \quad \cdot
 \end{align*}
 =
 \begin{align*}
 \cdot & \quad \cdot \\
 \cdot & \quad \cdot \\
 \cdot & \quad \cdot
 \end{align*}
 +
 \begin{align*}
 \cdot & \quad \cdot \\
 \cdot & \quad \cdot \\
 \cdot & \quad \cdot
 \end{align*}
 +
 \begin{align*}
 \cdot & \quad \cdot \\
 \cdot & \quad \cdot \\
 \cdot & \quad \cdot
 \end{align*}
MB for $S = 3$, $T = 4$

10. [Type 10, “2+3+3loopW3”, sum of three loops of lengths 4, 6 and 6 with 3 overlapped edges]

11. [Type 11, “2+2+3loopW4”, sum of three loops of lengths 4, 6 and 6 with 4 overlapped edges]
MB for $S = 3$, $T = 4$

12. [Type 12, “2+3+3loopW5”, sum of three loops of lengths 4, 6 and 6 with 5 overlapped edges]

13. [Type 13, “3+3loop”, sum of two loops of length 6]
MB for $S = 3$, $T = 4$

14 [Type 14, “LL1”, a long extended simple loop of length 8]

15 [Type 15, “LL2”, a long extended simple loop of length 10]
Discussions and conjectures
Discussions and conjectures

- From the case of \(S = 2 \), we expect that there exists some kind of “Markov complexity”, i.e., the complexity of MB does not depend on \(T \).
- (Bold) Conjecture: For general \(S \), MB consists of at most \(|S|\) sign-conformal sums of extended simple loops.
- Somehow, roughly speaking, the moves for “pictures” look very similar to “toric ideals” with respect to these pictures.